8 research outputs found

    NONLINEAR OPTICS IN HYDROGENATED AMORPHOUS SILICON (A-SI:H) WAVEGUIDES

    Get PDF
    Silicon photonics combines wide-bandwidth capability afforded through optics with well-developed nano-fabrication technology, allowing for short-range communication at low cost, with low operating power and compact device footprints. In order to compete with traditional copper wiring, optical interconnects must be integrated vertically for maximum integration density. Crystalline silicon (c-Si) cannot be deposited; only epitaxially grown or bonded at high temperature thereby destroying the electronic devices and is consequently limited to single layer integration. Here we investigate a new silicon photonic material, hydrogenated amorphous silicon (a-Si:H). This material can be deposited at a low temperature 150 ~300 degree C within the CMOS thermal budget and is already available in the current fabrication process line. Nonlinear optical effects allow ultra-fast time scale all-optical signal processing. However, in c-Si the nonlinear coefficient is low; therefore high input power is required for operation. A-Si, due to its unique band structure, has an order of magnitude higher nonlinear coefficient than c-Si. This high nonlinearity enables all-optical nonlinear applications at very low powers. The first part of this dissertation will focus on the design and fabrication of the a-Si:H waveguide. The optical properties of the waveguide are measured and analyzed. Secondly, using the highly-nonlinear a-Si:H waveguide, I will discuss our demonstrations including: 1) broad-bandwidth wavelength conversion, 2) low power time-domain demultiplexing, 3) all optical signal regeneration, 4) short pulse characterization via frequency resolved optical gating (FROG), 5) broad-band optical parametric amplification and oscillation, and 6) correlated photon-pair generation

    High Efficiency Silicon Photonic Interconnects

    Get PDF
    Silicon photonic has provided an opportunity to enhance future processor speed by replacing copper interconnects with an on chip optical network. Although photonics are supposed to be efficient in terms of power consumption, speed, and bandwidth, the existing silicon photonic technologies involve problems limiting their efficiency. Examples of limitations to efficiency are transmission loss, coupling loss, modulation speed limited by electro-optical effect, large amount of energy required for thermal control of devices, and the bandwidth limit of existing optical routers. The objective of this dissertation is to investigate novel materials and methods to enhance the efficiency of silicon photonic devices. The first part of this dissertation covers the background, theory and design of on chip optical interconnects, specifically silicon photonic interconnects. The second part describes the work done to build a 300mm silicon photonic library, including its process flow, comprised of basic elements like electro-optical modulators, germanium detectors, Wavelength Division Multiplexing (WDM) interconnects, and a high efficiency grating coupler. The third part shows the works done to increase the efficiency of silicon photonic modulators, unitizing the χ(3) nonlinear effect of silicon nanocrystals to make DC Kerr effect electro-optical modulator, combining silicon with lithium niobate to make χ(2) electro-optical modulators on silicon, and increasing the efficiency of thermal control by incorporating micro-oven structures in electro-optical modulators. The fourth part introduces work done on dynamic optical interconnects including a broadband optical router, single photon level adiabatic wavelength conversion, and optical signal delay. The final part summarizes the work and talks about future development

    Optical Communication

    Get PDF
    Optical communication is very much useful in telecommunication systems, data processing and networking. It consists of a transmitter that encodes a message into an optical signal, a channel that carries the signal to its desired destination, and a receiver that reproduces the message from the received optical signal. It presents up to date results on communication systems, along with the explanations of their relevance, from leading researchers in this field. The chapters cover general concepts of optical communication, components, systems, networks, signal processing and MIMO systems. In recent years, optical components and other enhanced signal processing functions are also considered in depth for optical communications systems. The researcher has also concentrated on optical devices, networking, signal processing, and MIMO systems and other enhanced functions for optical communication. This book is targeted at research, development and design engineers from the teams in manufacturing industry, academia and telecommunication industries

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Microscopy and Analysis

    Get PDF
    Microscopes represent tools of the utmost importance for a wide range of disciplines. Without them, it would have been impossible to stand where we stand today in terms of understanding the structure and functions of organelles and cells, tissue composition and metabolism, or the causes behind various pathologies and their progression. Our knowledge on basic and advanced materials is also intimately intertwined to the realm of microscopy, and progress in key fields of micro- and nanotechnologies critically depends on high-resolution imaging systems. This volume includes a series of chapters that address highly significant scientific subjects from diverse areas of microscopy and analysis. Authoritative voices in their fields present in this volume their work or review recent trends, concepts, and applications, in a manner that is accessible to a broad readership audience from both within and outside their specialist area

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion
    corecore