43 research outputs found

    An Offset Cancelation Technique for Latch Type Sense Amplifiers

    Get PDF
    An offset compensation technique for a latch type sense amplifier is proposed in this paper. The proposed scheme is based on the recalibration of the charging/discharging current of the critical nodes which are affected by the device mismatches. The circuit has been designed in a 65 nm CMOS technology with 1.2 V core transistors. The auto-calibration procedure is fully digital. Simulation results are given verifying the operation for sampling a 5 Gb/s signal dissipating only 360 uW

    Charge Recycling Sense Amplifier Based Logic: Securing Low Power Security IC’s against Differential Power Analysis

    Get PDF
    Charge Recycling Sense Amplifier Based Logic is presented. This logic is derived from Sense Amplifier Based Logic, which is a logic style with signal independent power consumption that is capable to protect security devices such as Smart Cards against power attacks. Experimental results show that utilization of advanced circuit techniques save 20% in power consumption and 63% in peak supply current and that the logic style preserves the energy masking behavior

    IMPLEMENTATION OF LOW POWER DELAY PULSED LATCHES FOR SHIFT REGISTER USING KOGGE STONE ADDER

    Get PDF
    This project proposes delay efficient architecture for shift registers using pulsed latches instead of filp flops. Area and power can be reduced greatly by using latches then flip flops. The timing problem exhibited by the latches is reduced by taking necessary delays in pulses for latches. This includes a counter for generating pulses with delays. For obtaining these delays counter has to incremented by 1. The proposed kogge stone architecture reduces the delay to maximum extent, and produces numerious variation between conventional adder architecture

    A Versatile 1.4-mW 6-bits CMOS ADC for Pulse-Based UWB Communication Systems

    Get PDF
    An Analog to Digital Converter (ADC) using the low duty-cycle nature of pulse-based Ultra Wide-Band (UWB) communications to reduce its power consumption is proposed. Implemented in CMOS 180 nm technology, it can capture a 5 ns window at 4 GS/s each 100 ns, which corresponds to the acquisition of one UWB pulse at the pulse repetition rate of 10 mega pulses per second (Mpps). By using time-interleaved Redundant Signed Digit (RSD) ADCs, the complete ADC occupies only 0.15 mm2 and consumes only 1.4 mW from a 1.8 V power supply. The ADC can be operated in two modes using the same core circuits (operational transconductance amplifier, comparators, etc.). The first mode is the standard RSD doubling mode, while the second mode allows improving the signal-to-noise ratio by adding coherently the transmitted pulses of one symbol. For example, for audio applications, a 300 kbps data rate and processing gain up to 15 dB can be achieved at a clock frequency of 10 MHz

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Exploiting choice in resizable cache design to optimize deep-submicron processor energy-delay

    Get PDF
    Cache memories account for a significant fraction of a chip's overall energy dissipation. Recent research advocates using "resizable" caches to exploit cache requirement variability in applications to reduce cache size and eliminate energy dissipation in the cache's unused sections with minimal impact on performance. Current proposals for resizable caches fundamentally vary in two design aspects: (1) cache organization, where one organization, referred to as selective-ways, varies the cache's set- associativity, while the other, referred to as selective-sets, varies the number of cache sets, and (2) resizing strategy, where one proposal statically sets the cache size prior to an application's execution, while the other allows for dynamic resizing both within and across applications. In this paper, we compare and contrast, for the first time, the proposed design choices for resizable caches, and evaluate the effectiveness of cache resizings in reducing the overall energy-delay in deep-submicron processors. In addition, we propose a hybrid selective-sets-and-ways cache organization that always offers equal or better resizing granularity than both of previously proposed organizations. We also investigate the energy savings from resizing d-cache and i-cache together to characterize the interaction between d- cache and i-cache resizing

    Near-optimal precharging in high-performance nanoscale CMOS caches

    Get PDF
    High-performance caches statically pull up the bit-lines in all cache subarrays to optimize cache access latency. Unfortunately, such architecture results in a significant waste of energy in nanoscale CMOS implementations due to high leakage and bitline discharge in the unaccessed subarrays. Recent research advocates bitline isolation to control precharging of individual subarrays using bitline precharge devices. In this paper, we carefully evaluate the energy and performance trade-offs of bitline isolation, and propose a technique to exploit nearly its full potential to eliminate discharge and reduce overall energy in level-one caches. Cycle-accurate and circuit simulation results of a wide-issue superscalar processor indicate that: 1) in future CMOS technologies (e.g., 70 nm and beyond), cache architectures that exploit bitline isolation can eliminate up to 90% of the bitline discharge; 2) on- demand precharging (i.e., decoding the address and subsequently precharging the accessed subarrays) is not viable in level-one caches because precharging increases the cache access latency; and 3) our proposal for gated precharging to exploit subarray reference locality and precharging only the recently accessed subarrays eliminates nearly all of bitline discharge in nanoscale CMOS caches with only a 1% of performance degradatio

    Low-power digital processor for wireless sensor networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 69-72).In order to make sensor networks cost-effective and practical, the electronic components of a wireless sensor node need to run for months to years on the same battery. This thesis explores the design of a low-power digital processor for these sensor nodes, employing techniques such as hardwired algorithms, lowered supply voltages, clock gating and subsystem shutdown. Prototypes were built on both a FPGA and ASIC platform, in order to verify functionality and characterize power consumption. The resulting 0.18[micro]m silicon fabricated in National Semiconductor Corporation's process was operational for supply voltages ranging from 0.5V to 1.8V. At the lowest operating voltage of 0.5V and a frequency of 100KHz, the chip performs 8 full-accuracy FFT computations per second and draws 1.2nJ of total energy per cycle. Although this energy/cycle metric does not surpass existing low-energy processors demonstrated in literature or commercial products, several low-power techniques are suggested that could drastically improve the energy metrics of a future implementation.by Daniel Frederic Finchelstein.S.M
    corecore