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Abstract

In order to make sensor networks cost-effective and practical, the electronic compo-
nents of a wireless sensor node need to run for months to years on the same battery.
This thesis explores the design of a low-power digital processor for these sensor nodes,
employing techniques such as hardwired algorithms, lowered supply voltages, clock
gating and subsystem shutdown. Prototypes were built on both a FPGA and ASIC
platform, in order to verify functionality and characterize power consumption. The
resulting 0.18pm silicon fabricated in National Semiconductor Corporation's process
was operational for supply voltages ranging from 0.5V to 1.8V. At the lowest operat-
ing voltage of 0.5V and a frequency of 100KHz, the chip performs 8 full-accuracy FFT
computations per second and draws 1.2nJ of total energy per cycle. Although this
energy/cycle metric does not surpass existing low-energy processors demonstrated in
literature or commercial products, several low-power techniques are suggested that
could drastically improve the energy metrics of a future implementation.

Thesis Supervisor: Anantha Chandrakasan
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

This thesis describes the analysis and design of a low-power digital processor for

wireless sensor network nodes. This chapter introduces the reader to the current re-

search in wireless sensor networks and the key design challenges. Section 1.2 describes

wireless sensor networks in detail along with some of the existing and potential appli-

cations. Section 1.3 describes the motivation for the object of the thesis, namely to

design an energy-efficient processor that would prolong the lifetime of sensor networks

and thus improve their viability. Section 1.4 provides a survey of the relevant work

that has taken place in this field of research. These different sources were used as

a reference and also as motivation for the work I present, and will later be used as

benchmarks against which to compare the results of this project.

1.1 Individual Contributions

The digital sensor node processor for the pAMPS project includes a programmable

DSP, FFT hardware accelerator, DMA engine, and interface blocks to an off-the-shelf

radio and ADC. Several people were involved in the design and implementation of

this project. My role was to assemble and test the entire system, and demonstrate its

full functionality in both FPGA and ASIC platforms. Nathan Ickes designed the DSP

and corresponding compiler, Alice Wang designed the original scalable FFT module

([11]), Denis Daly designed the radio interface, and Naveen Verma designed the ADC

13



interface.

1.2 Background - Wireless Sensor Networks

Wireless sensor networks allow for spatially and temporally dense environmental mon-

itoring. Variables that can be tracked and interpreted include sound, light, vibration,

motion, heat, radiation, chemical content, as well as many others. These embedded

networks can be employed in a variety of domains, such as transportation, medical

monitoring, precision farming, battlefields, factory machinery, air quality control, seis-

mic detection, wildlife control, etc [2]. An example application is featured in Figure

1-1, where the sensor networks calculates the location of a moving vehicle.

Figure 1-1: Wireless sensor network tracks location of moving vehicle location.

Wireless sensor networks can include hundreds to tens of thousands of unteth-

ered nodes, having no external data or power wires. The individual nodes, whose

architecture is shown in Figure 1-2, fulfill at least one of the following main functions:

" sensing variables in the environment and converting them to an electrical signal

" processing the sensed data in either the digital or analog domain

* communicating wirelessly with other nodes in the network

14



Processor

Energy Supply

Figure 1-2: Generic architecture of a wireless sensor network node.

Due to the large number of nodes, the network must be configured in an ad-

hoc fashion, according to self-configuring protocols such as the one described in [13].

These protocols must be flexible enough in order to tolerate new or failing nodes. In a

simple network, the goal of each node could simply be to forward all the sensed data

to a common, wired, base station, thus requiring only sensing and communication

capabilities. However, the resulting communication costs would negatively affect the

efficiency of a large network, due to the significant number of the nodes involved and

the redundant nature of the continuously sampled data. A more intelligent network

would first process the sensed data at each node (or cluster of nodes) and initiate a

communication stream only when it deems that an event of interest has taken place.

The quality of wireless sensor networks can be evaluated based on several criteria.

First, the aggregate results compiled by the network must accurately reflect, within

an expected margin of error, the true state of the sensed environment. In the case of

event monitoring, the network should minimize the number of false positives or missed

events. Second, the useful lifetime of the network must be long enough to make its

deployment beneficial and financially viable. If the lifetime of the individual nodes

was only on the order of days, the cost of complete network deployment would be

incurred every few days. For example, a reasonable lifetime of a sensor network that

15



tracks wildlife movement would be a year or two. A third desirable property is that

the network is robust enough to handle the continuous addition and/or subtraction

of nodes. Finally, the network should be reconfigurable to allow the user to change

the detection settings at any time.

There are several technologies that can be employed to build cost-effective sensor

networks. Sensors are needed to provide the individual nodes with the ability to read

and digitize environment variables. These sensors must be as small as possible and

provide the user with a tradeoff option between power consumption and accuracy.

Low-power and fully-integrated digital signal processing algorithms should process

the sensed data using the available energy budget. Finally, wireless communication

circuits and protocols should be developed for low bit-rate and near-distance radios.

1.3 Problem Description

Wireless sensor networks can be made up of thousands of battery-powered nodes.

Over a long period of time, these nodes may run out of energy and thus be rendered

unable to perform their intended functions. One way to extend the lifetime of the

network is to periodically replace the batteries of drained nodes or simply deploy

additional nodes. However, due to the large scale of such networks, the cost of

frequent hardware replacement and deployment may prove prohibitive.

Another solution would be to equip each node with devices such as solar cells that

are able to harvest the ambient energy from the environment and use it to power up

the electronics. Other forms of energy harvesting include thermal gradients, radio-

frequency and mechanical vibration ([13). If the environment of the node is able to

provide more energy than the amount required by the electronic circuitry, the node

can function indefinitely thus making the network completely self-sufficient.

In order for sensor networks to become a viable technology for a wider range of

applications, the individual nodes must maximize the amount of sensing, communica-

tion and computation they perform, given the limited energy resources available from

the battery and energy scavenging. In this thesis, I propose a sensor digital processor
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architecture that attempts to minimize the energy consumption per computational

task and thus extend the useful lifetime of the sensor node. The node's data sensing

and communication energy must also be minimized, but those topics are not dealt

with in this thesis.

