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Abstract

Silicon photonics combines wide-bandwidth capability afforded through optics

with well-developed nano-fabrication technology, allowing for short-range commu-

nication at low cost, with low operating power and compact device footprints. In

order to compete with traditional copper wiring, optical interconnects must be inte-

grated vertically for maximum integration density. Crystalline silicon (c-Si) cannot be

deposited; only epitaxially grown or bonded at high temperature thereby destroying

the electronic devices and is consequently limited to single layer integration. Here we

investigate a new silicon photonic material, hydrogenated amorphous silicon (a-Si:H).

This material can be deposited at a low temperature 150 ∼ 300◦C within the CMOS

thermal budget and is already available in the current fabrication process line.

Nonlinear optical effects allow ultra-fast time scale all-optical signal processing.

However, in c-Si the nonlinear coefficient is low; therefore high input power is required

for operation. A-Si, due to its unique band structure, has an order of magnitude higher

nonlinear coefficient than c-Si. This high nonlinearity enables all-optical nonlinear

applications at very low powers.
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ABSTRACT

The first part of this dissertation will focus on the design and fabrication of the

a-Si:H waveguide. The optical properties of the waveguide are measured and an-

alyzed. Secondly, using the highly-nonlinear a-Si:H waveguide, I will discuss our

demonstrations including: 1) broad-bandwidth wavelength conversion, 2) low power

time-domain demultiplexing, 3) all optical signal regeneration, 4) short pulse char-

acterization via frequency resolved optical gating (FROG), 5) broad-band optical

parametric amplification and oscillation, and 6) correlated photon-pair generation.

Primary Reader: Prof. Amy C. Foster

Secondary Reader: Prof. Mark A. Foster
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Chapter 1

Introduction

1.1 Overview

With the increasing demand for larger communication bandwidths, optics enables

the possibility of high speed data transmission at all length scales of communica-

tion. Long haul optical communications has been widely implemented using the

well-developed fiber technology and state-of-the-art photonic components. Over the

past few decades, there has been a trend of utilizing optics for short range commu-

nication systems such as board-to-board, chip-to-chip and on-chip interconnects [1]

(Fig. 1.1). In order to compete with traditional copper wiring, optical intercon-

nects must utilize its full bandwidth, reduce the cost and power, and increase the

packing density. Silicon photonic interconnects have the potential to overcome the

limited bandwidths of traditional electronic communications, while taking advantage

1



CHAPTER 1. INTRODUCTION

of the well-developed microelectronic fabrication techniques. Using silicon as a plat-

form, photonic and microelectronic devices can be monolithically integrated on-chip,

utilizing both the versatility of microelectronics and the large bandwidth capabil-

ity of photonics. Silicon is the dominant material in the electronics industry, and

has recently emerged as the material of choice for photonic applications due to its

beneficial optical properties [7]. Many companies such as Intel and IBM have demon-

strated high data rate optical interconnect using silicon photonics platform; Gb/s

optical transceiver has become commercially available by various vendors.

Figure 1.1: Optical communication applications are moving toward short haul systems
(from [1])

However, if we look at the demonstration by IBM [8], photonics devices exist

at the same SOI (silicon-on-insulator) layer as the transistors, taking away precious

real-estate from the micro-electronic devices. Therefore, the photonics is only limited

to single layer in a 2-D manner. In a traditional integrated circuit, copper intercon-
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CHAPTER 1. INTRODUCTION

nects can be stacked vertically and be processed at the back-end. Therefore, in order

to replace the copper wires, photonic wires must have superior stacking capability.

For this reason, researchers have envisioned future 3-D integrated photonic circuits

where the photonic layers can be on top of the electronic devices (Fig 1.2). How-

ever, the vast majority of research utilizes crystalline silicon (c-Si), which requires

high temperature annealing, material bonding, or high temperature epitaxial growth

to define the photonic layer, therefore vertical stacking of c-Si is not possible within

the CMOS (Complementary metal-oxide-semiconductor) compatible thermal budget.

In this dissertation I will investigate a new photonic material, a-Si:H (hydrogenated

amorphous silicon) and explore its application for all-optical processing using non-

linear optical effects. A-Si:H has high refractive index contrast with silica so the

photonic device footprint can be compact. The material itself can be easily deposited

at low temperature (150 ∼ 300◦C) using standard plasma-enhanced chemical vapor

deposition (PECVD) thereby allowing vertical stacking of photonic layers. A-Si:H is

available in standard CMOS fabrication lines and is compatible with back-end pro-

cesses. At the same time, nonlinear optical processes enable generation, modulation,

transmission, and detection of photons at ultrafast timescales, and the validation of

a-Si:H as a highly nonlinear material thereby demonstrates its potential to achieve

highly-functionalized optoelectronic devices.

3



CHAPTER 1. INTRODUCTION

Figure 1.2: Future 3-D photonic circuit envisioned by researchers in IBM (from IBM
website), Columbia University (Bergman’s group website), and Cornell Univeristy
(Lipson’s group [2])

1.2 Hydrogenated amorphous silicon

(a-Si:H)

A-Si (the non-hydrogenated form of amorphous silicon) is a CMOS compatible

material with refractive index of ∼ 3.45 at wavelength of 1550nm. It has been widely

used in fabrication lines as the precursor for p-Si gate. The high optical loss of a-Si

is primarily due to the absorption of the dangling bonds and therefore very limited

optical application has been shown. It has been found that the dangling bonds in a-Si

can be terminated by passivated hydrogen (Fig. 1.3), and the optical propagation

loss can be as low as 2 dB/cm for highly confined single mode waveguide [9]. More

recently, with the advancements in fabrication, sub 1 dB/cm a-Si:H waveguides were

demonstrated [10].
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Figure 1.3: Structure of a-Si:H. The dangling bonds cause high optical loss. Hydro-
gen passivation can terminate the bonds and greatly reduce the optical loss.(from
http://www.eere.energy.gov/)

1.3 Waveguide design and fabrication

1.3.1 Dispersion engineering

The primary optical nonlinear process in the applications presented in this dis-

sertation is four-wave mixing (FWM) where two pump photons are converted into

an idler photon and signal photon. This process can generate photons at differ-

ent wavelengths and simultaneously amplify an input signal. This parametric pro-

cess requires both energy and momentum conservation (Fig. 1.4). Energy conser-

vation determines the wavelength (frequency) of the new generated idler such that

ωpump1 + ωpump2 = ωsignal + ωidler; momentum conservation determines the efficiency

(bandwidth) of the FWM process. The physical concept behind momentum con-

servation is that the phase of each new generated idler photon along the length of

the nonlinear medium must be in-phase with the previous generated idler photons,

otherwise they destructively interfere and the output power is limited at the given
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frequency. The phase can be controlled by the velocity of light traveling along the

medium for different wavelengths. The phase mismatch can be described by:

Pump Pump

PumpIdler

Idler

Signal Signal

Signal

Energy Conservation Momentum Conservation
-Phase matching

Figure 1.4: Efficient four-wave mixing (FWM) process requires energy and momentum
conservation

∆k = 2γPpump − 2kpump + ksignal + kidler (1.1)

where γ = 2πn2/λAeff is the effective nonlinearity. kpump, ksignal, kidler are the

propagation constants of pump, signal, and idler. The first term in the right hand

side of the equation comes from the nonlinear phase shift. In the small gain regime

where the contribution from the nonlinear phase shift is limited, the FWM bandwidth

is determined by the dispersion at the pump wavelength and can be approximated

by [11]:

ΩFWM =

[
4π

β2L

]1/2
(1.2)

Therefore, in small-gain regime, in order to achieve wide bandwidth operations, the

group-velocity dispersion (D) should be near zero at the pump wavelength in the

case of pump-degenerate FWM. For large gain applications, slightly anomalous group
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Figure 1.5: Group velocity dispersion as a function of wavelength for different waveg-
uide geometries

velocity dispersion is necessary to compensate for the nonlinear phase shift. One of

the benefits of high-index contrast waveguides is that the waveguide dispersion can

be carefully controlled to overcome the material dispersion [12]. We have calculated

the group velocity dispersion for the a-Si:H waveguide with 500 nm width and various

thicknesses. The dispersion curves are shown in Fig 1.5. As will be evident in the

experimental demonstrations throughout this dissertation, we chose a 196 nm × 500

nm waveguide (near ZGVD at 1550 nm) for continuous-wave (CW) or high repetition

rate (10 GHz) applications. For the large-gain regime we use 215 nm × 500 nm

waveguide ( D ' 350 ps/(nm · km)) to achieve wide gain bandwidth.

1.3.2 Device fabrication

The a-Si:H nanowaveguide is fabricated using standard microelectronics fabrica-

tion techniques at the Center for Nanoscale Science and Technologys NanoFab at

7
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Figure 1.6: Pictures of the equipment for the waveguide fabrication (from NIST
website)

the National Institute of Standards and Technology (Fig. 1.6). The whole fabrica-

tion process is depicted in Fig 1.7. After the standard RCA clean, the a-Si:H film is

deposited by plasma-enhanced chemical vapor deposition (Unaxis 790) on a silicon

wafer with 3 µm buried oxide (BOX). The a-Si:H film deposition chamber parameters

are: a gas flow of 1200 sccm made up of helium with 5 % silane is kept at a pressure

of 900 mT with 50 W RF power. The substrate is maintained at 300◦C during the

deposition. A thin layer of silicon dioxide (∼ 150 nm ) is deposited as a hard mask

to reduce effects from direct etching with organic resists. Electron-beam lithography

(JEOL JBX 6300-FS) followed by chlorine-based inductively coupled plasma (ICP)

etching (Unaxis SHUTTLELINE ICP) is used for waveguide patterning. A thick sil-

icon dioxide layer (∼ 1µm) was deposited over the waveguide for cladding and for

8
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Figure 1.7: A-Si:H waveguide fabrication processes

protection. Inverse adiabatic tapers on both ends of waveguide are made for optical

coupling [13]. The scanning electron microscpoe image of the fabricated waveguide

and the modeled transverse-electric mode profile are shown in Fig. 1.8

200 nm

Figure 1.8: (Left)simulated mode profile of the 215 nm × 500 nm a-Si:H waveg-
uide. (Right) scanning electron microscope image of the fabricated waveguide before
cladding. There is 150 nm silicon dioxide hard mask on top of the waveguide.
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1.3.3 Waveguide loss

The linear propagation and coupling loss are measured by the ”cutback method”

as shown in Fig. 1.9, where waveguides with different lengths are fabricated on the

same die and the total loss for each individual waveguide is measured. The coupling

loss for each waveguide is assumed to be the same and by measuring the increase in

total loss for longer waveguides, the linear propagation loss can be determined. The

total measured loss as function of waveguide lengths are plotted in Fig. 1.10. The

slope of the line represents the propagation loss and from the intercept values at the

zero length, the coupling loss can be extrapolated. Using this method, we characterize

the propagation loss of our a-Si:H waveguide to be 3.2 dB/cm in TE-mode and the

coupling loss from lensed fiber to waveguide to be about 6.5 dB per facet.

ASE

a-Si:H

nanowaveguide

OSA

PD

Figure 1.9: Experimental setup for cutback method to characterize the linear loss
and the coupling loss of the waveguide.

1.3.4 Sample stability

There are reports [14] indicating that the a-Si:H waveguide can degrade due to

the so-called Staebler-Wronski effect [15]. During our experiment, we find that the

samples degrade over time (in few months) after exposure to visible light. This degra-
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Figure 1.10: Linear propagation loss and fiber-to-waveguide coupling loss of the fab-
ricated waveguide measured by cut-back method.

dation is well-studied and could be avoided by isolating the sample from visible light or

adding an opaque cover for packaging. Critically, we did not observe waveguide dam-

age by the telecommunication wavelength light used in the experiments. We found

no correlation between degradation and exposure to high average power infrared light

in the waveguide.

