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Abstract

High-performance caches statically pull up the bit-
lines in all cache subarrays to optimize cache access
latency. Unfortunately, such an architecture results in a
significant waste of energy in nanoscale CMOS imple-
mentations due to high leakage and bitline discharge in
the unaccessed subarrays. Recent research advocates
bitline isolation to control precharging of individual
subarrays using bitline precharge devices. In this paper,
we carefully evaluate the energy and performance
trade-offs of bitline isolation, and propose a technique
to exploit nearly its full potential to eliminate discharge
and reduce overall energy in level-one caches.

Cycle-accurate and circuit simulation results of a
wide-issue superscalar processor indicate that: (1) in
future CMOS technologies (e.g., 70nm and beyond),
cache architectures that exploit bitline isolation can
eliminate up to 90% of the bitline discharge, (2) on-
demand precharging (i.e., decoding the address and
subsequently precharging the accessed subarrays) is not
viable in level-one caches because precharging
increases the cache access latency, and (3) our proposal
for gated precharging to exploit subarray reference
locality and precharging only the recently accessed sub-
arrays eliminates nearly all of bitline discharge in
nanoscale CMOS caches with only a 1% of performance
degradation.

1  Introduction

High-performance level-one (L1) caches increas-
ingly account for a significant fraction of energy dissipa-
tion in wide-issue out-of-order processors [4,22]. To
reduce the bitline capacitive load and achieve faster
access times, these caches are divided into multiple sub-
arrays of SRAM cell rows. To hide bitline precharging
time and minimize cache access latency, these caches

typically pull up the bitlines in all subarrays statically or
on every clock cycle [5]. Unfortunately, such aggressive
and blind bitline precharging results in a significant
energy discharge through the bitlines even in unaccessed
subarrays. The energy waste is exacerbated by: (1) the
increasing leakage in recent CMOS technologies [3],
and (2) the trend towards using highly-ported caches
(e.g., data caches in superscalar and data/instruction
caches in SMT) which employ multiple bitlines for an
SRAM cell column.

Recent proposals [8,22] advocate bitline isolation as
a technique to reduce energy discharge through the bit-
lines in L1 caches. Bitline isolation turns off the pre-
charge devices located between bitlines and the
processor’s supply voltage to avoid pulling up bitlines
for cache cells that are unlikely to be accessed in the
near future. Controlling the bitlines of individual subar-
rays, however, requires both accurate and timely archi-
tectural mechanisms that predicts when to turn on the
bitlines; inaccurate or late precharging may adversely
impact cache access time, program execution time, and
overall energy dissipation. Moreover, frequent switching
of precharge devices may dissipate significant amounts
of energy because these devices tend to be large, offset-
ting gains from bitline isolation.

Unfortunately, prior proposals either apply bitline
isolation infrequently [1,22] (e.g., once per million
instructions, over a group of subarrays) to amortize the
performance/energy overhead of bitline isolation over
large overall energy savings, or tacitly assume there is
little overhead associated with bitline isolation [8].
These proposals do not evaluate or exploit the full
potential for energy savings using bitline isolation.

In this paper, we carefully quantify the performance/
energy trade-offs of bitline isolation and propose archi-
tectural techniques necessary to realize the full potential
of bitline isolation in nanoscale CMOS L1 caches.
Based on cycle-accurate architectural simulations, and
timing and energy analysis from circuit-level simula-
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tions for a wide-issue out-of-order superscalar with a sub-
set of SPEC2000 and Olden benchmarks, we show that:

• Energy overhead: The energy overhead of bitline iso-
lation in the past/current CMOS technologies is so
large (e.g., 200% in 180nm) that it nearly offsets the
energy savings achieved by isolating bitlines. Fortu-
nately, the overhead is decreasing as technology scales
and will be insignificant in the future beyond 70nm
technology. This result suggests that bitline isolation
can be applied more aggressively in the future.

• Potential savings: By using an oracle that identifies
accessed subarrays with no delay, we quantify the
potential savings of bitline isolation in future CMOS
technologies. For 70nm, the oracle reduces bitline dis-
charge in data and instruction caches on average by
89% and 90% respectively, corresponding to 46% and
41% of the cache energy saving opportunities.

• Precharging timeliness: On-demand precharging
using information from the address to identify the
accessed subarrays on demand is not viable because it
increases the cache access latency. Our results indicate
that the increased L1 cache access latency degrades
performance by 9% in data caches and 7% in instruc-
tion caches.

• Gated precharging: The cache’s subarray references
exhibit high locality with most cache accesses within a
given execution window occurring in a small number
of hot subarrays. We propose gated precharging to
effectively exploit cache subarray locality and achieve
near-optimal bitline precharging by capturing the
potential. Gated precharging in 70nm reduces 83% and
87% of the bitline discharge and 42% and 36% of the
overall energy dissipation from data and instruction
caches, respectively, with only a 1% performance deg-
radation.

The rest of the paper is organized as follows. Section 2
presents bitline precharging mechanisms and the bitline
isolation technique. Section 3 briefly describes the experi-
mental setup used throughout this paper. In Section 4, we
look into the energy implication and the potential energy
savings of bitline isolation. Section 5 and Section 6
present architectural techniques that exploit the potential
of bitline isolation. We look into on-demand subarray pre-
charging and propose gated precharging based on subarray
reference locality. Section 7 presents the related work.
Section 8 concludes the paper.