1.4 Previous Work

Several techniques for low-power digital design have been demonstrated and docu-

mented in literature over the last couple of decades. In [10], the author describes how

to use voltage scaling along with parallelism and pipelining in order to reduce the

dynamically switched energy for a constant throughput multimedia application.

The throughput constraint of typical signal processing applications [5] can be

greatly relaxed in the case of sensor networks, while still allowing the nodes to accu-

rately detect events of interest that may occur in the environment. This observation

enables an even further reduction in the supply voltage, to the point where the de-

vices are operating in the sub-threshold region. An FFT processor employing this

technique is demonstrated in [11], where the lowest-energy operating point occurs

when the supply voltage is 0.35V and the frequency is 20KHz.

An ultra-low energy sensor node microcontroller named Dust, presented in [4],

consumes about 12pJ per instruction. This processor runs off a supply voltage of 1.OV,

has a 12-bit datapath, has 10Kbits of on-chip SRAM, and uses a 0.25gm technology.

The main power reduction techniques it employs are component-level clock-gating,

subsystems that can be shut off independently, and guarded ALU inputs.

In [14], an asynchronous approach is taken to designing a low-power DSP, named

SNAP. This processor executes instructions in groups of event handlers, which are

generated by the expiration of timers or the gathering of new sensor data. When no

events are pending, the processor is completely idle, and only consumes leakage power

since the clockless asynchronous circuit style enables the equivalent of perfect clock

gating. SNAP has 32Kbits of on-chip data memory and an equal amount of data

memory. In simulation, SNAP can operate off a 0.6V power supply, while consuming

17



about 24pJ/instruction at 28MIPS.

Several companies offer energy-efficient processors targeted for low-performance,

low-power applications such as sensor networks. Atmel's 8-bit microcontroller AT-

mega168/V ([19]) has 128 Kbits of instruction memory, 8Kbits of data memory, and

operates up to 10MHz with a 2.7V power supply. Its datasheet claims 432 pJ/cycle

at 1MHz, 844 pJ/cycle at 32KHz, and 0.18pW of idle power. Another popular low-

energy processor is Intel's PXA255 ([20]) implemented in 0.18pm technology, which

contains a 32-bit RISC ARM core running at 33-400MHz, along with 256Kbits of

on-chip instruction SRAM and an equal amount of data cache. According to its

datasheet, PXA255 consumes 455pJ/instruction when running at 33MHz with a sup-

ply voltage of 1.OV, and draws 45pW during sleep mode.

The relevant statistics of the processors described above are listed together for

clarity in Table 1.1. The sensor node processor which I explore for my thesis attempts

to improve on the figure of merit of the processors presented in [4] and [14], by

providing hardwired algorithms, optimizing the memory architecture, operating at

near-threshold supply voltages, and employing other methods described in Chapter

6.

Table 1.1: Energy and functionality of existing low-energy processors

Name Width [bitsj On-chip SRAM Size [Kbitsj Energy/instruction [pJ
DUST [4] 12 10 12
SNAP [14] 16 64 24

ATmega168/V [19] 8 136 432
PXA255 [20] 32 512 455
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Chapter 2

Low-Power Processor Architecture

As previously stated, a wireless sensor node must perform three main functions:

sensing, processing and communication. In an integrated system, the processing

element must be equipped with an interface to an analog-to-digital converter (ADC)

to sample the sensed data; in addition, an interface to a wireless radio is required to

facilitate communication with other nodes. This chapter describes the architecture

of the low-power sensor node processor. A justification is given for the choice of

hardwired algorithms and distributed memory architecture.

2.1 Sensor Processor Architecture

The sensor node can be implemented as several modules that are designed to facil-

itate the common tasks performed by sensor network nodes. Key tasks that can be

implemented in hardware include the Fast Fourier Transform (FFT), Finite Impulse

Response (FIR) filters, encryption, source coding, channel coding/decoding, com-

pression/decompression, and interfaces to the radio and sensor. In order to achieve

energy efficiency throughout the entire system, the hardware modules can use inde-

pendent voltage supplies (with values as low as a threshold voltage) and operate at

different clock frequencies. The drawbacks of this architecture versus using only a

programmable DSP are the significant increase in system complexity and area, the

need for additional data transfers between the DSP and specialized modules, and the

19



difficulty of inter-operability across different voltage and clock domains.

Figure 2-1 shows the proposed architecture for an energy-efficient sensor node.

The digital architecture contains a basic programmable DSP that executes arbitrary

programs. The DSP communicates with the specialized modules through a shared

bus, with the DMA scheduling the transfer of data between modules and the bus.

Data memory is accessible by both the specialized modules and the DSP. Dynamic

Voltage and Frequency Scaling (DVFS) can be used to dynamically control the per-

formance of each module and tradeoff lower energy for higher computational latency.

In the first pAMPS implementation, the variable frequency and voltage supplies are

off-chip, although they could be integrated in a future version. Each module's supply

voltage should be set to the lowest possible value that still satisfies its speed require-

ment. However, there is a supply voltage below which computations become less

energy efficient due to leakage currents [11]. When no computation is taking place,

the supply voltage should be completely shut off from the CMOS logic in order to

reduce leakage power.

2.2 Distributed Memory Architecture

A considerable percentage of the energy used by a sensor network processor is spent

in moving data and instructions between on-chip memories and the processing units.

This energy can be reduced by dividing the memory hierarchy into a large store

(the main memory) and a smaller local store (the cache). This division has been

traditionally made in order to reduce memory access time, but we can apply similar

concepts to reduce memory access energy. The use of a cache, or local memory buffer,

is illustrated in Figure 2-2. This architecture helps reduce average access energy as

the cache accesses are performed over a smaller bus, and also since the access energy

of the cache is smaller than that of the main memory.