1.4 Optical nonlinear properties

Higher order susceptibility (χ(2), χ(3), . . . ) can become prominent when the inject-

ing light intensity is strong enough, and is particularly critical in very high confine-

ment regimes such as integrated waveguides. These higher order terms can contribute

to the change of optical properties of a material thereby modifying the property of

light. This process (electronic response) occurs usually in an ultra-fast scale about

hundreds of tera-hertz and can be used for ultra-high speed signal processing. Com-
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mon CMOS-compatible materials are centro-symmetrical so no second order nonlin-

earity (χ(2)) is available. Third-order nonlinearity (χ(3)) is typically small but can

be enhanced by strong confinement of light. The real part and imaginary part of

nonlinear refractive index can be related to (χ(3)) by:

n2 =
3Re[χ(3)]

8n
, α2 = −3ω0Re[χ(3)]

4nc
(1.3)

The effective refractive index becomes:

n = n0 + n2I − i
λ

4π
(α0 + α2I) (1.4)

where the real part (n2) contributes phase shift, and the imaginary part (α2) induces

nonlinear loss. It is useful to define a nonlinear figure-of-merit to describe the amount

of nonlinear phase shift within one absorption length [16]:

FOM =
n2

λα2

(1.5)

For a nonlinear device to be useful, the FOM of higher than 1 is desirable. It’s also

useful to obtain the information of free carrier absorption that is typically induced

by nonlinear loss (two-photon absorption). We characterize the nonlinearity of our

a-Si:H waveguide using various techniques. The details are provided in the following

sections.
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1.4.1 Nonlinearity characterization using FWM ef-

ficiency

To accurately determine the nonlinear refractive index of the material, we perform

FWM (Fig. 2.1) in our device in the extremely low input pump power regime (∼

300µW ) where the nonlinear loss mechanisms are deemed negligible. In this regime,

the maximum conversion efficiency can be described by [11]:

Max(CE) = sinh2(γPpumpLeff ) (1.6)

and

γ =
2πn2

λAeff
(1.7)

where γ is the effective nonlinearity of the device, n2 is the nonlinear refractive index,

λ is the wavelength of light, Ppump is the pump power in the waveguide, Leff is the

effective length of the waveguide ((1 − e−α0L)/α0), and Aeff is the effective optical

mode area . Using this relation, we extract the nonlinear refractive index of our

a-Si:H to be n2 = 3.1 × 10−13cm2/W (or γ = 1260W−1m−1). This high nonlinear

refractive index implies the potential for efficient, low power nonlinear applications

using a-Si:H waveguides.
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a-Si:H

nanowaveguide

OSA

EDFA

WDM
CW laser 1

CW laser 2

PC

PC

Figure 1.11: Experimental setup for CW four-wave mixing.

1.4.2 Nonlinearity characterization using inverse

transmission and self-phase modulation

Nonlinear loss in silicon material is mostly dominated by two-photon absorption

(TPA) whereby two photons can be simultaneously absorbed via χ3 nonlinearity. The

imaginary part of the nonlinear refractive index, α2 can lead to inefficient nonlinear

process and further induces free carriers that can absorb injecting photons. The

nonlinear loss can be measured by the transfer function of the waveguide. The imag-

inary part of the nonlinearity can be extracted from the linear fit of the inversion

transmission function.

1

T
=

Pin
Pout

= eα0L(1 +
α2

ΓAeff
LeffPin) (1.8)

where T is transmission, Pin and Pout represent input and output power; Leff is the

effective propagation length of the waveguide. Using the experimental setup shown

in Fig. 1.12, we can measure the inverse transmission as function of input power for

both c-Si and a-Si:H waveguide.
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10%

90%(1558nm, 90MHz)

(Pump1=200mA)

(FWHM=9.1nm, ACF=0.6ps)

PC

VOA
DCF

(D-3, 22m)

PD1

PD2
(Free space)

EDFA
(150mW, 60mA)

a-Si:H

or

c-Si 

waveguide

Mode-locked laser

OSA

Figure 1.12: Experimental setup for inverse transmission and self-phase modulation

The results are shown in Fig. 1.13. At low input power, a linear fit extract the

two photon absorption to be 1.18 cm/GW for c-Si and 1.43 cm/GW for a-Si:H. It

is notable that for a-Si:H, inverse transmission curve up at high input powers. This

is due to higher order absorption (three photon absorption) or strong free carrier

effects. The recorded self-phase modulation spectrum for c-Si and a-Si:H waveguides

as function of input power and the simulation results using split-step Fourier method

(SSFM) are shown in Fig. 1.14 and Fig. 1.15 for comparison. The n2 can be estimated

by fitting the simulation parameters. The n2 of a-Si:H ( 5×10−13cm2/W ) is about one

order of magnitude higher than c-Si. This value is different from the results obtained

by FWM conversion efficiency. This is partly because the two samples under test were

prepared separately and therefore there exist variations in the material properties.

The modeling of the pulse propagation is achieved by numerically solving the

Nonlinear Schordinger Equations (NLSE). The equation to describe an optical pulse

propagating through a medium is given by:
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Figure 1.13: Inverse transmission as function of input peak power for c-Si (left) and
a-Si:H (right)

∂

∂z
A(t, z) =

−
[
α

2
+ i

β2
2

∂2

∂t2

]
A(t, z)+

[
iγ − α2

2

]
|A(t, z)|2A(t, z)−

[
ikFCD +

σFCA
2

]
N(t, z)A(t, z)

(1.9)

where A(t, z) is the pulse electric field; α is the linear propagation loss coefficients ;

α2 is the two photon absorption coefficient; β2 is the group velocity dispersion of the

waveguide;γ is the effective nonlinearity of the waveguide. σFCA and kFCA are the

free carrier absorption and dispersion coefficients.N(t, z)is the total number of free

carriers and is given by:

∂N(t, z)

∂t
=

α2

2hν
|A(t, z)|4 − N(t, z)

τeff
(1.10)

where τeff is the effective free carrier lifetime; h is Planck’s constant. These two

equations can be numerically solved by standard split-step Fourier method to model
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Figure 1.14: Measured and modeled self-phase modulation spectrum evolution for
c-Si

the pulse propagation behavior. The simulated spectra for c-Si and a-Si:H are shown

in Fig. 1.14 and Fig. 1.15.

1.4.3 Comparison

Using these two methods, we can obtain n2, α2 and the nonlinear FOM of the

a-Si:H waveguide. Table 1.1 shows the comparison of the nonlinear properties of

different materials. This table shows the potential of a-Si:H as CMOS-compatible

platform for nonlinear applications. The values of nonlinearity in a-Si:H reported by

different group vary dramatically. This is due to the deposited nature of the material.

The material properties (including molecular density and hydrogen concentrations)
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Figure 1.15: Measured and modeled self-phase modulation spectrum evolution for
a-Si:H.

may be different due to deposition conditions. However, we can see most of the

reported values show a stronger nonlinearity and higher nonlinear FOM than c-Si.

Although the origin of this high nonlinear FOM is still not clear yet, there exist

some possible explanations on why a-Si:H has such different nonlinear behavior than

c-Si [17,18]. One of the most plausible explanations is that the change of both indirect

and direct band structures alter the optical properties in a-Si:H. The n2 is directly

related to the direct bandgap. For a-Si:H, the direct bandgap is smaller than c-Si;

therefore the n2 (real part of χ(3)) of a-Si:H becomes larger than c-Si. Typically for

direct bandgap materials, α2 will also increase with decreasing bandgap. However,

for indirect bandgap materials such as silicon, the two photon absorption is more

associated with the indirect bandgap. And according to the absorption measurement
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by Shoji [19], the indirect bandgap is much greater than c-Si, so the α2 will be smaller,

resulting this high nonlinear FOM in a-Si:H.
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Table 1.1: Nonlinear properties of different materials at λ = 1550 nm

Material n2 Re(γ) β2 Nonlinear

(cm2/W ) (1/W ·m) (cm/GW ) FOM

HNLF 3.2× 10−16 0.021

As2S3 [20, 21] 3× 10−14 10 6.2× 10−4 High

c-Si [22] 4× 10−14 300 0.8 0.35

SiN [23] 2.5× 10−15 1.4 Negligible High

Hydex [24] 1.1× 10−15 0.22 Negligible High

GaAs 1.6× 10−13 15 0.07

AlGaAs

(bandgap engineered) [25] 1.43× 10−13 0.05 13.2

a-Si:H (Suda et al) [26] 0.3× 10−13 0.2 0.97

a-Si:H (Narayanan et al) [27] 4.2× 10−13 2000 4.1 0.66

a-Si:H (Kuyken et al) [28] 1.3× 10−13 770 0.392 2.2

a-Si:H (Grillet et al) [29] 2.1× 10−13 1200 0.25 5

a-Si:H (Matres et al) [30] 1.7× 10−13 332 0.22 4.9

a-Si:H (Our device) [31] 5× 10−13 2000 1.43 2.25
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Chapter 2

Wavelength conversion

2.1 Introduction

To fully utilize the wide bandwidth of optical communications, certain multi-

plexing schemes are widely applied. A typical scheme is called wavelength division

multiplexing (WDM) where each user is allocated with a specific wavelength win-

dow. In this setting, the ability to transfer data from one wavelength to another

becomes crucial for WDM implementation. Ultrafast nonlinear parametric process

can be utilized for wavelength conversion. Here, we use pump-degenerate four-wave

mixing (FWM) in a dispersion engineered a-Si:H waveguide to achieve ultra-broad

bandwidth wavelength conversion. The high nonlinearity of the a-Si:H waveguide

can reduce the power requirement for efficient operation and the limitations due to

nonlinear loss will be discussed.
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2.2 Continuous-wave (CW) wavelength

conversion

For the continuous wave (CW) FWM experiment , two CW tunable laser sources

are used to generate the pump and signal waves. The wavelength of the pump is

fixed at 1541 nm and sent into an erbium-doped fiber amplifier (EDFA). The signal

wavelength is swept from 1470 nm to 1540 nm. A wavelength-division multiplexer

(WDM) is used to combine the pump and signal followed by a lensed fiber for fiber-

to-chip coupling. The output light is collimated, coupled into a single mode fiber and

sent into an optical spectrum analyzer (OSA).

a-Si:H

nanowaveguide

OSA

EDFA

WDM
CW laser 1

CW laser 2

PC

PC

Figure 2.1: Schematic of experimental setup for CW four-wave mixing measurement.

The overlay of the wavelength-dependent FWM spectrum for the TE-mode is

shown in Fig. 2.2(left) . The FWM occurs with -30 dB conversion efficiency over more

than a 150 nm bandwidth, including the symmetric lobe to the short wavelength side,

with only 2.2-mW of peak input pump power in the TE-mode. The full FWM band-

width of the device has not been experimentally determined due to equipment limi-

tations, however we expect it to be greater than 200 nm using the modeling method.
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The measured and calculated conversion efficiency is plotted in Fig. 2.2(right) for

the TE mode. The conversion efficiency is determined by Pidler out/Psignal out. The

bandwidth modeling method is described in Sec. 2.4. We also measure and calculate

the FWM conversion efficiency for the TM mode, and the conversion bandwidth of

20 nm is limited by the strong normal group-velocity dispersion value, as predicted

by the modeling.

Signals

Converted idlers

Figure 2.2: (Left)the overlay of wavelength dependent FWM when the pump is fixed
at 1541 nm, and the signal is swept from 1470 nm to 1540 nm. (Right)Theoretical
(curve) and experimental (dots) conversion efficiency as functions of converted wave-
length for the TE-mode. A conversion efficiency of approximately -30 dB is measured
over the 150 nm bandwidth including the symmetric lobe to the short wavelength
side. The variation in conversion efficiency is in part due to the Fabry-Perot effects
in the waveguide.
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Mode-locked

laser

10 GHz

EDFA

EDFA

HNLF
OBPF

SIGNAL

PUMP

PC

10%

90%

DT

PC

WDM

a-Si:H

nanowaveguide

OSA

Figure 2.3: Telecommunication data rate (10 GHz) four wave mixing (FWM) exper-
imental setup for a-Si:H waveguide.