2  Background: Bitline Precharging &
Isolation

Figure 1 depicts a typical 6-T SRAM cell with pre-
charge devices. A read operation begins with the two bit-

lines precharged to the supply voltage. The address is
supplied to the decode logic which activates the selected
row’s wordline. The SRAM cells on the row read their val-
ues out onto the precharged bitlines and establish a small
voltage differential by slightly discharging one of the bit-
lines. The sense amps recognize this differential in the two
bitlines and buffer the values for subsequent consumption
by the pipeline. After a read, the voltage on the two bit-
lines must be equalized by precharging them to the proces-
sor’s supply voltage.

Bitline precharging is achieved through either clocked
precharging that clocks the precharge devices every cycle
or static pull-up that statically leaves them on all the time
[5]. Static pull-up has the advantage that it does not
require a heavily loaded precharge clock signal. Moreover,
clocked precharging requires precise timing on the pre-
charge clock which is often difficult to engineer. There-
fore, recent designs [7] advocate static pull-up for the
performance-critical L1 caches. We assume static pull-up
for the base cache configuration in this paper.

To optimize the cache access speed, cache designers for
modern high-performance caches segment bitlines and
divide the array of SRAM cell rows into multiple subar-
rays [19]. To further improve clock speed and cache access
latency, these caches overlap bitline precharging with
other cache operations, such as address decoding or output
driving, and hide the entire bitline precharging latency of
each cache access. As such, the caches blindly precharge
all the subarrays, irrespective of the accessed subarray.

In the past, this blind precharging scheme has been a
viable approach to reduce the cache access latency without
a significant cost. However, the large and growing sub-
threshold leakage in future CMOS technologies incurs a
large bitline discharge from all statically pulled-up bit-
lines, even in subarrays that are not accessed. This bitline
discharge is different from the one caused by a cell read.
Current architectural trends towards using multiple ports
(e.g., data caches in superscalar and data/instruction
caches in SMT) requiring multiple bitlines for an SRAM
cell column further exacerbate the large bitline discharge.
We measure this bitline discharge to be 76% of the overall
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FIGURE 1: 6-T SRAM cell and precharge logic.
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leakage dissipation in dual-ported SRAM cells. The large
bitline discharge results in a significant energy waste.

The energy waste due to blind precharging can be
reduced by determining which subarrays will be accessed
and precharging only these subarrays. The precharge
devices in the other subarrays are turned off, isolating their
bitlines from the supply voltage, and turned back on prior
to an access. Turning off the precharge devices cuts off the
bitline leakage paths between the supply voltage and bit-
lines and reduces the discharge. We refer to this technique
as bitline isolation.

Unfortunately, there are a number of key challenges the
cache designers must overcome to fully exploit bitline iso-
lation. First, the energy overhead of switching precharge
devices may be high enough to offset the overall energy
reduction if the precharge devices are switched frequently.
Second, the cache requires an accurate mechanism to iden-
tify the subarray to be precharged prior to an access.
Finally, depending on the precharging latency, the subar-
ray must be identified and precharged early in the pipeline
to allow precharging to overlap with the cache access and
avoid an increase in overall access latency.

The first application of bitline isolation appeared in the
Alpha 21164’s L2 cache [2,6] as an extension of clock gat-
ing. This cache predecodes the address and subsequently
turns on the precharge devices only for the relevant subar-
rays. While the precharge device switching energy is
potentially large in L2 subarrays, this overhead is offset by
the large energy savings from reducing the capacitive load
on the L2’s heavily-loaded clock distribution. Moreover,
the increase in access latency due to delayed precharging
is amortized over the L2’s long overall access latency.

Recently, other researchers have applied bitline isola-
tion to performance-critical L1 caches. Leakage-biased
bitlines [8] do not carefully address the energy and perfor-
mance overhead of bitline isolation. Resizable caches
[1,22] predict the demand for cache size, and select the
corresponding group of subarrays for static pull-up over a
long execution period (e.g., one million instructions); the
bitlines in the “inactive” subarrays are isolated. Due to
infrequent switching of precharge devices, the energy
overhead of bitline isolation is amortized over aggregated
energy savings. Because the “active” subarrays use static
pull-up, there is no impact on the latency accessing these
subarrays. However, because resizable caches preclude
individual subarray precharging control, they cannot

exploit bitline isolation and its potential for energy savings
to the furthest extent.

3  Experimental Setup

In this paper, we evaluate our contributions using a
spectrum of CMOS technologies in an aggressive 8-way
microprocessor. Our circuit parameters (Table 1) are cho-
sen to represent a wide spectrum of CMOS technologies
from recent-past (180nm) to near-future (70nm) technolo-
gies. The clock speeds are scaled proportionally to the gate
delays and match the aggressive 8 fanout-of-four (FO4)
delay for each technology [11]. Therefore, the cycle time
stays the same relative to the gate delay and a single pipe-
line stage employs the same number of logic levels across
technologies. We use a modified version of CACTI 3.2
[18] and SPICE for the circuit-level simulations.