However, the use of the cache memory hierarchy introduces an extra overhead

due to the energy required to perform additional memory transfers. As illustrated

by the following two examples, this trade-off must be carefully evaluated in order to

20



RS232 ADC RADIO

PA I

Figure 2- 1: Architecture of an energy-efficient sensor processor.

determine the optimal memory hierarchy. In the first case, we consider the memory

hierarchy used by the DSP to access its data and instruction memories. For the second

scenario, we try to determine whether the specialized hardware modules can also

take advantage of a cache hierarchy when accessing the data memory. The following

analysis uses, in both cases, parameters given by the datasheets of automatically-

generated SRAMs of three different sizes: 8096x16, 1024x16, and 128x16 bits. Thus,

the study considers a main memory of 8096 words, with two potential cache sizes of

128 or 1024 words, all memories being implemented as SRAMs.

2.2.1 Case 1: Memory Hierarchy for the DSP

Consider a main instruction memory of size 8096 words, which the DSP accesses

either directly or through an instruction cache of either 128 or 1024 words. When

no cache is used, the energy per fetch is constant, and the hit rate is always 100%.

When an instruction cache is used, the hit rate depends not only on the size of the

21



Figure 2-2: Memory architecture using a cache to reduce access energy.

cache (128 or 1024 words), but also on the nature of the code being executed on the

DSP. Once a hit rate for each of these cache sizes is calculated or simulated, we can

use this metric to determine whether employing a cache at all is beneficial for the

energy used to fetch instructions.

As shown in Figure 2-3, a 128-word cache with a hit rate higher than 80%, or a

1024-word cache with a hit rate higher than 85%, are both more energy-efficient than

having no cache at all. The comparison between the two caches must be done by

determining their individual hit rates as derived from some benchmark applications.

For the first pAMPS implementation, the typical application hit rates were not yet

available, so we decided to not use an instruction cache.

2.2.2 Case 2: Memory Hierarchy for Specialized Processing

Modules

A specialized processing module is likely to offer an energy reduction over a general-

purpose processor, as the latter requires an overhead for fetching and decoding in-

structions. Since these modules will perform computations on a fixed subset of the

main data memory, it is worth examining whether they can also benefit from a simi-

lar cache structure. The two alternatives are to either have the specialized modules

access the data memory directly, or create a local cache store containing all of the

22
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Figure 2-3: Instruction fetch energy for 3 different cache configurations.

data the algorithm needs to access.

The first choice implies that each memory access in the algorithm will be directed

to a larger SRAM, and will have to take place over a larger, more loaded bus. This

alternative also forces all the processing modules to run at the same clock speed,

thus denying the use of fine-grained DVFS at the module level. The second choice

alleviates these issues, but introduces the overhead required to transfer the inputs

and outputs of the algorithm over the main bus. We study once again an 8096-word

main memory, and use two local-store alternatives: 1024 or 128 words, as determined

by the type of algorithm.

From Figure 2-4, we observe that if the algorithm operates on a 1024-word block,

a local cache provides energy advantages only if it performs more than 6700 memory

accesses. Similarly, for an algorithm with 128 input words, a local cache is beneficial

when the algorithm does more than 700 memory accesses. As an example, the FFT

processor of [11] does about N*log(N) memory accesses, where N is the size of the
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input block. It is therefore better for the FFT processor to use a local data cache,

since a 1024-point FFT performs 10240 memory accesses, while a 128-point FFT

performs 896.

2.5-

Loca 128-word SRAM

2 - -- Main 8096-word SRAM

- -Local 1024-word SRAM

01.5-

0

0 2000 4000 6000 8000 10000

Number of Algorithm Memory Accesses

Figure 2-4: Total SRAM access energy for 3 different memory configurations.

2.3 Example Sensor Node Application

The flow of data through the proposed digital system can better be understood

through observing a simple application. Consider a sensor node equipped with a

microphone and whose role is to detect an acoustic signature that exceeds a set

threshold at some given frequency. The operation of the sensor node is illustrated

in Figure 2-5. An ADC samples the microphone's electrical output and the digital

time-domain samples are then fed into the ADC interface buffers on the processing

node. Subsequently, the DMA engine transfers a window of digital samples into the

memory buffers of the FFT co-processor. Once the FFT algorithm completes, the

24



DMA engine transfers the frequency-domain data into the data memory of the DSP.

The DSP searches for the peak frequency and raises a flag whenever a given threshold

is exceeded. It then forms a radio packet containing the detected information and

places it in its data memory. Next, the DMA engine moves the packet into the mem-

ory buffer of the radio interface. The radio is then free to transmit its packet once it

detects the airwaves are not being used.

ADC Interface

DMAFrom DMA

TransferADC

DMA

Radio Transfer

DSP

FFT Module

DMA Transfer

Peak found

At 30Hz!

DSP

Figure 2-5: Example dataflow inside a sensor node.
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Chapter 3

System Components

This chapter provides a detailed description of the system's building blocks, along

with some rationale for the design adopted.

3.1 Programmable Digital Signal Processor

The core of the sensor node's processing is the programmable DSP designed by N.

Ickes. This is a RISC-style processor with 16-bit instructions and data, which imple-

ments a custom instruction set. The user of the DSP can simply write his program

in standard C language. Some sample C source code can be found in Section A.1.

A customized compiler, based on the open-source GNU C Compiler (GCC), reads in

the source files and produces machine-specific object code that can be downloaded

into the DSP's instruction memory.

The hardware organization of the DSP is structured as a five-stage pipeline, as

illustrated in Figure 3-1. During the first stage, the DSP reads the instruction from

the instruction SRAM and places it in its instruction register (IR). In the second

pipeline stage, the instruction from the IR is decoded, thus telling the DSP what

type of operation should be performed, as well as which registers to read out from the

register file. At the beginning of the third stage, the register contents and immediate

operands (stored in the instruction itself) become available and are processed by the

arithmetic unit (adder, shifter, multiplier, etc). The multiplier takes 1 cycle and
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stores the most significant half of its double-word output in a co-processor register

that can be further accessed by regular instructions. The read operations from or

write operations to data memory are executed during the fourth stage. The DSP has

separate data and instruction memory buses, so that this stage does not conflict with

the instruction fetch stage. Finally, during the fifth - and last - stage, the results of

the arithmetic unit or the memory read are written back into the register file.

Figure 3-1: Pipelined architecture of RISC DSP.