2.3 Telecommunication data rate

wavelength conversion

To demonstrate operation in the telecommunication regime, we carry out a pulsed

FWM experiment using a 10 GHz repetition-rate source as shown in Fig. 2.3. The

pump and signal pulses are produced using a 2.8 ps mode-locked fiber laser at 1560 nm

with a 10 GHz repetition rate. After a 90/10 splitter, 10 % of the output is sent into a

EDFA to amplify the pump pulses; 90% of the output is amplified and sent into highly

nonlinear fiber (HNLF) to spectrally broaden the pulse followed by a tunable optical

bandpass filter (OBPF) ranging from 1520 nm to 1600 nm for selection of the signal

wavelength. An optical delay line is used to synchronize the signal and pump; and

two polarization controllers are used to select the input guiding polarization modes.

Signal and pump pulses are then combined using a WDM, and a lensed fiber is used

for fiber-to-chip coupling. The light exiting the waveguide is collimated, filtered by a

polarizer, and sent into an OSA.
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Figure 2.4: (Left) Sample 10-GHz four-wave mixing spectrum from a 8 mm a-Si:H
waveguide when pump peak power is 8 mW. (Right) Maximum conversion efficiency
as function of pump peak power. Dots represent the measured conversion efficiency
and solid line shows the expected result from a quadratic relationship. Saturation
due to nonlinear loss is observed when input power is greater than ∼10 dBm.

A sample FWM spectrum at 10 GHz with 8-mW input peak power is shown in

Fig. 2.4 (left). The conversion efficiency is determined by the power difference between

idler (pump on) and signal (pump off) both after exiting the waveguide. In our

measurement, the maximum conversion efficiency is -13 dB; a value competitive with

state-of-the art CW demonstrations in single crystal silicon (c-Si) [11] The comparison

is valid when the free carrier lifetime is longer than the repetition rate. Through

modeling, we estimate the difference in conversion efficiency between CW FWM and

10 GHz FWM to be less than 0.3 dB considering our ultralow peak pump power.

The calculated power dependence of FWM conversion efficiency is shown in Fig. 2.4

(right) with the measured results (dotted). The saturation of the conversion efficiency

at -13 dB is due to two-photon absorption-induced free carrier absorption loss. To

model the power dependence of the conversion efficiency, we follow the analysis used
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in [32]. The calculation agrees well with the measured conversion efficiency. As shown

in Fig. 2.4, the conversion efficiency increases with increasing pump power, and then

saturates at 10 dBm pump power.

2.4 Modeling the conversion efficiency

To model four-wave mixing effect wavelength conversion efficiency and bandwidth

inside the silicon waveguides, we employ coupled mode equations that describe the

pump, signal and idler wave propagating along the waveguide:

dAp
dz

= −1

2

[
αp0 + α2Ip + αpFCAI

2
p

]
Ap + iγ|Ap|2Ap

dAs
dz

= −1

2

[
αs0 + 2α2Ip + αsFCAI

2
p

]
As + 2iγ|Ap|2As + γA2

pA
∗
i exp(i∆kz)

dAi
dz

= −1

2

[
αi0 + 2α2Ip + αiFCAI

2
p

]
Ai + 2iγ|Ap|2Ai + γA2

pA
∗
sexp(i∆kz)

(2.1)

where Ip is the pump intensity; Ap, As, Ai are electric field for pump, signal, and

idler; αp0, α
s
0, α

i
0 are the linear propagation loss coefficients at pump, signal, and idler

wavelength; α2 is the two photon absorption coefficient; ∆k = 2γ|Ap|2−(2kp−ks−ki)

is the phase mismatch; kp, ks, ki are wave vectors; γ is the effective nonlinearity of the

waveguide; αFCA is the free carrier absorption coefficient given by:

αFCA = σFCA

(
λp

1.55× 10−6[m]

)2(
α2τeffλp

2hc

)
(2.2)

where σFCA is the free carrier absorption cross section; τeff is the effective free carrier

lifetime; h is Planck’s constant.
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By numerically solving these three differential equations, idler wave can be calcu-

lated. The simulation results are plotted along with the experimental data in Fig. 2.4

(right).

2.5 Conclusion

In this chapter, we demonstrate the nonlinear parametric process of four-wave

mixing at continuous-wave and telecommunication data rate operation using an a-

Si:H waveguide. The photonic waveguide is made from an a-Si:H film deposited at

low-temperatures and can therefore be fabricated by standard CMOS technology at

multiple stages throughout the fabrication process. The maximum FWM conversion

efficiency at telecommunication data rates and wavelengths is competitive with state-

of-the-art c-Si FWM demonstrations. However, this conversion efficiency is achieved

with 10 dB less power due to the larger nonlinearity, suggesting its capability for

nonlinear optical applications with extremely low power requirements. The conver-

sion bandwidth can be controlled by dispersion engineering and is experimentally

measured over 150 nm, or 20 THz, demonstrating the potential of a-Si:H for highly-

integrated three-dimensional photonic-electronic networks.
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Optical time demultiplexing

3.1 Introduction

Optical time division multiplexing (OTDM) (Fig. 3.1) provides a spectrally ef-

ficient method for ultrahigh-bandwidth data transmission and has achieved perfor-

mance beyond a terabaud (Tbaud) or one trillion symbols per second [33]. These

ultrahigh data rates are well beyond the limitations of electronics and as a conse-

quence require all-optical switching methods to manipulate the encoded information.

In OTDM demultiplexing, lower rate channels (e.g. 10 Gbaud) are switched out in-

dividually from the ultrahigh rate signal (e.g. 1.28 Tbaud). (Fig. 3.2) As a result,

full demultiplexing requires a large number of physical switches (e.g. 128 switches

for 1.28 Tbaud to 10 Gbaud). Such all-optical processing systems are traditionally

highly resource intensive in both size and operating power and therefore equipment

28



CHAPTER 3. OPTICAL TIME DEMULTIPLEXING

cost. For high-speed demultiplexing systems to be practical, the individual switches

must become compact and operate at extremely low power levels.
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Wavelength Division Multiplexing (WDM)

Optical Time Division Multiplexing (OTDM)

Spectrum

Spectrum

Figure 3.1: Schematic of WDM and OTDM. OTDM is a spectral efficient scheme. But
the demultiplex requires ultrafast process that’s beyond the limitation of electronics.

The extremely large effective nonlinearity indicates that comparable nonlinear

efficiency can be achieved in a-Si:H nanowaveguides with greatly reduced power re-

quirements in more compact devices.

Nonlinear photonic systems such as those required to demultiplex high-speed op-

tical time-division multiplexed (OTDM) signals are typically extremely resource in-

tensive in terms of size, power and cost. To minimize the resource requirements,

integrated nonlinear photonic devices are highly attractive due to the potential for

ultra-compact chip-scale systems and their high effective nonlinearity relative to fiber

systems. Specifically, chalcogenide (As2S3) waveguides have been used to demulti-
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80 Gb/s data

1x10 Gb/s data

10 GHz

mode-lock laser 

Nonlinear

Switch

OTDM data

Pump

Demux output

Figure 3.2: Schematic ultrafast nonlinear switch.

plex 1.28 Tb/s and 160 Gb/s data streams using peak optical control powers of 4

W and 4.4 W and waveguide lengths of 7 cm and 5 cm, respectively [34, 35]. Ad-

ditionally, c-Si nanowaveguides were used to perform demultiplexing of 1.28 Tb/s

and 160 Gb/s data streams to 10 Gb/s channels using peak powers of 2 W and

0.5 W and waveguide lengths of 5 mm and 1.1 cm, respectively [36, 37]. Semicon-

ductor optical amplifiers (SOA) have been successfully used in demultiplexing [38]

with low optical switching powers, but the device itself requires additional power for

amplification. Using slow light photonic crystals, the enhancement of the nonlin-

earity can greatly reduce the length of the waveguide, but the power requirement

is still relatively high ( 0.9 W) [39]. Silicon nano-crystals can achieve a very high

nonlinearity (n2 > 10−12cm2/W ) and have been investigated in slot waveguide ge-
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3-D integrated demuliplexer a-Si:H 

nanowaveguide

Figure 3.3: Hydrogenated amorphous silicon is a highly nonlinear material that can
be deposited at low temperatures allowing for the creation of energy-efficient sophis-
ticated three-dimensionally integrated ultrafast photonic processing circuits such as
the demultiplexer depicted here.

ometries, however these structures typically exhibit much higher propagation losses

(20 dB/cm) [40]. Lower switching energies have been achieved in photonic crystal

resonant cavities [41] and ring structures [40], but the operating bandwidth is inher-

ently limited due to the resonant cavity structure. An additional approach using a

silicon-organic hybrid structure can potentially overcome the two photon absorption

(TPA) induced free carrier absorption (FCA), but the high propagation loss and com-

plex fabrication limit the device performance [42] and as a result, error free operation

has not yet been demonstrated.

Here, we perform the first experimental investigation of demultiplexing high-speed

optical time division multiplexed (OTDM) data signals in an a-Si:H nanowaveguide.

Using four-wave mixing, we demonstrate demultiplexing of a 160-Gb/s OTDM data

signal to 10-Gb/s with error-free performance for all 16 channels. Due to the ultra-

high nonlinearity of the a-Si:H device investigated here, we are able to achieve error-

free operation using ultra-low pump power. This power requirement is an order of
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magnitude lower than previous CMOS-compatible integrated device demonstrations

for OTDM demultiplexing. We also envision this efficient device can be applied to

3D integration and enables parallel demultiplexer within ultra-small device footprint

(Fig. 3.3).

3.2 Experiment

10 GHz Pump switching source

160 Gb/s OTDM test source

Receiver
Mode-locked

laser
(10 GHz)

EDFA

EDFA Compressor

Compressor

EDFA

APD

HNLF

OBPF

PC
80%

20%

   T

PC

OBPF

OBPF

WDM

BERT

EOM

MUX

x16

a-Si:H

nanowaveguide OSA

Figure 3.4: Experimental setup for 160-to-10 Gb/s all-optical demutiplexing using
an a-Si:H waveguide (EOM: electro-optical modulator. TBPF: tunable bandpass
filter. MUX: Mach-Zehnder multiplexer. PC: polarization controller. HNLF: highly
nonlinear fiber. WDM: wavelength division multiplexer. PD: photo-detector. BERT:
bit-error rate tester.). Inset: auto-correlation traces of 160-Gb/s signal and 10-GHz
pump at the input of the waveguide.

We demonstrate OTDM demultiplexing from a 160 Gb/s on-off-keying (OOK)
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data stream to 10 Gb/s with the a-Si:H nanowaveguide device using the experimental

system shown in Fig. 3.4. An erbium-doped harmonically mode-locked fiber laser

set to 1560 nm with a repetition rate of 10 GHz generates both the OTDM test

source and the control pulses. An 80/20 coupler splits the test signal and pump

sources, respectively. An electro-optic modulator (EOM) encodes the test signal with

a 231-1 pseudorandom bit sequence (PRBS) and is then multiplexed up to 160 Gb/s

using four highly asymmetric fiber Mach-Zehnder multiplexer (MUX) stages prior

to being combined with the control pulses. The MUX stages are set to preserve a

29-1 PRBS sequence in the resulting OTDM signal. During the demux experiment,

no change in the BER performance was observed when modulating at either 29-1 or

231-1 PRBS. The 20% side of the 80/20 coupler is spectrally broadened through self-

phase modulation in 800 m of highly nonlinear fiber (HNLF) and subsequently filtered

at a central wavelength of 1551 nm with a 4-nm bandwidth to generate the control

pulses. A tunable delay (∆T) and polarization controllers (PC) allow the test source

and control pulses to be aligned in time and to be matched to the TE polarization

of the waveguide. Compressing fibers are inserted at each arm to keep the control

and test pulses transform-limited. The control and test sources are then combined

using a wavelength division multiplexer (WDM). At the input of the waveguide, a

lensed fiber is used for fiber-to-chip coupling. The waveguide output is sent into a

receiver assembly, which consists of a 100-GHz optical filter centered at 1541 nm and

optical amplifier followed by a second identical bandpass filter and an avalanche photo-
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detector. The generated idler pulses are isolated and amplified prior to detection. The

second bandpass filter is used to reduce the amplified spontaneous emission (ASE)

from the amplifier. The detected signal is sent into a bit-error-rate tester (BERT)

for error rate measurement. A 10% tap is implemented before the photo-detector

for monitoring the received power during the BER measurement. During testing,

an optical spectrum analyzer captures the spectrum before and after the waveguide.