Table 2 shows the simulated 8-way 16-stage supersca-
lar processor’s base configuration. We measure the access
latencies of the major structures, including the register
files, issue window, branch predictor and L1/L2 caches,
using the modified CACTI tool and adjust the overall pipe-
line depth accordingly. With the same microarchitecture,
the chip dimensions and wire lengths of the simulated pro-
cessor scales linearly with the technology scaling. Ho, et
al. [10] show that innovation in material and aggressive
scaling in wire dimensions/spacing make it possible that
delays of the wires that scale in length scale with the gate
delays for the technologies between 180nm and 50nm.
Thus, our assumption of the 8-FO4 clock period ensures
that the access penalty (in cycles) of the major structures
and the overall pipeline depth remain constant for the tech-
nologies studied in this paper. To model deeper pipelines
and realistic memory systems, we modified Wattch 1.0 [4].

We examine sixteen applications from the SPEC2000
(ammp, art, bzip2, equake, gcc, mcf, mesa, vortex, vpr and
wupwise) and Olden (bh, bisort, em3d, health, treeadd,
and tsp) benchmark suites. We run entire programs for

Table 1: Circuit parameters.

Feature size (nm) 180 130 100 70

Supply voltage (V) 1.8 1.5 1.2 1.0

Clock frequency (GHz) 2.0 2.7 3.5 5.0

Table 2: Base system configuration.

Issue & decode 8 instructions per cycle

Reorder buffer 128 entries

Issue queue 64 entries

Load/Store queue 64 entries

Branch predictor combination

Register file 128 registers; 16R/8W ports

L1 i-cache 32K; 2-way; 2-cycle; 2RW ports

L1 d-cache 32K; 2-way; 3-cycle; 2RW/2R ports

L2 unified cache 512K; 4-way; 12-cycle latency

Memory 100 cycles + 4 cycles per 8 bytes

MSHRs 8 entries



4

Olden but use SimPoint for SPEC2000 to reduce turn-
around time [17]. We gather the subarray pull-up/idle time
distributions from the architectural simulations and com-
bine them with the bitline discharge results from the cir-
cuit simulations to calculate the overall energy reduction.

4  Bitline Isolation: Energy Overhead &
Potential Savings

In this section, we analyze bitline isolation’s energy
overhead. The energy overhead is a key constraint for
designing the subarray selection/identification mecha-
nisms on top of bitline isolation, because careful evalua-
tion of the overhead allows designers to determine: (1)
how frequently bitline isolation can be applied, and (2)
how aggressive the subarray selection mechanism can be.
Assuming an ideal mechanism to identify the accessed
subarray (with a perfect hit rate and no identification
delay), we evaluate the maximum potential energy savings
using bitline isolation.

Energy Implications: Bitline isolation cuts off the leak-
age paths from the supply voltage to the bitlines by turning
off the precharge devices (Figure 1), and reduces the
energy dissipated through the paths. Ideally, bitline isola-
tion is expected to completely eliminate the leakage
through the bitlines immediately after the precharge
devices are turned off. In reality, however, because pre-
charge devices are typically an order of magnitude larger
than cell transistors, switching the precharge devices may
induce significant current flow and energy dissipation on
the bitlines. The current through the bitlines decreases and
eventually reaches a steady state, where there may be no
additional energy discharge through the bitlines.

Scaling theory [3] predicts that the switching power
dissipation in a device reduces by one half with technol-
ogy scaling, while the leakage power increases by a factor
of 3.5. Therefore, the energy overhead in switching the
precharge devices is expected to dramatically decrease
compared to the static pull-up’s bitline discharge for future
CMOS technologies.

Figure 2 shows the energy overhead trend for various
CMOS technologies by presenting the power dissipation
through the bitlines in a 1KB subarray as a function of
time, after precharge devices are turned off at time zero.
For each CMOS technology, the power dissipation is nor-
malized to the one with the static pull-up scheme of its
own generation. Because the bitline’s steady state voltage
level and overall energy dissipation depend on the values
stored in the cells connected to the bitline, we assume the
worst-case combination of stored values, without affecting
the trend of the results.

This figure shows that bitline isolation’s energy over-
head widely varies across the CMOS technologies. In
180nm technology, the overhead is up to 195% of the
power dissipated through statically precharged bitlines.
The isolated bitlines reach the steady state over 500ns after
they are isolated. However, as expected, the energy over-
head and falling time dramatically decrease with technol-
ogy scaling. Eventually in 70nm technology, very small
switching current spike is induced and it melts away
quickly, resulting in an insignificant overhead. Therefore,
subarray selection mechanisms in the future can be
designed to apply bitline isolation more frequently and
aggressively for more energy savings.

Potential Energy Savings: From now on, we study an
oracle bitline precharging mechanism to quantify the
potential energy savings that are achievable by bitline iso-
lation. On every cache access, an oracle identifies the
accessed subarray without increasing the access latency
and precharges only this subarray. The other subarrays are
isolated from the supply voltage to remove unnecessary
bitline discharge. Once the access ends, the accessed bit-
lines are isolated.