The DSP has eight interrupt lines that could trigger the execution of an interrupt

handler if the program enables them. These interrupt lines can be used to signal the

receipt of a radio packet, a serial port input, the completion of a FFT, the availability

of ADC samples, or can simply be triggered by external events generated through the

GPIO pins.
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3.2 Scalable Real-Valued FFT

To demonstrate the energy advantage of implementing algorithms directly in hard-

ware, rather than through DSP instructions, an FFT co-processor was built. This

module [11] is flexible in trading off energy efficiency for higher computation accu-

racy. In the case of FFTs, higher accuracy translates to performing arithmetic on

higher-precision operands (FFT precision), and using more time-domain inputs (FFT

points) to obtain a more exact spectral representation of the signal. An increase in

FFT precision raises the amount of energy taken by additions, multiplications and

memory accesses, whereas additional input points require a larger-than-linear increase

in the total number of computation cycles. This design allows the sensor node pro-

cessor to dynamically choose an FFT precision of either 8 or 16 bits, as well as an

input FFT length of 128, 256, 512 or 1024 points.

Several changes to the original design were implemented in order to correct some

inaccuracies and to facilitate the design of the memory architecture.

The first such change was related to the sequence of the memory accesses. The

FFT algorithm operates in and out of the same SRAM buffer, meaning that at the

beginning the memory it is filled with the input points; during execution it holds

intermediate computation values; and in the end it holds the results (equal in number

to the input points). The previous FFT controller performed a read and a write to

each memory segment on every cycle. This necessitated the use of a dual-port SRAM,

where both ports were tied to the FFT block. In addition, another port running at

a different clock rate was required for interfacing with the rest of the system since

the FFT has a separate clock. Since SRAMs with 3 ports are impractical to design,

we decided that we could get rid of the additional port by alternating between reads

and writes to the FFT memory. This led to a doubling of the latency of the FFT

algorithm, but allowed for a simpler memory design.

The second change that was necessary was related to the handling of saturating

inputs. The FFT algorithm performs fixed-point additions and subtractions during

every cycle, which can lead to overflow or underflow. If left uncorrected, the MSB
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of the resulting value will be simply ignored, eventually leading to largely incorrect

results. One approach to deal with these overflows is by saturating the outputs of such

computations to the maximum value. An FFT algorithm cycles through several stages

as it transforms the inputs from time domain to frequency domain. The solution we

chose for the overflow problem was to store an extra bit for all the computations

during a stage, and thus store all intermediate results in memory with this additional

bit. If overflow occurred for any of the results during a FFT stage, this additional bit

would be a 1 and a flag would thus be raised. During the next stage, when the data

is read out, it is all conditionally divided by 2 through a shift operation depending

on the occurrence of an overflow in the previous stage, as shown in Figure 3-2. The

drawback of this approach is the need to store an extra bit, leading to a 6% memory

size overhead.

17:. 16:0
data-out 160 Multiply-Add -

FFT MEM LstSage Detect

Overflow Overlw

daa.i 17:0

Figure 3-2: Automatic scaling of operands at each FFT stage to handle overflow.

Saturation of values during the FFT algorithm will occur most often when the

input time-domain waveform is a single tone, as illustrated by Figure 3-3. Figure

3-3 also shows the results of the FFT algorithm when the two different saturation

techniques are applied. As it can be observed, the second saturation algorithm leads

to a nearly ideal FFT computation.
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Figure 3-3: Two different FFT saturation algorithms run on a 190Hz tone signal.

3.3 Memory Subsystem

The JAMPS processor is equipped with several memory blocks, which can be grouped

into three categories: instruction memory, data memory, and specialized module

buffers, as shown in Figure 3-4. All of the memory blocks are implemented using

single-port or dual-port synchronous SRAMs provided by the technology vendor.

The interface of each memory port is composed of clock, address bus, input data bus,

output data bus, write enable, output enable, memory enable, power and ground.

The instruction memory has a single port and can hold 2048 16-bit instructions.

It can be read by the DSP over the instruction memory bus, and can be preloaded at

startup time through the DMA engine. The instruction memory runs off the system

clock and its read address is generated by the DSP's program counter. The data

memory has two read/write ports, one for the DSP data bus, and one for the DMA

bus, respectively. This memory can hold 16384 16-bit words; it is segmented into 16

1024-word blocks in order to allow individual power-down of memory blocks when

these are not needed. The power switches for these blocks help to reduce standby

leakage current and are planned for a future version. Each of the hardwired modules

(FFT, ADC interface, radio interface) contains a buffer that can hold 1024 16-bit
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CD_ INSTR MEMORYDSP 1-PORT 2048x16

RADIO BUFFER RADIO IF
2-PORT 1024x16 1-PORT 1024x16

ADC BUFFER ADCIF
16 instances 1-PORT 1024x16

FFT BUFFER
2-PORT 1024x16 8INSTANCES FFT ENGINE

2-PORT 256x18

Figure 3-4: Interconnection of on-chip SRAMs.

words. One of the ports communicates with the DMA engine using the system clock,

whereas the other port uses the clock of the local module. This design would allow the

FFT block, for example, to operate using its own clock as dictated by a fine-grained

DVFS controller described in Section 6.3.

3.4 Direct Memory Access Block

The /AMPS digital system needs to be able to move large blocks of contiguous data

amongst its different processing units. For example, the data captured in the ADC

interface buffer must be moved into the FFT input buffer, while the FFT results

must be moved into the DSP's data memory in order to be post-processed. One

of the options considered here was to have all the memory in the system memory-

mapped to the DSP's address space, and execute a load and store instruction in the

DSP for each word that needs to be transferred. This would cause the DSP to incur

an overhead of 2 instructions and 4 cycles for each word transfer, while also rendering

the DSP unavailable for useful processing for the duration of a block transfer. The

increase in energy due to extra instruction fetching and decoding, the large transfer
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latency and the unavailability of the DSP all make memory-mapping an inefficient

option.

The solution we chose to address this problem was to have a DMA engine in-

dependently generate the memory control signals used to implement data transfers.