In the back-to-back (B2B) measurement, the mode-locked fiber laser is tuned to the

idler wavelength (1541 nm), and the MUX stages are bypassed. These laser pulses

are then sent directly into the receiver assembly of the experiment.

3.3 Results

The optical spectra before and after the waveguide are shown in Fig. 3.5(a). The

data stream and pump laser are separated in wavelength by 10 nm. The average

power for pump and signal inside the waveguide are 1.2 mW (0.8 dBm) and 0.8 mW

(-0.9 dBm), respectively. The pulse widths of the pump and data pulses are measured

through autocorrelation to be 1.9 ps and 2.1 ps (Inset of Fig. 3.4), respectively, corre-

sponding to 63 mW peak power for the pump in the waveguide assuming a Gaussian

shape pulse. At the output of the waveguide, the 160 Gb/s data is demultiplexed to

10 Gb/s at a wavelength of 1541 nm through FWM. The on/off conversion efficiency

of the four-wave mixing process is measured to be -13 dB, a value competitive with
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(a) (b)

Figure 3.5: (a) Input and output spectra of the demultiplexing process in the 6-
mm-long a-Si:H waveguide showing the input 160-Gb/s signal, the 10-GHz pump,
and the generated 10 Gb/s idler. (b) The BER measurement of the 160 Gb/s to 10
Gb/s demultiplexing of all 16 channels and 10 Gb/s back-to-back (B2B). Error-free
operation (10−9) is achieved with 4- to 5-dB power penalty. Inset: demuxed eye
diagram.

state-of-the-art demonstrations in c-Si. The on/off conversion efficiency is defined

by the ratio between idler output power with the pump on and signal output power

with the pump off, taking into account the duty cycle difference between the signal

(160 Gb/s) and the idler (10 Gb/s) of 12 dB. The BER performance of this device

for all 16 channels is shown in Fig. 3.5(b) demonstrating error-free operation with a

BER of less than 10−9 and a power penalty ranging from 4 to 5 dB relative to the

back-to-back (B2B) measurements. For reference, a demultiplexed eye diagram when

the BER = 10−9 is shown in the inset of Fig. 3.5(b).

To study low power operation of the device, we investigate the minimum switching

power necessary for error free demultiplexing (Fig. 3.6). While keeping the coupled

OTDM signal power in the waveguide constant (0.8 mW average power), the pump
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is attenuated to determine the minimum required switching power. As the pump is

attenuated the conversion efficiency drops and the signal-to-noise ratio of the signal

coupled out of the device suffers leading to increased error rate. Intriguingly, for

this measurement error free operation is maintained with peak switching powers as

low as 50 mW (17 dBm). This is an order of magnitude lower than previous CMOS-

compatible integrated device demonstrations. Furthermore, with improvements to the

output coupling efficiency of the waveguide (currently 8 dB) an even lower minimum

switching power is possible.

Figure 3.6: Bit-error rate as a function of coupled peak pump power. Error-free
operation (10-9) is achieved with a 17-dBm (50 mW) peak switching power.

Table 3.1 compare our demonstration with previous approaches. Our results show

that the power requirement for our device is at least an order of magnitude lower

than the best c-Si demonstrations. Also, our device footprint is as small as 0.6 cm.

Ultrafast efficient nonlinear switch can be achieve in a compact a-Si:H waveguide.
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Table 3.1: OTDM demultiplexing using different platform

Material Data rate Peak pump power Device length

T. D. Vo et al [34] As2S3 1.28 Tb/s 4 W 7 cm

M. D. Pelusi et al [35] As2S3 160 Gb/s 4.4 W 5 cm

H. Ji et al [36] c-Si 1.28 Tb/s 2 W 0.5 cm

F. Li et al [37] c-Si 160 Gb/s 0.5 W 1.1 cm

This work a-Si:H 160 Gb/s 50 mW 0.6 cm

3.4 Conclusion

Here we demonstrate 160 Gb/s to 10 Gb/s all-optical demultiplexing via four-

wave mixing in a 6-mm long highly nonlinear hydrogenated amorphous silicon waveg-

uide with error free operation at telecommunication wavelengths using ultralow peak

pump powers of 50 mW. This represents the first demonstration of OTDM demulti-

plexing in a a-Si:H device and the switching power of our device is, to the best of our

knowledge, the lowest among all CMOS-compatible platforms demonstrated to date.

Excitingly, this material platform can also directly benefit from recent advancements

in OTDM demultiplexing such as slow-light enhancement to further reduce the device

size [39] and direct OTDM-to-WDM (wavelength division multiplexing) conversion

to reduce the number of physical switches [43–45]. Furthermore, the low deposition

temperature of the a-Si:H material used here allows such devices to be fabricated at
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the back-end-of-the-line of a CMOS process, enabling their seamless integration with

microelectronics. The demonstrated ability to manipulate ultrahigh data-rate sig-

nals using ultralow powers in a low temperature deposited waveguide offers exciting

prospects for sophisticated multilayer on-chip all-optical signal processing circuits.
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Chapter 4

All optical signal regeneration

4.1 Introduction

In optical communication links, signal degradation becomes a limiting factor in

the maximum length and the data rate of the system. Amplifier noise known as

amplified spontaneous emission (ASE), pulse dispersion, channel crosstalk, laser jitter,

poor modulation, and nonlinear issues disrupt the definition between logical ones

and logical zeros which leads to increased errors in the system. The contribution of

these noise sources scales with the length of the communication link which ultimately

limits either the bit error rate (BER) of the system or the length of the link. To

overcome the signal degradation, signal regenerators are often employed in optical

links. Optical-electrical-optical (O/E/O) repeaters commonly employed in optical

networks for regeneration become expensive at high data rates and are limited in
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speed. State of the art optical time division multiplexed (OTDM) signals have reached

terabaud data rates [33] which is well beyond the limit of electronic devices. Along

with ultra fast processing speeds based on kerr nonlinearity, all-optical processes offer

the potential to perform regeneration on multiple channels simultaneously making all-

optical signal regeneration indispensable to next generation communication systems

[46].

Several optical regeneration methods have been proposed and demonstrated [47–

51]. For return to zero on-off keying (RZ-OOK), the Mamyshev regenerator [50] can

improve BER with two distinct power transfer functions for logical ones and logical

zeros [51, 52]. The technique is based on nonlinear self-phase modulation (SPM)

induced spectral broadening followed by a bandpass filter that has a center frequency

offset from input central wavelength (Fig. 4.1). Since SPM spectral broadening scales

with the temporal characteristics of the incident pulse power, energy from larger

pulses will spectrally broaden into the offset filter range and energy from smaller

pulses will not. For assumed logical zeros, the bandpass filter offset sets a threshold

for input power so it can suppress low power noise sources that undergo little or no

spectral broadening.. For logical ones, the method reduces amplitude fluctuations

since larger pulses lead to energy spectrum broadening outside of the filter range.

The output of the filter results in a transfer function resembling a step function where

pulse power below a threshold has no output and pulses above a threshold have a

constant level at the output. This is known as a 2R (re-shaping and re-amplification)
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regeneration scheme (Fig. 4.2 ).
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Figure 4.1: Schematic of Mamyshev 2R regeneration. Utilizing the self-phase modu-
lation (SPM) in a highly nonlinear medium followed by an optical filter can reshape
the degraded optical signals.

1R: Re-amplification 2R: Re-shaping

Figure 4.2: 2R regenerator re-amplify and re-shape the degraded optical pulses

The Mamyshev 2R regenerator has been shown at 40 Gb/s in 800 m of highly

nonlinear fiber (HNLF) using peak powers of 1 W [51]. Much work has been placed

into reducing the length of fiber required from regeneration devices. Utilizing material

with higher nonlinearity can reduce the length requirement of the system. Chalco-

genide (As2S3) fibers has been demonstrated at 9 MHz using 8W peak power with

2.8m fiber, but have yet to reach high data rates [51]. Integrated devices can fur-

ther enhance nonlinearity from strong optical confinement inside the waveguide and
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therefore reduce the length of the devices. Chalcogenide waveguides reduced size re-

quirements to 22 cm, but this required an increase in the operating peak powers to

23 W and was only shown at 4 MHz [53]. Silicon waveguides allowed reduced power

requirements (6W) while achieving even smaller sizes operating at 75 MHz although

no BER improvement was demonstrated [54].

Here we demonstrate all-optical signal regeneration with BER improvement at

telecommunication data rates using 10-mm-long highly nonlinear hydrogenated amor-

phous silicon waveguide.

4.2 Waveguide design and fabrication

For device design and modeling, the group veolicty dispersion (GVD) value for the

TE mode of the designed waveguide (200 nm × 600 nm) is -500 ps/(nmkm). In SPM-

broadened spectrum, normal group GVD can generate a flat-top shape and reduce

the ripples in the transfer function of the regenerator [50, 55] making the negative

GVD value of this waveguide an asset.

4.3 Experimental setup

The experimental setup for all optical regeneration in a-Si:H waveguide is shown in

Fig. 4.3. A harmonically mode-locked erbium fiber laser at 1549 nm produces pulses

at 10 GHz. An electro-optic modulator (EOM) encodes a pseudorandom bit sequence
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(PRBS) onto the laser pulses. The EOM is modulated poorly to induce noise into the

data stream. This simulates a degraded RZ-OOK format. A polarization controller is

used to propagate the TE mode into the waveguide. An optical amplifier leading to

the waveguide and an optical band-pass filter (OBPF) centered at 1547 nm following

the waveguide make up the regeneration device for the incoming RZ-OOK data. A

receiver composed of a 20 mW amplifier leading to an OBPF centered at 1547 nm

and a 20 GHz photo-detector follows the regeneration device. The detected signal is

sent into bit error rate tester (BERT) to measure the number of errors in the system.

231  -1 PRBS

Regenerator

Mode-locked

laser
10 GHz 1549nm

EOM EDFAEDFA PD

PC

OBPF OBPF

BERT

a-Si:H

nanowaveguide

Figure 4.3: Experimental setup for 2R regeneration in a-Si:H waveguide.

4.4 Results

The optical spectrum of the a-Si:H waveguide is shown in Fig. 4.4(a). The SPM

induced spectral broadening increases with the input power. Seven nanometers of

broadening due to SPM can be obtained with pulses of 5.2 W peak power. The filter

spectrum is also shown in Fig. 4.4(a), and has 100 GHz bandwidth with a 2 nm offset

from the center of the input. When the input power is low ( 0.4 W), the SPM induced
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broadening is too weak to reach the bandpass filter, which does not allow power in

the output of the filter and results in logical zeros. When the input power is high

enough (5.2 W or above), the energy from SPM broadens into the range of the filter

and results in logical ones.

(a) (b)

Figure 4.4: (a)SPM-broadened spectra of the a-Si:H waveguide when input peak
power is 0.4 W and 5.2 W. The spectrum of the filter has 100GHz bandwidth. High
power pulses will spectrally broaden into the filter range.(b)Measured power transfer
function of the 2R regenerator. The output power saturates at 5 W.

The power transfer function is shown in Fig. 4.4(b). The transfer function shows

S shape nonlinear curve of optical regenerators. The output has a quadratic response

at low powers, and saturates at 5 W.