If there is little energy overhead in applying bitline iso-
lation, this oracle bitline precharging is most beneficial
and ideal to control bitline isolation because it precharges
the bitlines only when they need to be precharged. Thus,
this oracle study is expected to provide the potential
energy savings of bitline isolation in future CMOS tech-
nologies where the energy overhead is insignificant.

For the static pull-up scheme, the bitline discharge is
constant over time, but the bitline discharge through the

FIGURE 2: Power dissipation through bitlines.
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isolated bitlines depends on the access interval. If the bit-
lines are accessed soon after isolation, the energy savings
might be insignificant because the bitline discharge
remains high while the overhead is consumed. Therefore,
although the oracle precharges only one subarray for all
the cache accesses, the potential varies depending on the
distribution of subarray access intervals.

Figure 3 shows the full potential observed for data and
instruction caches in 70nm CMOS technology. In the
future the potential bitline discharge reduction is huge: the
potential for data and instruction caches are 89% and 90%
on average, respectively, each corresponding to 46% and
41% of the overall cache energy saving opportunity.

5  On-Demand Bitline Precharging

In this section, we investigate the timeliness of on-
demand bitline precharging. On-demand precharging emu-
lates the oracle bitline precharging studied in Section 4 by
partially decoding memory addresses to identify and pre-
charge only the accessed subarrays. Given that bitline iso-
lation’s energy overhead in the upcoming generations of
CMOS technology is insignificant, and the on-demand
subarray identification provides perfect accuracy, the suc-
cess of on-demand precharging relies purely on the timeli-
ness of its subarray identification mechanism.

In the on-demand precharging scheme with partial
address decoding, all bitlines are initially isolated from the
supply voltage and approach steady state. On a cache
access, part of the address is decoded to identify the rele-
vant subarrays. The isolated bitlines in the relevant subar-
rays must be pulled up before the decoding is completed
and the corresponding wordline is asserted. The delay for
partial address decoding and relevant bitline precharging
can be hidden if they completely overlap with full address
decoding.

To investigate whether these operations can be per-
formed in parallel, we look into the details of the cache’s
decoder architecture (Figure 4). Without loss of generality,
we assume that our decoding logic is similar to that of the
CACTI simulator’s model [18]. The decoder depicted in
Figure 4 contains three major sources of the delay, each
corresponding to one of the three decoding stages. In the
first stage, the address is fed into the decoders in the subar-
rays. The second stage in each subarray divides the
address into a number of three bit blocks and generates 8-
bit one-hot codes via 3-to-8 decoders. NOR gates in the
third stage combine these 8-bit one-hot codes to identify
the accessed row.

Partial address decoding requires the first and second
stages of full address decoding. After the second stage, the
outcomes from one or more 3-to-8 decoders are utilized to

identify the accessed subarrays, depending on the number
of subarrays in the cache. If the cache has eight or fewer
subarrays, the relevant subarrays can be identified just
before the third stage. Otherwise, the partial decoding
needs to combine the outcomes from the second stage
using NOR gates with fewer inputs and be further delayed.

The margin of time given to bitline precharging after
partial address decoding is slim. With eight or fewer sub-
arrays, the margin of time is the third stage latency of full
address decoding. With more subarrays, it is even shorter.
Moreover, bitline isolation fully discharges the bitlines in
the worst case and pulling up these bitlines can exceed this
time margin. In contrast to the fully discharged bitlines,
bitline precharging on an active cache access can be over-
lapped with the address decoding, because active cell
reads create only a small voltage drop (0.1 to 0.2V).

The bitline precharging delay depends on the size of the
precharge devices and the subarrays. First, the precharging
delay decreases as the size of the precharge devices grows.
However, we cannot enlarge the precharge devices indefi-
nitely for faster precharging. The static pull-up scheme
always turns on the precharge devices and fights against
the bitline discharge on an active cell read. Therefore,
larger precharge devices slow down the bitline discharge
on a cell read and, in turn, increase the cache access
latency. In addition, larger precharge devices require more
switching energy. Second, the precharging delay decreases
as the subarray size decreases, because the bitline length
and capacitive load decrease. However, reducing the sub-
array size increases the number of subarrays in a cache
and makes partial address decoding as complicated and
slow as full address decoding by requiring more address
bits. Moreover, a larger number of subarrays increase the
cache area and routing delay.

FIGURE 4: Cache address decoder architecture.
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Evaluation: Table 3 shows the delays for full address
decoding’s three stages and bitline precharging for both
1KB and 4KB subarrays and various CMOS technologies.
We assume 32-byte cache lines for 32K 2-way set-associa-
tive L1 caches. The size of the precharge devices is
assumed to be factor of ten larger than the cell transistors.
For a 1KB subarray size, the cache has 32 subarrays and
partial address decoding is required to combine the out-
comes of the second stage to identify the relevant subar-
rays. For 4KB subarrays, partial address decoding ends
immediately after the address decoding’s second stage.

Regardless of the subarray size or CMOS technology,
we observe that bitline precharging consistently takes
longer than the final stage of the address decoding, which
is the maximum margin for bitline precharging to overlap
the on-demand precharging with full address decoding.
This difference delays the cache access latency by one
cycle. The average performance impact of this longer
cache access latency is 9% and 7% for data and instruction
caches, respectively. Therefore, in contrast to the recent
proposal [8] that assumes on-demand precharging is appli-
cable without delaying cache accesses, on-demand pre-
charging is not applicable to high-performance cache
designs. Instead, successful selective bitline precharging
requires early subarray identification mechanisms with
high accuracy.