The types of transfers supported by the DMA are listed below:

" DMEM to FFT: Transfer a block of input data or configuration words from the

main data memory to the FFT buffer.

" FFT to DMEM: Transfer a block of FFT results from the FFT buffer back to

main memory.

" ROM to DMEM: Transfer a block of test data from an off-chip parallel ROM

to main memory.

" ROM to IMEM: Transfer the program instructions from the off-chip ROM to

the instruction SRAM.

* DMEM to UART: Send a block of ascii-formatted 16-bit data words from main

memory to a PC for debugging.

" UART to DMEM: Load a block of test data from a PC into main memory.

" UART to IMEM: Load the program instructions from a PC into the instruction

SRAM.

" DMEM to ADC: Send a set of configuration words from main memory to pro-

gram the ADC sample rate, sample width, etc.

" ADC to DMEM: Transfer the block of sampled data to main memory.

* DMEM to RAD: Send a data packet or set of configuration words from main

memory to program the radio's packet length, transmit power, etc.

" RAD to DMEM: Transfer the data from a receive packet into the main memory.
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The DMA block is implemented as a state machine, which goes through the follow-

ing sequence in an endless loop, as shown in Figure 3-5. Initially, the DSP determines

the size of the data block, its starting address in data memory, and the corresponding

memory buffer to transfer to/from. The DSP programs this information into the

DMA, which performs the necessary data transfers over the bus. During the transfer,

the DSP is free to continue normal operation; once the DMA is done, an interrupt

is issued to the DSP to alert it that the transfer is complete. The DMA is able to

generate these control signals using less energy than the DSP, since it consists of very

simple hardware such as counters to generate both the addresses and the next DMA

states.

SET TRANSFER BLOCK SIZE

SET TRANSFER TYPE

SET MEMORY STARTING ADDRESS

SET STATUS TO BUSY

COPY WORD
INCREMENT COUNTER

COUNTER == BLOCK SIZE.

YES

DONE
SET STATUS TO IDLE

NO

Figure 3-5: State sequence of DMA engine.
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3.5 Radio Interface

The wireless sensor node communicates with other nodes or a base station by sending

or receiving packets through a wireless radio, the latter being implemented in this

system as an off-chip Chipcon1010 radio [22]. The radio interface block (Radio IF),

illustrated in Figure 3-6, is used as the interface between the DSP and the Chipcon

1010. When transmitting, the DSP writes the entire packet into the Radio IF buffer.

The Radio IF then serializes this packet and sends it over a SPI link to the Chipcon

radio. On the receive path, the Radio IF forms a packet in its buffer from the

received serial bit stream, and raises an interrupt to the DSP when a full packet has

been received. Future versions of the Radio IF will offload more computation from

the DSP by including local MAC protocol processing, such that the DSP transmits

and receives only raw data and no wrapper information.

RESET

SERIAL OUT
CHIP SEL EC

SERIALIN

CLOCY

WAJAKEUP

PACKETRX

buff to rad (65 words) 4
4
4
4
4

Status register

rRANSFERDONE

buff to dma (65 words'
1 1 1 1| | 1 1 1 1 1 1 1 1 1

Figure 3-6: Radio interface block

3.6 ADC Interface

When the sensor node processor wishes to take some samples of its acoustic envi-

ronment, its ADC samples the analog voltage output of a microphone, digitizes this
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data to a 16-bit value, and feeds this data word back to the processor. The task

of interacting with the ADC is quite simple, so it is best handled by some simple

control hardware in order to increase energy efficiency and not overload the DSP

unnecessarily. This task is the role of the ADC interface. This module is designed

to communicate with the off-the-shelf ADC in [23], although the interface is simple

enough to function correctly with other parallel ADCs.

The ADC interface is configured by the DSP with the desired bit precision (8 or 16

bits), number of samples, and sample rate (relative to system clock). The controller

then issues a convert pulse at the start of each sample period, after which it stores the

new data in the local buffer. Once all of the samples have been captured, the ADC

interface issues an interrupt to the DSP, which instructs the DMA to transfer all of

the samples into data memory. Since this block of samples is usually just forwarded

on to the FFT block, the ADC interface also has a single-sample mode, where each

new sample is directly forwarded to the FFT's memory over the DMA data bus, as

shown in Figure 3-7. This avoids the redundancy of writing the sampled data in the

ADC buffers and data memory, and also reduces the need for the DSP to issue double

the DMA transfers (ADC to data memory, and data memory to FFT).

16-bit ADC
8-bit Parallel

8
ADC INTERFACE

16-bit Register

1024
16-bit MD

MODE

Buffer

out

16/

DMA DATA BUS

Figure 3-7: ADC interface block.
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3.7 Debugging Interface

A debugging interface is critical to the development of the system hardware and

also to understanding its real-time behavior. There are several facilities that were

designed into the system which provide debugging capability, such as a serial UART,

a general-purpose input/output (GPIO) parallel port, and a parallel trace port.

The UART interface follows the protocol described in [24] and is used to commu-

nicate to a computer that is a running a program such as HyperTerm. In this fashion,

the DSP can display 16-bit words on a connected PC, or it can receive some input

data or instructions from the same PC. The parallel GPIO port can be used by the

DSP directly to load 16-bit data into and out of the system at the same speed as the

system clock, and is useful when connected directly to a pattern generator and logic

analyzer. Finally, the trace port is used to selectively output the program counter or

instruction word in the form of 16-bit data, as directed by two trace control lines.

3.8 Summary of System Components

This chapter described the main components of the first puAMPSsystem implementa-

tion. The goal of this system is to have a full-featured sensor node processor, while

optimizing the individual components for energy efficiency.
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Chapter 4

Design Tools and Methodology

This chapter outlines the design methodology that was employed to build the sensor

node processor, along with a description of the CAD tools necessary for a full-system

implementation.