To evaluate the performance of the system, we compare the BER as function of

power for the input and output of the regenerator. The power into the receiver is

varied and the corresponding BER is measured. To measure the degraded signal at

the input, the regenerator is bypassed and all of the filters are replaced with 100-GHz

OBPFs at 1549 nm so the spectral center of the incident data stream is captured. As
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seen in Fig. 4.5(a) , the regenerator takes a data stream with an error rate of 10−7

and improves it to error free transmission (<10−9). The regenerator also acquires

error free operation with power 2 dB less than the original signal showing a clear

improvement of the signal quality. For a visual comparison, the eye diagram of the

regenerated data stream the original signal at the same power level of -37 dBm are

shown in Fig. 4.5(b). The corresponding histogram of the logical ones and logical

zeros for input and regenerated signal are shown. It is clear from the histogram

that the signal to noise ratio (SNR) is improved. The standard deviations of the

histogram for the logical zeros and ones improve by 46% and 13% respectively. This

corresponds to a SNR improvement of 1.5 dB which agrees with the measured BER

from the BERT.

a) b)

Figure 4.5: (a) The BER of regenerated signal and back-to-back (B2B) signal. The
regenerated signal shows 2 dB received power improvement. (b) the eye diagram of
input and output of the regenerator at same power level. The histograms show the
samples in the shaded area which represents the distributions noise in logical ones
and zeros
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4.5 Discussion

We measure the original signal pulses in this system to be 1.5 ps and the regen-

erated pulses to be 6 ps. Based on the OBPF bandwidth, the regenerated pulses can

be compressed to about 4.4 ps. Ideally, regeneration devices operate without pulse

broadening. The broadening can be mitigated by utilizing a larger bandwidth OBPF.

However, pulse width of 6 ps observed in the experiment is still much less than the

standard 33% fill factor on 10 Gb/s signals indicating that the device can work for

data rates up to 50 GHz without compression and 75 GHz with compression while

utilizing the same OBPF bandwidth. The presented device is also applicable for re-

generating signals demultiplexed from a high rate OTDM data stream, which often

have output pulse widths narrower than required for the 33% fill factor. The small

bandwidth allows better spectral efficiency when multiple channels from an OTDM

signal are demultiplexed and combined in the same medium. Smaller bandwidths

allows the device to operate on multiple channels in parallel. This is one of the key

advantages of all-optical regenerators over O/E/O designs [46]. For data rates higher

than 75 GHz, wider OBPF bandwidths are needed and may require higher power to

induce enough spectral broadening.
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4.6 Conclusion

We demonstrate a Mamyshev 2R all optical signal regeneration in a-Si:H waveg-

uide operating at 5.2 W peak pulse powers yielding a received power improvement of 2

dB at 10 Gb/s data rates. To the best of our knowledge, this is the first demonstration

of all optical signal regeneration in an a-Si:H platform and is the first demonstration

to achieve telecommunication rates with BER improvement in integrated devices.

Low operating powers, compact design, and three-dimensional integration capabili-

ties show great potential for a-Si:H regenerators within on chip optical links.
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Short pulse characterization

5.1 Introduction

Future communications architectures such as optical time division multiplexing

(OTDM) [33, 56–59], orthogonal OTDM [60], optical orthogonal frequency division

multiplexing (optical OFDM) [61], and optical code division multiple access (OCDMA)

[62] rely on ultrawide-bandwidth ultrafast sources such as mode-locked lasers and

comb generators [63]. The performance of these systems relies heavily on the prop-

erties of the ultrafast source. As these systems shift to higher data rates, physical

distortions such as dispersion and nonlinearities are magnified [33, 56–62]. Pulse

characterization techniques are crucial for performance monitoring [64]; however, the

ultrahigh-bandwidths required for these systems are difficult to measure by tradi-

tional means such as electronic and optical sampling [64–67]. Therefore ultrafast
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self-referencing pulse characterization techniques such as frequency resolved optical

gating (FROG) [68,69], modified interferometric field autocorrelation (MIFA) [70] and

spectralinterferometry for direct electric-field reconstruction (SPIDER) [71] become

indispensable to ultrafast laser characterization.

Figure 5.1: A time delayed replica of the pulse can gate out a portion of the original
pulse. By saving the spectrum for different time delay can generate a spectrogram
and an algorithm can calculate the amplitude as well as phase of the pulse.

Among these techniques, frequency resolved optical gating (FROG) is a highly ef-

fective and robust, self-referencing optical pulse characterization technique that fully

characterizes an ultra-short optical pulse [68,69,72–75]. The concept of optical gating

is described by Fig. 5.1. The most sensitive FROG geometry utilizes second-harmonic

generation (SHG) between the pulse and a delayed version of the pulse. However,

conventional free-space architectures used to exploit second-order nonlinearities have

49



CHAPTER 5. SHORT PULSE CHARACTERIZATION

difficulty measuring high repetition rate and low peak power pulses which are often

found in high speed communications architectures [72–75]. To make FROG suitable

for high repetition rate communications sources, architectures incorporating guided-

wave nonlinear devices are being explored [76–81]. While impressive sensitivities

(2.7 × 10−6mW 2) have been demonstrated in aperiodically-PPLN waveguides [78],

this platform requires highly specialized materials thereby presents a challenge for

efficient integration with telecommunications hardware. In comparison, the vast ma-

jority of guided wave devices do not exhibit a χ(2) nonlinearity. For this reason a

prominent guided-wave FROG architecture utilizes the χ(3) nonlinear process of four-

wave mixing (FWM) as a replacement to the SHG material. This facilitates the

use of more abundant and relatively easier to manufactured materials such as highly

nonlinear fibers (HNLF) [76], semiconductor optical amplifiers (SOA) [77] or c-Si

waveguides [80]. Sensitivities ranging from 0.1 to 60 mW 2 have been demonstrated

in these platforms.

Here in this chapter we investigate two FROG architectures using FWM in highly

nonlinear hydrogenated amorphous silicon (a-Si:H) waveguides. Furthermore, the

group-velocity dispersion (GVD) of these structures can be designed to allow for

ultrawide-bandwidth operation. Due to the combination of high nonlinearity and

wide-bandwidth operation, we demonstrate characterization pulses as short as 360 fs

(with 2.5-THz bandwidth) with high sensitivity (6 mW 2) using the SHG-like FWM

architecture. We expect the sensitivity can be improved to <0.5 mW 2 by optimizing
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the fiber-waveguide coupling. Secondly, we demonstrate a novel THG-like FROG

architecture using two stages of FWM and demonstrate highly sensitive direction-of-

time unambiguous FROG characterization of pulses as short as 1-ps with a sensitivity

of 1 × 106 mW 2. To the best of our knowledge, this THG-like FWM architecture is

the first and most sensitive self-referenced guide-wave approach that overcomes the

direction of time ambiguity of SHG FROG.

CW Laser

Delay

PUT

VOA

EDFA

a-Si:H 

waveguidePC

PC
WDM

OSA

OBPF

OBPF

EDFA
HNLF SMFD-3 fiber

Mode Locked 

Fiber Laser

Compression stage 

Mode Locked 

Fiber Laser

PUT (1)

PUT (2)

PUT
(pump)

FROG
(Idler)

CW
(Signal)

Figure 5.2: Schematic of experimental setup for SHG-like FWM-FROG measurement.
Two different pulses under test are generated by a mode-locked fiber laser with or
without the compression stage. Inset: optical spectrum at the output of the a-Si:H
waveguide. (PUT: pulse under test. HNLF: highly nonlinear fiber. VOA: variable
optical attenuator. WDM: wavelength division multiplexer. EDFA: erbium-doped
fiber amplifier. OBPF: optical bandpass filter. PC: polarization controller. OSA:
optical spectrum analyzer.)

5.2 SHG-like FWM-FROG

In this FWM architecture the pulse to be characterize is split, delayed, and recom-

bined along with a CW laser [76, 77, 80]. Analogous to traditional bulk χ(2) crystal

SHG FROG approaches (Eq. 5.1), FWM architectures create the mixing of three
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signals to generate a new signal at the idler frequency that resembles the traditional

SHG FROG signal (Eq. 5.2).

Esig(t, τ) ∝ E(t)E(t− τ) (5.1)

Eidler ∝ Epump(t)Epump(t− τ)E∗
CW (5.2)

where E is the electric field to be characterized, Esig is the developed FROG

electric field, Epump is the electric field to be characterized acting as a pump in the

FWM stage, ECW is the electric field component of the CW laser involved in FWM

traditionally denoted as the signal, and Eidler is the developed electric field from

the FWM process. Since the CW laser ideally does not exhibit ultrafast temporal

characteristics this FWM generated signal is identical to the SHG FROG of the pulse

to be characterized and can be extracted using standard SHG FROG algorithms after

accounting for the offset center frequency. Utilizing this FWM technique, HNLF has

yielded the best sensitivity of 0.1 mW 2 but was limited in signal pulsewidth to 7

ps due to the large interaction length required for such sensitivity [76]. To decrease

the interaction length while maintaining similar sensitivities, semiconductor optical

amplifiers and c-Si waveguides have demonstrated a sensitivity of about 50 mW 2 and

60 mW 2 respectively with pulsewidths around 3 ps [77,80].

To test the sensitivity of the conventional SHG-like FWM-FROG in an a-Si:H

waveguide (Fig. 5.2), a 10-GHz 1.8-ps pulse under test (PUT(1)) is split and combined

using a free space Michelson interferometer with a variable delay arm. The fixed arm
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Figure 5.3: Pulse characterization of PUT 1 (left column), and PUT 2 (right col-
umn). (a),(e) Optical spectrum at the output of the waveguide. (b),(f) Measured
and retrieved FROG. (c),(g) FROG retrieved auto-correlation and spectrum in com-
parison to the measurement. (d),(h) Retrieved amplitude and phase in both time and
frequency domain.

is spatially dithered to avoid the interference fringes of the background [76]. The

pulse and the delayed replica are coupled into the waveguide along with a CW laser

using a lensed fiber. Polarization controllers are used in each path to match the TE
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eigenmode of the waveguide and the pulses and CW probe undergo FWM. A typical

output spectrum is plotted in the inset of Fig. 5.2. The FROG spectrogram is formed

from the idler spectrum recorded using an optical spectrum analyzer (OSA) as the

delay is varied. The results of this characterization are displayed in Fig. 5.3. The

FWM spectrum is shown in Fig. 5.3(a). The measured and retrieved spectrograms

of the 1.8-ps pulses are shown in Fig. 5.3(b). We obtain a retrieval error of <0.01

for the 64 x 64 grid. We compare the retrieved autocorrelation and spectrum with

independently measured traces using an autocorrelator and OSA and find excellent

agreement (Fig. 5.3 (c)). The retrieved intensity and phase in frequency and time

domain is plotted in Fig. 5.3 (d). For this measurement, the input power to the

FROG system is 900 µW . The retrieval error can be maintained below 0.015 while

reducing the input power down to 320 µW , which corresponding to sensitivity of 6

mW 2. Furthermore, given that coupling losses to silicon waveguides of less than 3

dB have been demonstrated experimentally, we estimate that a sensitivity of better

than 0.5 mW 2 is currently possible in this system.

To demonstrate the wide bandwidth capability of the waveguide, we characterize

a 360-fs pulse with 20-nm (2.5 THz) bandwidth. A compression stage that comprises

of dispersion shifted fiber, highly nonlinear fiber, and standard single-mode fiber is

used to spectrally broaden and temporally compress the pulses from the 10-GHz laser

(Fig. 5.2(PUT (2)). Fig. 5.3(e) shows the overall optical spectrum depicting the wide

bandwidth of the pulses. The measured and the retrieved FROG trace of the 360-fs
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pulse are plotted in Fig. 5.3(f) with retrieval error of 0.028. Independently measured

auto-correlation and spectrum match well with the retrieved ones (Fig. 5.3(g)). The

intensity and phase of the pulse are plotted in Fig. 5.3(h). Notably, this represents

the shortest optical pulses characterized to date using the FWM-FROG architecture.