6  Gated Precharging

Successful selective precharging in the future must be
both timely and accurate. In this section, we propose and
analyze gated precharging [20], which controls bitline iso-
lation based on the application’s subarray reference local-
ity. Gated precharging allows for a timely and accurate
subarray identification and achieves near-optimal energy
savings close to the potential studied in Section 4.

In contrast to oracle or on-demand precharging where
the subarrays are disabled immediately after an access,
gated precharging leaves the accessed subarray precharged
if another access to the subarray is predicted to occur in a
short period of time. Therefore, the bitlines are precharged
for the next access even before the access begins. In such a
way, gated precharging identifies the accessed subarrays
early, ensuring timeliness.

Gated precharging does not bound the number of pre-
charged subarrays to one or the associativity of the cache.
When the subarray reference locality is low, the technique
precharges multiple subarrays in the hope that one of the
precharged subarrays is accessed. In the common case of
high locality, the technique aggressively precharges only
one subarray. This flexibility provides high prediction
accuracy.

Gated precharging is based on two key observations.
First, recently accessed subarrays are most likely to be
reused in the short term. We call the subarrays that are cur-
rently in frequent use hot subarrays. Second, the number
of hot subarrays at any moment is typically small. In other
words, most cache accesses within a short time are local-
ized to a small number of cache subarrays. The subarray
reference locality is inherent to the application’s execu-
tion. Application programs normally break down compu-
tation into distinct program phases. In each phase, a small
portion of the application typically iterates and computes
over parts of a data structure, resulting in the cache
accesses localized within a small number of subarrays.

Gated precharging identifies hot subarrays by exploit-
ing the application’s subarray reference locality and
applies bitline isolation to the other subarrays. To exploit
subarray reference locality, hardware (or software) must
provide an accurate mechanism to identify hot subarrays
and forecast future subarray usage. In this paper, we use a
simple and intuitive hardware mechanism to detect the
subarray reference locality and identify hot subarrays.

In the rest of this section, we first study subarray refer-
ence locality and show that most cache accesses over a
short period are localized to a small number of subarrays.
Therefore, recently-used subarrays are most likely to be
reused in the near future. Next we describe a simple hard-
ware mechanism to detect and exploit reference locality.
We then discuss the hardware/performance overhead of
the mechanism and evaluate gated precharging.

6.1  Locality of Cache Subarray References

In this section we examine sixteen applications from
the SPEC2000 and Olden benchmark suites with a base
system configuration described in Section 3 to demon-
strate subarray reference locality: most cache accesses

Table 3: Decode and precharge delay.
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occur in a small number of hot subarrays. The hot subar-
rays vary over the program’s dynamic instruction stream.

An important metric in this section is the subarray
access frequency (or access interval, where access fre-
quency is the reciprocal of access interval). The access fre-
quency of a subarray indicates how hot the subarray
currently is. Therefore, we can think of it as the tempera-
ture of the subarray: subarrays with a high access fre-
quency (or high temperature) are hot. We will investigate
the subarray reference locality as a function of access fre-
quency.

Temporal Locality of Subarray References: Figure 5
shows the cumulative distribution of cache accesses versus
the subarray access frequency. This figure indicates how
often the accesses occur in hot subarrays. For most of our
benchmarks, we observe that a large portion of cache
accesses are distributed around a high access frequency
(i.e., high temperature). For instance, with the exception of
three applications, 95% of data cache accesses occur in
subarrays with an access frequency of at least one every
100 cycles, implying that most cache accesses occur in the
hot subarrays. Therefore, the hot subarrays are most likely
reused, indicating high temporal locality of the subarray
accesses. For ammp, art and health, their high cache miss
ratios result in a large interval between two accesses and a
lower subarray access frequency.

Fraction of Hot Subarrays: Another important observa-
tion underlying gated precharging is that the number of hot
subarrays is typically small. Figure 6 shows the fraction of

hot subarrays in a cache as a function of the access fre-
quency. This figure indicates how many subarrays will be
categorized as hot for a given access frequency threshold.
A subarray is hot if its access frequency (temperature) is
above a certain threshold. The lower the threshold access
frequency, the more subarrays will be categorized as hot.
An important observation from this figure is that the num-
ber of hot subarrays is typically small for a large access
frequency threshold. For example, with a threshold of one
in 100 cycles, the fraction of hot subarrays in a cache is
only 22%, on average. For a 1000-cycle threshold, at most
40% of subarrays are considered hot.

6.2  Implementing Gated Precharging

We have demonstrated that only a small number of sub-
arrays are hot and those hot subarrays have high temporal
locality. To exploit this property, gated precharging mea-
sures the temporal locality of each subarray and identifies
the subarrays with high temporal locality. Gated precharg-
ing precharges only hot subarrays, since most accesses are
likely to occur in these subarrays in the near future.