4.1 System requirements

The starting point was to determine the set of sensor network applications that the

processing node must support. Since the focus was on an acoustic sensor node, we

needed to run algorithms such as line-of-bearing, acoustic identification, and trip-

wire. The line-of-bearing algorithm ([61) uses time-domain samples from several mi-

crophones in order to triangulate the position of a sound-emitting object of interest,

such as a tank on a battlefield. Acoustic identification is used to determine the type

of object emitting the sound by examining its frequency signature and comparing it

against other known patterns. The trip-wire algorithm parses the time-domain sam-

ples to determine whether any sound-emitting object is in the vicinity, in which case

it alerts the sensor node to go into a more accurate and advanced sensing mode. It

is clear that in order to run all of these algorithms, the sensor node must include at

least a programmable DSP, which must be equipped with enough data memory to

store the data handled in the algorithm, and enough instruction memory to hold a

compiled version of the algorithms. Since the acoustic signal processing algorithms
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often rely on the frequency content of a sound, the FFT algorithm will be executed

often, and thus benefits from being implemented in a separate, hardwired algorithm.

This set of modules, along with the required control and interface modules described

in Chapter 3, constitute the hardware of the sensor node.

4.2 Clocking strategy

Since performance in sensor networks is deemed less important than energy efficiency,

it was determined that the target system clock frequency would be 1MHz, which

allows the sensor node to perform about 80 1024-point FFT computations per second.

At this frequency, the core supply voltage can be lowered significantly to reduce

dynamic switching power (Equation 4.1), as will be shown through measurement and

simulation in Section 5.3.

Pswitching = Cswitching SUppy f,

We decided to have the FFT module run off of a separate clock from the rest

of the system, in preparation for a future implementation that will use DVFS. This

will allow the DSP software to independently scale the voltage and frequency of each

module to its most energy efficient point, as will be shown in Section 6.3.

The introduction of multiple clock domains complicates the design process. When

a signal needs to cross clock domains, the circuit of Figure 4-1 should be used in

order to prevent metastable signals from being fed as inputs to the circuit inside

clock domain B. Since CLKA and CLKB have no frequency or phase relation, there

will invariably occur a setup or hold timing violation whenever FFB1 is triggered

by CLKB, thus causing the output of FFB1 to become metastable. However, the

latter signal has a full CLKB cycle to settle to a stable value until it is sampled by

FFB2, thus guaranteeing that the output of FFB2 will be stable with an extremely

high probability. As an example, the mean time between failures (MTBF) for this

synchronizer circuit is on the order of 10 years ([21]).

When using synchronization for a bus of signals that crosses multiple clock do-
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CLKA 1LKB

Figure 4-1: Synchronizer for crossing clock domains.

mains, it is possible that the bits will not all arrive during the same CLKB cycle.

In this case, it is necessary to wait until the slowest possible path has propagated

through before using the data bus on the new clock domain. Another scenario that

occurs quite often in multi-clock systems such as the gAMPS processor is when a

stream of data needs to be moved from one clock domain to another. In the PAMPS

system, this was accomplished using dual-port SRAM buffers, where one port was

written to using CLKA and the other port read from using CLKB. However, when

the source and sink of the data are active simultaneously, a better solution is to use

a smaller asynchronous fifo whose read and write pointers are incremented using two

separate clocks, as described in [25].

4.3 FPGA implementation

With the system hardware and constraints identified, the system was implemented in

Verilog, a register-transfer-level (RTL) hardware description language and simulated

to verify functionality. Several Verilog simulators are commercially available, all pro-

viding similar functionality and performance. The simulators used throughout this

project were Cadence Verilog-XL, Synopsys VCS, and Mentor Graphics ModelSim.
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Once the Verilog code was stable and system-level simulations passed, we de-

cided to build a full prototype of the whole system. The complete sensor node was

assembled by realizing the digital logic in a field-programmable-gate-array (FPGA)

and connecting it to discrete components. The peripheral off-the-shelf components

connected to the FPGA were the microphone sensor of [28], the 16-bit ADC of [23]

and the radio of [22]. This platform allowed us to explore and improve full-system

dynamics, while highlighting any potential system-level design faults.

The FPGA design was equipped with Chipscope, a built-in logic analyzer de-

scribed in [27], allowing for real-time debugging of the FPGA system and thus greatly

reducing the time to identify logic or timing faults. The FPGA platform used was the

Xilinx Virtex-2 FPGA from [26], which has 6 million logic gates, 2.5 Mbits of block

SRAM, and 144 18x18 bit multipliers, making it more than suitable to implement

the logic of the sensor node. When compiled together with the Chipscope logic, the

entire design occupied 33% of the FPGA's configurable logic and 72% of the available

on-chip SRAM. Without the logic analyzer soft core, the design took up only 20% and

22%, respectively. The Verilog logic was fully debugged and verified on the FPGA

platform; however, in order to achieve a low-power system, it was necessary to build

the digital logic into an application-specific integrated circuit (ASIC).

4.4 Standard cell library characterization

An ASIC is a collection of logic gates of various complexity, connected together to

perform a digital logic function. These gates, known as standard cells, are distin-

guished by the logical function they implement (AND, NOR, Flip-Flop, Latch, Mux,

Full-Adder, etc) and their drive strength (the ability to drive capacitive loads). In

order to easily and accurately predict the timing and power consumption of the logic

functions implemented using these gates, the standard cells are simulated extensively

in Hspice. The outputs of these simulations are summarized in lookup tables that are

stored inside the standard-cell synthesis library. This library is used by later design

tools to compute path delays and power consumption.
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The standard cell library provided by the vendor was characterized only for the

nominal supply voltage of 1.8V. Additionally, we used Cadence Signalstorm ([36])

to characterize the standard cells at various other operating voltages, down to O.3V.

This was useful for the analysis done to characterize the circuit's power and maximum

frequency over the entire supply voltage range, described in Section 6.3. The vendor's

library was used in the pAMPS ASIC, since the Signalstorm characterization tool was

not available at the time of design.

4.5 ASIC implementation

This section describes the tool flow that was used to build the standard-cell ASIC

given a Verilog design and a well-characterized standard-cell library. Two sets of

tools were important in this process: one group for generating a layout that could be

fabricated, and another for performing the verification to guarantee a working silicon

chip.

The following tools were used to produce the final layout, in the order given below:

" Synopsys Design Compiler - DC-shell ([33]) - synthesized the RTL logic to

produce a gate-level netlist of standard cells.