5.3 THG-like FWM-FROG

SHG FROG lacks the ability to distinguish absolute phase and the direction of

high order phase changes which are included in PG and SD FROG geometries [68,69].

An alternative geometry based on third harmonic generation (THG) allows for a

compromise between the high sensitivity of SHG FROG and the ability to define

direction found in the other geometries. The free space versions of THG FROG

are roughly identical to SHG FROG except a χ(3) crystal is utilized [82–84]. This is

difficult to develop in integrated and fiber platforms however, since phase-matching of

the THG process is extremely challenging in guided wave structures and guided wave

devices do not allow for spatial separation of the nonlinearly generated signals [68,

69,82–84].

In communications settings, the direction of time of signal distortions is critical for

performance monitoring. For example, characterization as fundamental as directly

distinguishing between normal or anomalous GVD distortions is not possible with

a simple SHG FROG measurement. Third harmonic generation FROG is one such
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architecture that eliminates the ambiguity of time at the cost of sensitivity. In a very

similar setup to free space SHG FROG, THG FROG combines a signal with a delayed

replica of itself in a third order crystal to produce the third harmonic and a signal

field represented in Eq. 5.3.

Esig(t, τ) ∝ E(t)2E(t− τ) (5.3)

Since the third order process is less sensitive than second order processes, free space

THG architectures are highly impractical for measuring telecommunications pulses.

Here we demonstrate for the first time a FROG architecture using two stages of FWM

to mimic a THG FROG measurement. A block diagram of the THG-like architecture

is shown in Fig. 5.4.
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Figure 5.4: A block diagram of the cascaded FWM THG FROG. A nonlinear copy
creation stage develop a replica of the pulse to be measured on a second wavelength.
The two signals are isolated and delayed with respect to each other prior to mixing.
The result from the mixing is read on a spectrum analyzer.

The pulse to be characterized is combined with CW laser prior to the first FWM

stage. This initial FWM stage generates the complex conjugate of the pulse at a

shifted wavelength. The CW source and higher order FWM content are removed using
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spectral filters while the spectrally distinct conjugate and original pulse are separated.

One pulse is delayed prior to recombining. The delayed pulse and conjugate mix in

the second FWM stage to generate a signal at a new frequency that mimics a THG

process (Eq. 5.4).

Eidler(t, τ) ∝ Epump(t)
2Econj(t− τ) (5.4)

where Econj is the replica of the signal to be characterized represented by Epump.

Finally, a standard THG FROG algorithm is applied to reconstruct the phase infor-

mation of the pulse.
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Figure 5.5: The experimental setup of cascaded FWM stages for THG FROG (PM:
phase modulator. D-38 fiber: corning vascade S2000 fiber. MLFL: mode locked fiber
laser). Insets (a), (b), and (c) show the spectrum of the experimental setup after the
initial HNLF stage, before the waveguide, and after the waveguide respectively where
BWres is the bandwidth resolution of the OSA.

The THG-like FWM FROG experimental system is shown in Fig. 5.5. A CW laser
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is randomly phase modulated to mitigate stimulated Brillouin scattering (SBS) in

the first FWM medium (HNLF), amplified to 2W by an erbium doped fiber amplifier

(EDFA) and filtered by a 100-GHz filter centered at 1547 nm to provide a pump

source for the first FWM stage. One hundred meters of HNLF is used for this stage

to allow maximum conversion efficiency with minimal coupling loss. Since the CW

pump is slowly varying, the frequency offset copy retains the complex conjugate of

the phase information of the original signal [85,86]. The typical spectrum developed

from this process is shown in Fig. 5.5(a). A WDM isolates the conjugate pulse from

the rest of the signals in the system which includes the CW pump, the original signal,

and cascaded FWM effects and an additional WDM filter is used to fully suppress

the CW pump energy that propagates through the first WDM. The conjugate pulse

passes through a polarization controller (PC) and 3-m of dispersion compensating

fiber to compensate for second and third-order dispersion of the PC and WDM filters.

Another WDM combines the copy with the signal which propagates through its own

PC, 4.5-m of dispersion compensating fiber, and a tunable delay. The combined signal

and copy (Fig. 5.5(b)) are coupled into the 8-mm a-Si:H waveguide for the second

FWM stage with greater bandwidth and sensitivity required to yield the THG-like

FROG signal (Fig. 5.5(c)). As the signal is delayed relative to the conjugate pulse,

the FWM idler spectrum is collected on an OSA to generate the FROG traces found

in Fig. 5.6.

Figure 5.6 shows the FROG traces from four different test pulses: a 1.8-ps 10-GHz
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struction (solid) with its phase (dashed) and the measured spectrum (dotted) for
the transform limited (top row), anomalously chirped (second row), normally chirped
(third row), and self phase modulation with compression cases (bottom row).

harmonically mode-locked fiber laser (Fig. 5.5 (PUT 1)), the 1.8-ps pulse anomalously

chirped to 10 ps in 350 meters of Corning single mode (SMF-28) fiber (Fig. 4 (PUT

2)), the 1.8-ps pulse normally chirped to 8 ps in 86 meters of Corning Vascade S2000

fiber (Fig. 5.5(PUT3)), and the mode-locked laser pulse spectrally broadened via a

250-mW EDFA in conjunction with 100 meters of HNLF, compressed in 5 meters of

SMF-28 fiber. For the last case (Fig. 5.5(PUT 4)), 30 meters of HNLF is used for
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the nonlinear copy creation stage to allow additional FWM bandwidth for the copy

creation of a larger bandwidth signal. In each case, there is good agreement among

the independent autocorrelations shown in the inset of the temporal reconstruction

plots, and the spectral reconstruction develops the same bandwidth and overall shape

as the independently measured spectrum. The details for grid size, error, pulse width,

and spectral FWHM can be found in the respective plots.

The elimination of the direction of time ambiguity is clearly shown in the chirped

cases. For the anomalous chirp, the temporal phase is concave up and the spectral

phase is concave down. For the normal chirp, the phase distortions are reversed

indicating that the pulse is chirped in the opposite direction. This is can also be seen

directly in the respective FROG traces as the asymmetric wing in the upper right of

the anomalously chirped trace which switches to the upper left in the normally chirped

trace. In the SPM and compressed case, the temporal reconstruction has asymmetric

ripples in the trailing wing of the pulse. Additionally, the V-shaped spectral phase

includes a cubic response with the downturn in phase on the end of the spectrum.

The combination of these two features and the temporal asymmetric ripple indicates

that the pulse is predominately afflicted by SPM and third-order dispersion [69], as

expected from the HNLF followed by SMF-28 fiber stages.

The transform limited trace is developed from a 7-mW average power 10-GHz

pulse train illustrating the sensitivity of the device while acquiring a reconstruction

error of less than 0.01. This measured sensitivity is 1 × 106 mW 3 which is defined
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as the peak power squared multiplied to the average power of the ultrafast laser

input to this self-referenced system [87]. In the chirped cases, the average power is

increased to 16 mW to acquire lower reconstruction errors. Further improvements

to the sensitivity of this device may be acquired through mitigating splice losses and

reduced coupling losses to the waveguide.

5.4 Conclusion

We demonstrate two FWM-based FROG architectures using a-Si:H waveguides

which mimic SHG and THG FROG interactions. The a-Si:H waveguides have large

nonlinearity and short interaction lengths with low dispersive properties allowing

bandwidths of 2.5 THz and pulsewidths of 360 fs to be characterized with a sensitiv-

ity of 6 mW 2(<0.5 mW 2 with improved coupling) which has comparable sensitivities

to other FWM integrated methods [76, 77, 79, 80] while allowing for broader pulse

bandwidths. The novel THG-like FWM FROG architecture allows self-referenced

direction-of-time unambiguous ultrafast pulse characterization with sensitivities around

1× 106 mW 3, pulse energies of 0.7 pJ for 10-GHz repetition rates. To the best of our

knowledge, this architecture is the most sensitive self-referenced FROG technique

that eliminates the direction-of-time ambiguity. Both of the architectures exhibit

sensitivities suitable for next generation telecommunications signals.
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Chapter 6

Optical parametric amplifier and

oscillator

6.1 Introduction

CMOS-compatible on-chip optical amplification is a crucial building block for re-

alizing on-chip optical networks. The use of c-Si, which exhibits a high linear and

nonlinear refractive index and is compatible with current micro-fabrication technol-

ogy, has resulted in a variety of exciting demonstrations including broad-bandwidth

amplification using parametric processes [88] and oscillation utilizing the Raman ef-

fect [89]. However, in c-Si the net parametric amplification is limited by two photon

absorption (TPA) and TPA-induced free carrier absorption (FCA) to be 5.2 dB at

telecommunication wavelengths in pulsed experiments. Strong (50 dB) and broad-
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band (37.5 THz) parametric amplification were obtained in the mid-infrared regime

where TPA is avoided [90]; however, operating within this long-wavelength regime

limits the applications for telecommunications. Exploiting the Raman effect has re-

sulted in 13 dB amplification, but the crystalline nature of the material inherently

limits the gain to a very narrow bandwidth (∼1 nm) [89]

Hydrogenated amorphous silicon (a-Si:H) has been shown to possess an extremely

high optical nonlinearity with reduced impact of TPA, and parametric amplification

as high as 26.5 dB has been achieved in pulsed experiments [28]. However, due to the

relatively high group velocity dispersion (GVD) of the waveguide ∼1600 ps/(nm·km),

the net amplification bandwidth was limited to ∼110 nm. Here, by carefully control-

ling the geometry of a hydrogenated amorphous silicon waveguide for near-zero GVD

at the pump wavelength, we demonstrate optical amplification over more than 540 nm

(66 THz). This represents the largest parametric gain bandwidth yet demonstrated

in either c-Si or a-Si:H nanowaveguides.

6.2 Ultra-broad bandwidth a-Si:H optical

parametric gain

The parametric amplification experimental setup is depicted in Fig. 6.1. A 90 MHz

mode-locked fiber laser centered at 1558 nm is split with a 90/10 coupler. The pump

pulse is generated by sending 90% of the laser into a 100 GHz optical filter followed by
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Time
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Figure 6.1: Experimental setup for the broad band parametric amplification measure-
ment. (OBPF: optical bandpass filter. EDFA: erbium-doped fiber amplifier. HNLF:
highly nonlinear fiber. PC: polarization controller. WDM: wavelength division mul-
tiplexer. OSA: optical spectrum analyzer)

an EDFA. The pump pulse width is measured by an autocorrelator to be 6.1 ps. The

signal is generated by sending 10% of the mode-locked fiber laser into an EDFA and

subsequently 10 m of highly nonlinear fiber to generate broad-bandwidth continuum.

A free-space tunable filter is used to isolate the signal wavelength. A wavelength

division multiplexer (WDM) combines the signal and pump arms for input into the

chip. Fiber-to-chip coupling is achieved by a lensed fiber and lens collimator assembly.

The lensed fiber input coupling loss is 8.5 dB; output lens-collimator coupling loss is

3 dB.