Figure 7 depicts an implementation of gated precharg-
ing. Gated precharging employs a decay counter per sub-
array to capture the recent usage of the subarray. The value
of the counter is compared to a threshold value every cycle
to determine whether the subarray is hot or cold. If the
counter value is below the threshold, the subarray was
accessed recently and is likely to be reused soon. There-
fore, the subarray remains precharged for the next cache

FIGURE 5: Cumulative distribution of cache
accesses vs. access frequency.
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access. Otherwise, the subarray is not likely to be accessed
and its bitlines are isolated.

The key adaptivity parameter of the technique is the
threshold value. A small threshold value allows gated pre-
charging to aggressively disable subarrays after a shorter
period of inactivity but may result in more mispredictions.
Threshold values can be determined in various ways, but
studying threshold selection algorithms is beyond the
scope of this paper. As a first step to understanding gated
precharging, we use both the per-benchmark optimum
found from profiling and a constant threshold across the
board.

Gated precharging introduces very small and simple
additional hardware. As shown in Figure 7, the technique
requires only one extra counter and the threshold compari-
son logic per subarray. Our experiments show that 10-bit
decay counters are sufficient. The result of the comparison
is fed into the precharge control logic which already exists
in conventional caches. Our simulation estimates that the
additional hardware structures dissipate less than 0.02% of
the energy required for one base cache access.

6.3  Performance Implications

If a cache access occurs on a subarray left isolated by
gated precharging, the access is delayed until the corre-
sponding bitlines are precharged. As we have seen in
Table 3 (Section 5), the bitline precharging takes one cycle
for the spectrum of CMOS generations and clock frequen-
cies. This delay increases the latency of the cache access
and degrades performance. For instruction caches, this
delay slows the fill-up rate of the instruction fetch queue.
As long as the gated precharging’s accuracy is high, the
performance impact from the delayed fill-ups is expected
to be minimal. The performance impact of delayed cache
accesses for data caches might be more visible. In highly
speculative modern processors, instructions that are
dependent on a cache access are speculatively issued
assuming that the data from the cache access will be avail-

able in a certain cycle. This technique is called load hit
speculation [7, 9, 23]. However, uncertainty in the cache
latency can cause additional squashes and reissues of the
speculatively-issued instructions. Such replays adversely
affect the energy dissipation as well as execution time.

Uncertain Load Latency and Instruction Issue: Modern
highly speculative superscalar processors including the
MIPS R10000, the Alpha 21264 and the Pentium 4, per-
form load hit speculation [7,9,23]. In general, there is a
non-zero delay between instruction issue and execution.
Therefore, to ensure back-to-back execution of a load and
its dependents (and even their children), instructions
depending on a load are speculatively issued as early as
possible with the assumption that the load will hit in a
cache and the data will be available in a known and fixed
number of cycles. However, if the load takes longer or
does not provide the data in a given latency, the specula-
tively-issued instructions must be squashed and reissued.

The major sources of cache access latency variation in
conventional processors are L1 cache misses and misspec-
ulated speculative loads (loads issued before preceding
store addresses are resolved). As cache misses and load
misspeculations are rare, load hit speculation improves
performance significantly by executing the load and its
dependents back-to-back.

Gated precharging creates another level of uncertainty
for cache hit latency, because mispredictions increase
cache hit latency. The increased uncertainty of the cache
hit latency might incur significant performance degrada-
tion in highly speculative modern superscalar processors.
The instruction replay affects the performance not only
because it delays the execution of dependent instructions,
but also because it wastes resource and issue bandwidth
that could have been utilized for useful independent
instructions.

Conventional processors take two different approaches
upon incorrect load hit speculation. Some processors, such
as the MIPS R10000 or Alpha 21264, squash and reissue
all the instructions following the misspeculated load.
Other processors such as the Pentium 4, squash only
instructions dependent on the load. The Pentium 4’s
approach is better at reducing the performance impact but
may be more complex. Such an approach is particularly
important for long pipelines like in the Pentium 4, because
these pipelines exhibit large delays between the load issue
and resolution, and there can be a large number of inde-
pendent instructions issued during this delay. The
approach used by the MIPS R10000 might squash all of
them, resulting in significant performance and power deg-
radation. As our base system has a 16-stage pipeline and
exhibits long load-issue-to-resolution delay (6 cycles), we
take the Pentium 4’s approach in this study.
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Improving Accuracy Using Predecoding: Subarray ref-
erence locality in data caches is lower than in instruction
caches, and thus we expect gated precharging in data
caches to exhibit lower accuracy. Moreover, load hit mis-
speculation caused by the uncertain load hit latency may
amplify the performance impact in data caches. We
improve the accuracy of gated precharging in data caches
by using a simple heuristic called predecoding.

The key observation of predecoding is that, for most of
the memory instructions that use displacement addressing
(address = base address + displacement), its base address
determines the accessed subarray. Displacement address-
ing is the most commonly used addressing mode in many
ISA’s. The memory instructions with displacement
addressing use a base register and a displacement to deter-
mine which address is accessed. Most of the displacement
values are small and therefore do not affect which subar-
ray is accessed. Because the accessed subarray can be
identified right after the base register is read prior to
address calculation, the accessed subarray can be pre-
charged earlier in the pipeline.