" Synopsys Astro ([34]) - performed standard-cell place-and-route (PAR) to pro-

duce the layout of Figure 4-2.

" Synopsys Hercules ([35]) - performed layout-versus-schematic (LVS) to ensure

a match between the final layout and final schematic.

" Synopsys Hercules ([35]) - performed design-rule-checks (DRC) to ensure fabri-

cation rules are not violated and design-for-manufacturability (DFM) rules are

followed.

The following tools were used to verify the correctness of the final layout and to

characterize its power consumption:
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Figure 4-2: Astro view after placing standard cells.

* Synopsys Formality ([29]) - compared the final gate-level netlist against the

original RTL Verilog and ensured they are functionally equivalent.

* Synopsys PrimeTime ([30]) - performed timing verification on all register-to-

register paths inside the final gate-level netlist to ensure there are no hold or

setup violations.

" Cadence Verilog-XL - performed back-annotated gate-level functional and tim-

ing simulations.

" Synopsys Star-RCXT ([31]) - extracted the resistive and capacitive parasitics

from the layout so they can be used in subsequent timing and power simulations.

* Synopsys Nanosim-VCS ([32]) - performed top-level Hspice-like timing and

power simulations of the final layout with adjustable trade-offs between sim-

ulation speed and accuracy.
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4.6 ASIC Fabrication and Test Setup

Upon completion and verification of the final layout, the ASIC was manufactured in

a National Semiconductor 0.18pim CMOS process with 5 metal layers, as shown in

Figure 4-3. The chip has an area of 20mm 2 ( 5mm x 4mm), and is made up of 3.5

million transistors including the on-chip SRAMs.

Figure 4-3: Die photo of fabricated ASIC.

In order to test the fabricated ASIC, a test PCB was built using the drawing

software PCAD2001. The resulting layout is shown in Figure 4-4, and the slot for

the pAMPS chip can be seen in the middle. Other than the sensor node ASIC,

this board included several discrete parts (Flash ROM, 16-bit ADC, Chipcon Radio,

RS232 connector), as well as test ports to facilitate the use of a pattern generator

and logic analyzer. The pAMPS DSP was programmed through either the ROM or

the RS232 serial port, and the C compiler was used to test out different applications.

4.7 Design for Testability

There are several test structures that can be built into the ASIC in order to make

the fabricated chip more suitable for testing and verification. Some of the more im-

portant design-time testability techniques include the use of scan-chained registers,
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Figure 4-4: The PCB layout of the test board.

process-characterizing test circuits, and isolation of power domains. Although these

test methodologies were not implemented on the first pAMPS ASIC, they are recom-

mended for any future designs.
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Chapter 5

Results and Analysis

This chapter lists results from the fabricated chip and compares these measurements

to expected values from simulation.

5.1 Functionality

The first tests of the setup in Section 4.6 were used to verify the functionality of

individual ASIC blocks. This section describes the results of these functional tests,

most of which were successful, and provides some possible causes for the tests that

failed.

" The C program of Section A.1 was compiled, burned into the instruction ROM,

and successfully run on the pAMPS ASIC. This confirmed that the following

main blocks were functional: DSP, FFT, instruction/data SRAMs, DMA en-

gine, ROM interface, and GPIO outputs.

" The ADC interface was verified to work correctly by feeding a single tone (see

Figure 3-3) into the TI 16-bit ADC and plotting the captured data that was

dumped through the GPIO outputs.

" The FFT block was run with different configurations of block size and bit pre-

cision and the results matched the values simulated in Verilog.
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* The UART interface worked correctly when sending data words from a PC

to the pAMPS ASIC and vice versa. However, the [LAMPS ASIC could not

load its instructions stream through the UART interface, although this mode

functioned correctly in the FPGA prototype, as well as during full Verilogand

Nanosim-VCS simulations.

* The GPIO pins functioned correctly as outputs, but were unusable as inputs

due to an easily correctable mistake made during the generation of the IO pads.

" The trace pins worked correctly and allowed us to monitor in real time the

values of the program counter and instruction register.

" The radio interface between the sensor node and the Chipcon Radio was verified

to work as designed, allowing us to receive and transmit packets correctly.

" A timer program was written to toggle the GPIO pins once every second. This

confirmed that the DSP's timer and corresponding interrupt signal function

correctly.

The pAMPS ASIC was tested and verified at supply voltages ranging from 0.5-

1.8V, and clock frequencies below 5MHz, much higher than the targeted operation

frequency of 1MHz.

5.2 Leakage Power Measurements

This section describes the leakage power measurements taken of the [AMPS ASIC

using the test setup of Section 4.6. The measured data is compared to expected or

simulated values and possible sources of mismatch are described.

The graph of idle power (with all clocks off) versus supply voltage is shown in

Figure 5-1, as measured at room temperature (25'C). When the supply voltage Vdd is

the nominal 1.8V, the [LAMPS core consumes 880PW of leakage power, while at the

lowest operating Vdd of 0.5V, the core uses up only 26[LW to maintain the full system

state.
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Leakage Power Measurement vs. Fitted Equation
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Figure 5-1: Core leakage power with all clocks turned off - Measured and Fitted.

The pLAMPS system was simulated using Hspice and Nanosim-VCS in order to

compare the leakage power with real measurements. These simulations use a form

of the BSIM equation ([12]) for the leakage current through a transistor, shown in

Equation 5.1.

(5.1)
Igs-Vth--'YesbafV ds VT,

Ileak-- Ke n VT [I - e VT ,

Where:

* K is a technology parameter

* V is the gate-source voltage

SV h is the nominal transistor threshold voltage

* Vb is the substrate bias voltage (-y is a corresponding fitting parameter)

* V, is the drain-source voltage (r1 is a corresponding fitting parameter)
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* n is proportional to the subthreshold slope (mV/dec)

* VT is the thermal voltage

Equation 5.1 can help to explain the dependence of leakage current on the supply

voltage. In the simple case when all clocks are off and there is no stacking effect where

two transistors in series are off, the leakage power can be expressed as a function of

supply voltage Vdd as shown in Equation 5.2. For Vdd >> VT, Equation 5.2 has an

exponential form, and can be fit very closely to the measured leakage power, as shown

in Figure 5-1.