The optical spectra at the output of the waveguide are shown in Fig. 6.2(a). The

red curve is recorded when the pump is turned off. When the pump is on, a clear

amplification of the signal along with converted idler can be observed (blue curve). For

this measurement the peak power of the pump is ∼3.6 W inside the waveguide. The

amplification as function of wavelength is measured by tuning the signal wavelength

and recording the respective pump on/off optical gain spectrum (Fig. 6.2(b)). With

a pump wavelength of 1558 nm, a peak gain value of ∼16.7 dB is obtained for a

64



CHAPTER 6. OPTICAL PARAMETRIC AMPLIFIER AND OSCILLATOR

(a) (b)

Figure 6.2: (a) Optical spectrum with pump on (blue) and pump off (red). (b) On/off
gain as function of wavelength when pump is at 1558 nm.

signal at 1462 nm and the on/off gain bandwidth extends over more than 540 nm

(66 THz). The gain at the longer wavelength lobe (>1765 nm, beyond the OSA

limit) is measured by a home-made spectrometer. Table 6.1 summarizes all previous

demonstrations and compares with this result. This demonstration represents the

largest demonstrated on/off gain bandwidth of any c-Si or a-Si:H nanowaveguide

demonstration.
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Table 6.1: Optical gain bandwidth in various integrated demonstrations

Mechanism Material Max gain Gain bandwidth

Jalali [89] Raman c-Si 30 dB 1 nm

Kuyken [90] (Mid-IR) Parametric amp c-Si >40 dB 580 nm (36.6 THz)

Foster [88] Parametric amp c-Si 5.2 dB 28 nm

Kuyken [28] Parametric amp a-Si:H 26.5 dB 64 nm

This work Parametric amp a-Si:H 16 dB 540 nm (66 THz)

6.3 A-Si:H GHz rate parametric gain

Using nonlinear parametric process and dispersion engineering, we have achieved

66 THz optical parametric amplification in a-Si:H. However, the optical amplifica-

tion was operated in low repetition rate (∼MHz) to mitigate two-photon absorption

induced free carrier effect. In order for optical amplifier to be useful in telecom-

munication applications, the ability of GHz operation is critical. Although using

reverse biased p-i-n structure can sweep away the free carriers and CW Raman os-

cillation [91] can be achieved, the fabrication processes become complicated and no

parametric amplification has been demonstrated with p-i-n structure [92].

In this section, we investigate a-Si:H OPA and utilize its high nonlinear FOM for

GHz rate operation. Previously, we have demonstrated -13 dB conversion efficiency

at 10 GHz and +16 dB conversion efficiency at 90 MHz. Here, we show that on-chip
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amplification at 1 GHz can be achieved using this waveguide. This represents the

first silicon-based OPA at telecommunications data rate.

EDFA
(260mW)

WDM
Mode locked laser

(10GHz, 1550nm)

PC

Tunable CW laser

PC

a-Si:H

nanowaveguide
OSA

EOM

(1000000...)

Figure 6.3: Schematic of experimental setup for 1-GHz optical parametric amplifi-
cation measurement. (EOM: electro-optical modulator. WDM: wavelength division
multiplexer. EDFA: erbium-doped fiber amplifier. PC: polarization controller. OSA:
optical spectrum analyzer.)

The experimental setup for GHz rate OPA is depicted in Fig. 6.3. Pulses from a

10-GHz fiber mode-locked laser centered at 1550 nm are sent into an EOM (electro-

optical modulator) that is encoded with an 1 and nine consecutive 0s to reduce the

repetition rate. The pulses (pump) are then amplified by an EDFA and combined with

a tunable continuous-wave (CW) laser (signal) using a wavelength division multiplexer

(WDM). The pulse width of the pump is measured by auto-correlator to be ∼1.6 ps

(assuming sech2 shape) The pulsed pump and CW signal are coupled into the a-

Si:H waveguide by a taper lensed fiber. Waveguide output coupling is achieved by

lens-collimator assembly. The spectra are recorded by an optical spectrum analyzer

(OSA).

The calculation of the on-chip signal gain and idler conversion is followed by Ref

[93]:
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Gain(signal) =
Psig out
Psig in

· 1

Duty cycle
(6.1)

Conversion(idler) =
Pidler out
Psig in

· 1

Duty cycle
(6.2)

Figure 6.4 shows the measured gain and conversion with pump at different repeti-

tion rates. At higher repetition rates, the average power launching into the waveguide

is higher and therefore limits the peak pump power we can inject before the damage

threshold. It is clear that at around 1.35 GHz rate the signal gain exceed the trans-

parency line and net on-chip gain is achieved. There is potential to achieve net gain

at higher rep rate, but the high average input power is required. For the rest of this

section, we will be focusing on the results of 1-GHz pump repetition rate.
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Figure 6.4: On-chip signal gain and idler conversion at different repetition rates.
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Figure 6.5(a) shows the overlaid optical spectrum of the OPA with different signal

wavelength (1480 nm∼1530 nm) when peak pump power is 630 mW (average power

∼ 1 mW ). The wavelength dependent gain (and conversion) is plotted in Fig. 6.5(b).

The OPA gain becomes stronger when the wavelength detuning is larger and the gain

is expected to peak at ∼1462 nm [94]. We are not able to measure the gain/conversion

with wavelength detuning >70nm due to our CW laser tuning range. We record the

gain as function of pump power with a fixed signal wavelength (1510 nm). The

results are plotted in Fig. 6.5(c). With hundreds of mW peak power (average power

<1 mW) we can achieve on-chip gain. The gain can be as high as 10 dB and we

see no gain saturation or sample degradation at this power level. With better fiber-

to-chip coupling, we expect net off-chip gain can be obtained and GHz-rate optical

parametric oscillator can be achieved.

In this section we demonstrate the first GHz silicon-based OPA using highly

nonlinear a-Si:H waveguide. On-chip gain as high as 10 dB can be achieved with

few hundreds mW peak pump power. This demonstration shows the potential for

telecommunication optical amplifier and telecommunication data rate optical para-

metric oscillator (OPO) using this platform.
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Figure 6.5: a) Measured optical spectra of optical parametric amplification for various
signal wavelengths. b) On-chip gain/idler conversion as function of wavelength with
pump at 1550 nm. c) On-chip gain/conversion as function of coupled peak pump
power.

6.4 A-Si:H Optical parametric oscillator

A CMOS-compatible on-chip tunable light source is critically sought after in the

field of silicon photonics. Raman oscillation has been demonstrated in c-Si but is

severely limited in operating bandwidth (105 GHz) [3, 95]. In contrast, paramet-

ric optical processes can be designed to operate over extremely large bandwidths

through geometric control of dispersion [11]. Pumping c-Si devices in the mid-IR has
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allowed for demonstrations of large parametric gain [90, 93] and parametric oscilla-

tion [6]. However, at wavelengths near the telecommunications bands, the nonlinear

performance of c-Si is severely limited due to two photon absorption (TPA) and TPA-

induced free carrier absorption (FCA), allowing for parametric amplification of only

a few dB [88]. Use of wider bandgap materials with negligible TPA (i.e. silicon ni-

tride, or Hydex) has allowed on-chip multi-wavelength optical parametric oscillators

(OPOs) [4,5] in near-IR, but the significantly weaker Kerr nonlinearity of these mate-

rials necessitates high optical powers and high-Q optical cavities to achieve oscillation.

Figure 6.6 summarizes various approaches to realize silicon-based optical oscillator.

Figure 6.6: Approaches for achieving silicon-based optical light source [3–6].

Here, by utilizing the strong and broad bandwidth optical parametric gain and

a fiber loop to build a widely tunable optical parametric oscillator. The dispersion
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of the fiber allows simple time-dispersion tuning through modification of the cavity

length and a tuning range of 42 THz (355 nm) is achieved.

WDM

PBS
Mode locked laser

(90MHz, 1558nm) PC

a-Si:H

nanowaveguide

OSA

Time

delay

(a)

(c)(b)

 λ/2

SMF

Figure 6.7: (a) Experimental setup for the optical parametric oscillator. (PC: polar-
ization controller. WDM: wavelength division multiplexer. OSA: optical spectrum
analyzer. PBS: polarization beam splitter. λ/2: half-wave plate. Red line: single
mode fiber). (b) Single pass parametric fluorescence for different pump power. (c)
Optical spectrum of the OPO when oscillation wavelength is at 1460 nm.

To harness the broadband parametric gain achieved in our a-Si:H waveguide,

we place the device in a resonant-cavity to observe optical parametric oscillation.

The experimental setup for oscillation is depicted in Fig. 6.7(a). A 90-MHz mode-

locked fiber laser pump is centered at 1558 nm with a pulse width measured by

auto-correlation to be 1.5 ps. Fiber-to-chip coupling is achieved by a lensed fiber

and lens-collimator assembly with input coupling loss of 8.5 dB and an output lens-
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collimator coupling loss is determined to be 3.5 dB. A half-wave plate and a polariza-

tion beam splitter are used to control the output coupling ratio of the fiber cavity. The

length of the cavity created mostly from SMF-28 is chosen to match the repetition

rate of the pump (2.3 m) and a polarization controller and free-space tunable delay

are included in the cavity. The feedback light is combined with the pump using a

wavelength division multiplexer (WDM). Figure 6.7(b) shows the spectrum for single

pass parametric fluorescence without cavity. Once the single pass gain exceeds the

round-trip loss, the cavity achieves oscillation. A sample oscillation trace is shown in

Fig. 6.7(c) where the peak pump power in the waveguide is 2.5 W.

To determine the oscillation threshold of our device, the output of the oscillating

mode (1470 nm in this case) as a function of input pump energy is plotted in Fig.

6.8(c), revealing the oscillation threshold to be 1.53 pJ with slope efficiency of ∼4.4%.

The inset shows the evolution of the spectrum as the coupled pump energy increases.

We measure the pulse width of this oscillation output through cross-correlation with

a 1.5 ps reference pulse. The cross-correlation trace is shown in Fig. 6.8(d). The

de-convolved pulse width of the oscillating mode is measured to be ∼1.1 ps.

As the majority of the cavity is built from single-mode fiber (SMF-28), the cavity

exhibits net anomalous group-velocity dispersion, which allows for time-dispersion-

tuning of wavelength by changing the physical cavity length of the OPO [96–99].

This tuning is achieved through control of the free-space delay in the cavity while

the pump wavelength of 1558 nm remains fixed. We record the optical spectrum

73



CHAPTER 6. OPTICAL PARAMETRIC AMPLIFIER AND OSCILLATOR

(a)
(b)

Figure 6.8: (a) Output energy of OPO as function of coupled pump energy. The
oscillation threshold is 1.53 pJ with a slope efficiency of 4.4%. Inset: output spectrum
as function of coupled pump energy. (b) Cross-correlation trace between oscillation
(1476 nm) and a strong 1.5 ps pump. The de-convolved pulse width for oscillation
output is 1.1ps.

of the oscillating mode for different cavity lengths and Fig. 6.9 shows the overlaid

spectra from this measurement. We are able to tune the fundamental oscillating mode

continuously from 1370 nm to 1515 nm, and 1600 nm to 1810 nm, corresponding to

an overall wavelength tuning range of 42 THz (355 nm).

In this demonstration, the fundamental oscillating mode is limited to a maximum

wavelength of 1810 nm, however through cascaded FWM, light can be generated

at wavelengths outside of the parametric gain bandwidth. Figure 6.10(a) shows an

example spectrum of the cascaded FWM process when the pump power is increased.

When the oscillating wave (+1 mode) interacts with the pump and undergoes FWM,

an idler is generated on the opposite side of the pump (-1 mode). These two waves mix

with the pump wave to generate light at additional wavelengths (+2, -2, -3, -4 modes)
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145 nm 210 nm

Figure 6.9: Overlaid tuning spectra of the oscillation mode at short wavelength side
(1370 nm ∼ 1515 nm), and long wavelength side (1600 nm ∼1810 nm) for a 1558-nm
pump laser.

through cascaded FWM. For wider separation of the oscillating mode from the pump,

Fig. 6.10(b) shows the cascaded +2 mode generated at a wavelength of 1900 nm. We

expect that by tailoring the dispersion of the waveguide, we expect the application

can be used in the mid-IR regime, with potential spectroscopic applications in, for

example, biological sensing and environmental monitoring.

(a) (b)

Figure 6.10: Wavelength extension through cascaded FWM. (a) Optical spectrum
with increased pump power when +1 mode is on resonance. Cascaded FWM generates
idlers at +2, -1, -2, -3, -4 modes. (b) Oscillating wavelength (+1 mode) near 1700
nm with cascaded FWM (+2 mode) for light generation at ∼1900 nm.

75



CHAPTER 6. OPTICAL PARAMETRIC AMPLIFIER AND OSCILLATOR

Figure 6.11: Cross-correlation trace of the oscillation mode (1467 nm) with a 250-fs
reference pulse. The de-convolved pulse width for the oscillation mode is 300 fs
assuming a sech2 shape. The side peak in the trace is the cross-correlation of the
cascaded FWM idler. (Inset: the output spectrum of the reduced net dispersion
OPO cavity. The bandwidth of the oscillation mode is greater than 30 nm, allowing
ultra-short pulse generation.)