For the sixteen applications from SPEC2000 and Olden
benchmark suites, we observe that predecoding on 1KB
subarrays predicts the accessed subarrays with an 80% of
accuracy. Even with subarrays as small as a cache line, an
average 61% of the predecoding is accurate. In evalua-
tions, we combine predecoding with gated precharging to
achieve a higher accuracy.

6.4  Evaluation

In this section, we present experimental results on the
performance and energy of gated precharging. For gated
precharging, we present results from the statically-found
per-benchmark optimum thresholds with a 1% perfor-
mance degradation. All the threshold values are on the
order of 10 to 1000, with most clustered around 100. As a
reference, we show the average savings when a constant
threshold (100) is applied to all the benchmarks. The base
subarray size is 1KB. We first show the bitline discharge
savings achieved through gated precharging (combined
with predecoding for data caches.) Then we compare
gated precharging against the previously proposed resiz-
able cache technique. Finally, we investigate gated pre-
charging’s sensitivity to subarray sizes.

Energy Savings: Figure 8 shows the fraction of pre-
charged subarrays (left bar) and the relative energy dissi-
pation due to bitline discharge (right bar) for the L1 data
and instruction caches achieved by gated precharging. The
results are normalized with respect to conventional caches
of the same configuration. The figure shows that gated pre-
charging significantly reduces the number of subarray pre-

chargings and the amount of the bitline discharge. On
average, with a 1% performance degradation, gated pre-
charging precharges only 10% of the subarrays in data
caches and 6% in instruction caches, each of which corre-
sponds to approximately three and two subarrays out of
32, respectively. They correspond to 83% and 87% reduc-
tions in the bitline discharge. With a constant threshold,
the average discharge reductions are 78% and 81%,
respectively. The instruction replay (Section 6.3) in the
data cache increases the processor’s energy consumption
by less than 1%. Predecoding increases the data cache’s
bitline discharge reduction by 6%.

We observe a larger reduction of the bitline discharge in
instruction caches than in data caches. Instruction streams
have more stable footprints, because they exhibit higher
spatial locality at the cache line level. Moreover, the vari-
able load hit latencies in data caches caused by mispredic-
tions produce squashes and reissues of instructions,
whereas the delayed load hit in instruction caches merely
slows down the instruction fetch queue fill-up. These
squashes and reissues have an adverse impact on execution
time as well as the cache’s energy dissipation. Therefore,
data caches require higher subarray identification accuracy
than instruction caches to save the same amount of energy
with the same performance penalty.

We observe huge reductions in the number of pre-
charged subarrays for applications such as ammp, art and
health in data caches. There are two different scenarios
that make this possible. For applications like health, their
small footprint and high subarray reference locality
greatly increase the effectiveness of gated precharging.

FIGURE 8: Number of precharged subarrays
and amount of bitline discharge.
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Gated precharging’s capability to capture locality results
in a huge reduction in the average number of precharged
subarrays. Second, other applications like ammp and art
receive virtually no benefit from having L1 caches. These
applications mostly thrash in L1 caches, so the delayed
precharging caused by aggressive bitline isolation does not
incur a significant performance degradation. Therefore,
gated precharging can employ a very aggressive threshold
and achieve a large energy savings without a significant
performance degradation.

Gated Precharging vs. Resizable Caches: Resizable
caches exploit the variability in cache size requirements
within and across applications. Resizable caches monitor
cache performance at every interval and change the cache
size at the granularity of multiple subarrays at the end of
each interval. This interval is typically around one million
instructions. In this paper, we use the miss ratio as the
cache’s performance metric and vary both the number of
cache sets and set associative ways [22].

Resizable caches switch precharge devices infrequently
so the energy overhead of toggling the bitline precharge
can be amortized into the large interval. However, the
infrequent and coarse-grain characteristics of resizable
caches result in suboptimal cache sizes and prevent them
from fully utilizing the available potential. Moreover,
resizable caches introduce extra cache misses that are cre-
ated because resizing may require the remapping of data
into a cache and because cache downsizing can map two
hot subarrays into one. Therefore, resizable caches have a
larger performance impact than gated precharging.

Figure 9 compares the relative bitline discharge of
gated precharging against that of resizable caches for vari-
ous CMOS technologies. Each value represents the bitline
discharge averaged over the tested benchmarks. The
results are obtained as aggressively as possible while
maintaining a 1% performance penalty. This figure clearly
shows that resizable caches achieve almost a constant bit-
line discharge regardless of the CMOS technology,
whereas gated precharging exhibits a large variation.
Resizable caches amortize the overheads into the large
switching interval, resulting in a consistent savings across
CMOS generations. However, gated precharging switches
precharge devices more aggressively, and thus the amount
of energy overhead directly impacts the results.

Comparing two techniques in 70nm technology, we
observe that many applications in data caches and equake,
gcc, vortex and vpr in instruction caches show a large gap
between gated precharging and resizable caches (not
shown in the figure). For these applications, conflicts
between hot subarrays caused by cache downsizing would
produce a large number of cache misses and prevent
aggressive downsizing, whereas gated precharging does

not incur such conflicts. Therefore, to maintain a perfor-
mance degradation of less than 1%, resizable caches can-
not aggressively downsize the caches beyond certain sizes.