As a final demonstration of the utility of this source, we demonstrate the potential

for ultra-short pulse generation. The OPO cavity is modified to include both SMF-28

and dispersion compensating fiber (DCF) to minimize the net round trip dispersion.

The oscillation wavelength is tuned to 1467 nm (inset of Fig. 6.11) and the bandwidth

of the oscillation mode is greater than 30 nm. As shown in Fig. 6.11, we measure the

pulse width of this oscillation output through cross-correlation with a 250-fs reference

pulse. The de-convolved pulsewidth of the oscillating mode is measured to be 300

fs. Notably, the pulse width of the OPO pump laser is maintained at 1.5 ps for

this demonstration. Furthermore, given the large parametric gain bandwidth of this

device we anticipate that oscillating pulses well below 100 fs can be generated with

improved cavity dispersion management.
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In summary, we demonstrate the first deposited silicon optical parametric oscil-

lator centered at telecommunications wavelengths. The broad bandwidth parametric

gain enables wavelength tuning over the greater part of the extended telecommuni-

cations bands (E, S, C, L, and U) and beyond. This CMOS-compatible light source

provides a robust near-infrared ultrafast wavelength-tunable light source that greatly

extends the tuning range of ultrafast erbium-doped fiber lasers well beyond the C-

band. Furthermore, the low oscillation threshold (1.53 pJ) and the high levels of

parallelism made possible through multilayer CMOS device fabrication indicates that

a vast multitude of synchronized wavelength-agile sources can be created using a sin-

gle pump laser. Finally, we anticipate that the use of higher repetition rate pump

lasers (> 1 GHz) and hybrid integration with an ultralow-loss waveguide material

(e.g. silicon nitride [100]) will provide a path towards integration of the full OPO

cavity on chip.
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Correlated photon-pair generation

7.1 Introduction

Efficient CMOS-integratable quantum optical devices are highly desirable for im-

plementing large-scale quantum information processing. Highly integrated active de-

vices possessing strong optical nonlinearity, in particular, are essential for entan-

glement generation, optical logical operations, etc. Among a variety of candidates,

silicon-based devices can already be mass-produced and integrated on a single chip

using mature lithographic techniques. Thus far, compact sources of photon pairs have

been developed in c-Si waveguides [101–103]. However, their applications in practice

are restricted by virtue of strong two-photon absorption (TPA) and free carrier effects.

Previously Clemmen et al. reported a preliminary photon-pair generation exper-

iment in an a-Si:H waveguide [104]; however, due to the relatively small γ (roughly
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400 W−1m−1) and high linear loss of their waveguide (4.0 dB/cm), the photon pairs

created were not of high quality, as assessed by low (< 10) coincidence-to-accidental

ratio (CAR), much smaller than obtained in telecom fibers (∼ 30) [105] and c-Si

(> 50) [101].

In contrast, here we use our highly nonlinear a-Si:H waveguides to demonstrate

efficient generation of high-quality photon pairs simultaneously in multiple spectral

channels over a span of at least 5 THz. Using an 8-mm-long waveguide, we achieve

CAR as high as 400 with pump peak power of around 10 mW. In addition, we quantify

the contamination of photon-pair purity by spontaneous Raman scattering, and find

it to be insignificant even at room temperature. Other background processes such

as free-carrier effects are also suppressed due to the low pump power used. Our

experiment spotlights a-Si:H as an ideal candidate for the next generation of highly

integrable quantum optical devices, aided by its feasibility for creating complex, three-

dimensional optical circuits on a chip.

7.2 Experiment

The experimental setup for generating multichannel photon pairs is depicted in

Fig. 7.1. Light from a 50-MHz mode-locked femtosecond laser (IMRA CX-20) is fil-

tered with two cascaded wavelength-division multiplexers (WDM) centered at 1555.8

nm, which together provide a (non-Gaussian) passing bandwidth of approximately
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1 nm. A fiber polarization controller (FPC) and a fiber polarization beam splitter

(FPBS) are followed to tune the input pump power to the waveguide. In order to en-

sure a constant input pump power over the duration of each measurement, the pump

power is monitored in real time through a 90/10 power tap. Because the waveguide is

optimized for FWM in the TE-like mode, another FPC is inserted before the waveg-

uide to ensure correct polarization of the input pump. After the FPC, a lensed fiber

is used for the fiber-to-waveguide coupling. A lens-collimator assembly collects the

output light from the waveguide. A free-space polarizer is used in between the lens

and the collimator to filter out any photons in the polarization state orthogonal to

that of the pump. The total collection loss is measured to be 8 dB. The collected light

is then passed through a free-space triple-pass grating filter (TGF) that rejects the

pump with over 100 dB of isolation while selecting the spontaneous-FWM-created

photons in two paired Stokes and anti-Stokes wavelength channels. By adjusting the

geometry of the TGF setup, photons in different wavelength channels can be selected.

For each channel, a (Gaussian like) bandwidth of 0.65 nm and a loss of approximately

2.6 dB are measured. The Stokes and anti-Stokes photons from each output port of

the TGF are then detected, respectively, by single-photon counters with quantum

efficiencies 2.7% and 1.9%. No pump photons are measurably present at the paired-

channel detunings of 15 and 20 nm that we use in this experiment.
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10%
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Power
meter

Figure 7.1: Experimental setup for photon-pair generation. (WDM: wavelength di-
vision multiplexer, FPC: fiber polarization controller, FPBS: fiber polarization beam
splitter)

7.3 Results

In order to characterize the background Raman scattering, the single-photon

counts after dark count subtraction in each channel for the 20 nm detuning are plot-

ted in Fig. 7.2 as the pump power is varied. As described above, only photons

co-polarized with the pump are collected through the filtering system into the single

photon counters. Both the Stokes and anti-Stokes photon counts are plotted after

being corrected for the respective total detection efficiency, which is attributed to the

sub-unity quantum efficiencies of the detectors, and losses from the waveguide-fiber

coupling, the polarizer, and the respective arm of the TGF. Here the total detection

efficiency of each channel was calculated by relating the dark-count subtracted singles

counts and the measured coincidence counts.

In the low-pumping regime (γP0L� 1 , where P0 is the instantaneous pump power
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Figure 7.2: Singles counts per pump pulse as a function of pump photons for the case
of 20 nm detuning. Both the Stokes and anti-Stokes data are shown along with their
respective fits. Also shown is a per-pulse photon-number curve assuming no Raman
scattering and only FWM. The statistical error bars for the experimental data are
within the markers.

and L is the effective length of the waveguide), the number of photons generated by

Raman scattering is linearly dependent upon the pump power while the number

of photons generated through FWM is quadratic. Thus, in order to quantify the

contribution of the Raman scattering, we fit our data using [106],

nu = ∆νu

∫
(|γP0L|2 + P0L|gR|Nu)dτ (7.1)

where the subscript u = s, a references the Stokes and anti-Stokes channels,

respectively. nu is the photon number per pulse, obtained by integrating the generated

photon flux over the temporal duration of the pump pulse. ∆νu is the filter bandwidth

for each channel. ν is the phonon population given by the thermal distribution, with

Na = n(Ω) and Ns = n(Ω) + 1 where, n(Ω) = [exp(~|Ω|/(kBT )) − 1]−1, Ω is the

82



CHAPTER 7. CORRELATED PHOTON-PAIR GENERATION

pump-Stokes frequency detuning, and T is the temperature of the waveguide. As

discussed previously, γ of the present waveguide is known. This leaves the Raman

gain coefficient, |gR|, as the only free parameter in determining the production rate

of the single photons as a function of the pump power. By using least-square fitting

to the Stokes and anti-Stokes singles counts, good agreement is obtained between

the fitting and the data, as shown in Fig. 7.2, giving a Raman-gain coefficient of

28±3W−1m−1 (38±3W−1m−1) for the Stokes (anti-Stokes) channel for the detuning

of 20 nm. Based on this result, even for low pump power, the photon-pair production

dominates the Raman scattering at such a large detuning from the pump. For this

experiment, at least 100 billion pump pulses are counted per pump power setting, with

more than 500 billion pump pulses at the lower powers, for the purpose of reducing

the statistical uncertainty. For a detuning of 15 nm from the pump, we similarly

measure Raman-gain coefficients of 30±5W−1m−1 and 45±8W−1m−1 for the Stokes

and anti-Stokes channels, respectively. The errors are larger in this case because of a

change in the TGF efficiency and the detector dark counts over the course of these

measurements.

The dark-count subtracted CAR measurement is plotted in Fig. 7.3. It is the ratio

of the detector dark-count subtracted coincidence counts and the estimated accidental

coincidence counts calculated from the product of the dark-count subtracted singles

counts [107]. This procedure eliminates errors introduced into the accidental coinci-

dence measurement by the detector dark counts, which are significant at low signal
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Figure 7.3: (a) Dark-count subtracted CAR versus the pump photon number per
pulse. The highest CAR for the 15 nm (20 nm) detuning is 399 (168). (b) Dark-
count subtracted coincidence and accidental coincidence count per pump pulse as a
function of the peak pump power for both channels.

counts. Dark-count subtraction is accomplished by taking into account the acciden-

tal coincidences from the following sources: the probability of coincidences from true

photon counts from one channel with dark counts from the other, and coincidences
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of dark counts with dark counts from each channel. This procedure is necessary for

the current detection system utilizing InGaAs avalanche photodiodes because of their

inherent high dark-count level.

For a detuning of 15 nm, the maximum CAR recorded is near 400 for 2.8 ×

106 pump photons per pulse, which corresponds to a photon-pair generation rate

of 1.3 × 10−3 photons per pump pulse, whereas at a detuning of 20 nm, the peak

CAR is close to 170 at a slightly stronger pump of 3.5 × 106 photons per pulse,

corresponding to a per-pulse photon-pair generation rate of 2.2 × 10−3. In contrast,

the previous experiment using a similar waveguide with a CW pump measured CAR

to be < 10 [104].

7.4 Discussion

The present CAR values are also much higher than those achieved in typical fiber

sources, where small detunings (< 4nm) and liquid-nitrogen cooling are required to

achieve the relatively high CAR values [13]. Also, the fact that high CAR values are

obtained for a wide range of detunings showcases the wide bandwidth for photon-pair

generation that can be engineered into these devices. Furthermore, the degrading

effect of the larger Raman-gain coefficient relative to the c-Si devices, which results

from the amorphous structure, is more than compensated by the extremely large

optical nonlinearity, giving rise to the production of high-quality photon pairs.
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We have demonstrated efficient photon-pair generation over multiple, widely de-

tuned wavelength channels using a room-temperature a-Si:H waveguide. Our results

suggest the advantage of such devices for future large-scale quantum optical applica-

tions, in terms of high efficiency, low background noise, and high CMOS-chip integra-

bility. A potential application is near-deterministic generation of single photons via

spectral and/or spatial multiplexing of heralded single-photon sources, whose low-

power, on-chip realization is possible because of the extremely high nonlinearity of

our waveguides.
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Conclusion and future work

8.1 Conclusion

Here I have investigated the optical nonlinear properties of this new silicon pho-

tonic material a-Si:H. The optical properties have been characterized by various mea-

surement methods, and we have confirmed that a-Si:H has exceptional nonlinear

properties that can be applied for ultra-fast optical parametric applications. I have

also demonstrated various nonlinear applications, validating the use of this platform

for low power all-optical signal processing.
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8.2 Future work

We will continue to study the origin of the high nonlinear FOM of a-Si:H using

time-resolved measurements and other advanced techniques. We will analyze the re-

sults by modeling the band-structure and derived the physics of the material. For the

optical nonlinear applications, we will use this a-Si:H waveguide for super-continuum

generation, phase-sensitive amplification, and ultimately, an integrated optical para-

metric oscillator on-chip.
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