Effect of Subarray Size: Here, we examine how the sub-
array size affects the effectiveness of gated precharging in
70nm technology and project the future based on these
results. The bitline length and subarray size tend to shrink
with technology scaling. Two major driving forces for the
smaller subarray are the leakage current and the wire
delay. With technology scaling, larger leakage through the
SRAM cells on the unaccessed rows reduces the voltage
differential induced in the bitlines by an active cell read,
requiring fewer cells to be attached to the bitlines. More-
over, the relatively longer wire delay in the advanced
CMOS technology requires bitlines to be segmented to
maintain the cache access latency.

We expect that gated precharging is more effective with
smaller subarrays. A large subarray can experience non-
uniform access frequencies, and smaller subarrays may
capture such non-uniformity effectively to yield finer con-
trol on each section of the subarray. However, if the subar-
ray size gets too small, the access frequency for each
subarray becomes too small and gated precharging
requires larger threshold to reduce the number of delayed
cache accesses.

Figure 10 exhibits the fraction of precharged subarrays
with the cache subarray sizes of 4KB, 1KB 256B and 64B.
A 64B-subarray includes only two cache lines. On aver-
age, the relative numbers of precharged subarrays with the
subarray sizes from 4KB to 64B are 28%, 10%, 8% and
7% for data caches and 18%, 8%, 6% and 5% for instruc-
tion caches. The figure shows that gated precharging
works better with smaller subarrays, which suggests that
gated precharging will be more effective in the future
when caches employ smaller subarray sizes.

We also observe diminishing returns: the effectiveness
of gated precharging almost saturates between 64B and
256B. The reasons are two-fold. First, larger subarrays can
have a number of sections with different access frequen-
cies within subarrays. Gated precharging for larger subar-

FIGURE 9: Bitline discharges in gated precharging
and resizable caches.
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rays controls all the sections’ precharging at once, while
gated precharging for smaller subarrays controls them sep-
arately. Gated precharging for larger subarrays may have a
number of prematurely precharged sections within subar-
rays, and the amount of prematurely precharged sections is
more likely to decrease as the subarray size decreases.
Second, smaller subarrays require larger thresholds to
avoid large performance degradation. However such a
conservative threshold setup for smaller subarrays keeps
gated precharging from linearly improving as the subarray
size decreases.

7  Related Work

A number of previous studies have focused on selective
bitline isolation for energy savings in a cache. On-demand
(but delayed) precharging was applied to the Alpha 21164
[6] and the StrongArm-110 [14]. However, the large per-
formance overhead of on-demand precharging precludes
its applicability to high-performance systems. Resizable
caches have been recently proposed by a number of groups
[1,16,22]. Yang, et al. studied the key architectural design
aspects of resizable caches to evaluate their effectiveness
in reducing both cell leakage [21] and bitline discharge
through bitline isolation [22]. In this paper, we present
results indicating that resizable caches are suboptimal in
reducing bitline discharge in future CMOS technologies.

Kim et al. [13] presented a sophisticated, aggressive
subarray prediction mechanism to reduce cell leakage in
instruction caches. In contrast, we propose techniques for
subarray prediction to eliminate bitline discharge (rather
than cell leakage) in both instruction and data caches.
Moreover, unlike prior proposals for subarray prediction,
we carefully analyze the impact of load replay in deep
pipelines and consider realistic subarray misprediction
latencies and their effect on overall performance.

In addition, several researchers have suggested using
way-prediction for energy savings [12,15]. To improve
latency, modern set-associative caches overlap tag lookup
with data array access resulting in read accesses to all
associative ways within a set. Way-predicting caches pre-

dict the correct associative way upon a cache access and
read data only from the subarrays in the predicted way to
reduce energy. In contrast, in this paper we focus on bitline
discharge in subarrays that are not read upon a cache
access. Therefore, way-prediction can be combined
orthogonally to our techniques to reduce overall energy.

8  Conclusions

In this paper we carefully quantified the energy and
performance trade-offs of bitline isolation and studied its
potential savings. Based on these studies, we proposed
architectural techniques necessary to realize the full poten-
tial of bitline isolation in nanoscale CMOS L1 caches.

We first showed that bitline isolation can be achieved
with little energy overhead in near-future CMOS genera-
tions, thus aggressive bitline isolation will be a desirable
approach to reducing bitline discharge in high-perfor-
mance nanoscale CMOS caches. We also showed that bit-
line isolation can potentially achieve 89% (data caches)
and 90% (instruction caches) reductions of bitline dis-
charge in 70nm technology.

We proposed and investigated the on-demand precharg-
ing technique. However, we showed that the on-demand
precharging technique degrades performance significantly
because its subarray identification is untimely. To achieve
timely and accurate subarray identification, we proposed
gated precharging, which exploits subarray reference
locality using a simple hardware mechanism. Gated pre-
charging achieves near-optimal bitline precharging by cap-
turing most of the potential. The technique reduces bitline
discharge by 83% and 87% and the overall energy dissipa-
tion by 42% and 36% for data and instruction caches,
respectively, for the SPEC2000 and Olden benchmarks,
with only a 1% degradation in performance.
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