VVdd Vth .d.

Pleak = VddKe nlVT [1 - e- VT] (5.2)

The previous discussion focused on the behavior of leakage power as the Vd value

is varied. An important design issue is how accurately the absolute power values are

predicted by the simulation and BSIM models. The simulation results of the PAMPS

ASIC are shown in Table 5.1, and were obtained using BSIM transistor models at

25'C. As it can be seen, the measured values always fall between the values simulated

at typical and fast device corners.

Table 5.1: Measured leakage power versus simulations at typical and fast corners

Vdd /V/ Measured Power [p W] Simulated Power [t W] Simulated Power [y W]
Typical Corner Fast Corner

1.8 880 259 1800
1.5 436 156 1048
1.0 123 56 366
0.5 26 17 109

5.3 Dynamic Power Measurements

This section describes the power measurements taken of the chip while the input

clocks are running. The active switching power of the ASIC is compared to simulated

or estimated values, and potential sources of mismatch are described.
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A test C program that continuously performs FFT computations using the FFT

block was written and run on the pAMPS ASIC. The two clocks were both set to

100KHz and the program operation was verified to be correct through the GPIO

pins. The total current through the core was measured for different supply voltages

and converted to an equivalent energy per cycle metric, which is plotted in Figure

5-2. To obtain a frequency-independent measure of the active energy/cycle, the total

leakage power with clocks off was first subtracted from the total power during program

execution. This is because leakage power is constant, so leakage energy/cycle varies

with frequency. As can be expected, the measured energy/cycle plot can be fitted

quite well with a quadratic equation of the form E=Ceq - Vd%, as shown in Figure 5-2.

The total energy/cycle for the entire chip was also estimated for two different supply

voltages using accurate simulations in Nanosim-VCS. The two estimated energy points

can be seen to fall within 10% of the measured values.

Total Energy/Cycle during FFT.C excluding leakage

12

10

8

* Measured
6 - Fitted E=C*Vdd*Vdd

Nanosim Estimate

4

2

0

0 0.5 1 1.5 2

Supply Voltage [V]

Figure 5-2: Core energy/cycle with fft.c program running
FFT computations.

and performing continuous
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Chapter 6

Future Improvements

The pAMPS system presented in the previous chapters can be improved in several

ways for energy efficiency. These optimizations are planned for a future version of the

[AMPS chip. This chapter describes these proposed techniques, as well as provide

low-level simulation comparisons to justify the change in design.

6.1 Clock Gating

In a synchronous digital design, a common global clock is used to feed all the state-

storing registers. These registers are conditionally updated on every clock cycle as

determined by an input enable signal. A straightforward implementation of an en-

abled flip-flop is shown in Figure 6-1. While the input enable is active high, the

flip-flop stores the input value at every positive clock edge. When the flip-flop is

disabled, each clock-edge causes it to actively store its previous value, thus retaining

its state. For this design, the flip-flop can consume almost the same amount of power

whether it is enabled or disabled, since the clock causes a lot of the internal nodes to

toggle.

Ideally, the flip-flop should consume no power while disabled, while simply main-

taining its state using the underlying static feedback circuitry. To accomplish this,

the clock would only conditionally toggle, thus saving the power needed to charge

up the clock port and the internal power of a triggered flip-flop. One way to achieve
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Figure 6-1: Standard implementation of an enabled flip-flop.

this is to use a glitch-free, clock-gating flip-flop as shown in Figure 6-2. If the enable

signal stays low for a few cycles, the gated clock remains low and does not switch

during that entire period. This saves the internal power of the flip-flop driven by the

gated clock. The clock port of the flip-flop no longer needs to be charged, but we

must now charge the clock port of the latch and the input to the AND gate. However,

since the enable signal and corresponding clock-gating circuitry can often be shared

among several flip-flops that make up a wide register, the additional overhead of the

latch and AND gate is amortized. The latch of Figure 6-2 is necessary in order to

ensure that a glitch on the enable signal does not propagate to a glitch on the gated

clock signal ([33]). This situation is prevented by latching the enable signal while the

input clock is low, when a glitch on the enable signal would not be able to propagate

through the AND gate.

Register-level clock-gating can be performed automatically during the synthesis

part of the design flow described in Section 4.5. In order to gauge the energy savings

offered by register-level clock gating, the pAMPS design was synthesized and laid

out using clock-gating cells as in Figure 6-2. The resulting layout was extracted

and simulated using Nanosim-VCS with a testbench where both the DSP and FFT

blocks were active and all clocks ran at 5MHz. The simulation results showed that
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Figure 6-2: Clock-gated implementation of an enabled flip-flop.

clock-gating helped reduce the total logic power consumption (not including SRAM

accesses) from 7.0 mW to 6.2 mW, a decrease of over 10%. This reduction is relatively

low because most of the logic blocks were active and thus could not always be clock-

gated. As the system activity rate decreases (ex: when FFT is not used), the reduction

in switching power as a result of clock-gating will be even more significant.

To save additional clock power, a global enable signal can be used to gate the

entire clock tree. In order to determine how our design would benefit from the use of

such a signal, we can compare the switching energy during idle mode of a design that

implements register-level clock gating versus one that employs perfect clock gating.

The power with register-level clock gating can be simulated while reset is held high,

thus ensuring that all enable signals are low and the logic has no activity. With the

clocks running and the chip in reset mode, Nanosim-VCS results show that the total

switching energy/cycle (SRAMs not included) amounts to 640 pJ/cycle. The optimal

global clock gating during idle mode can be achieved by completely turning off the

clocks, resulting in only standby leakage power, reported by DC-shell to be 69PW.

When only some of the modules are active, module-level clock-gating using separate

enable signals should be employed in order to prevent the clock from propagating

to idle modules. With the unused clocks successfully gated, techniques for standby
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leakage current reduction should be employed to lower the remaining idle power, as

described in Section 6.2.

6.2 Memory Power Improvements

As discussed in Chapter 5, the SRAM blocks on the chip are all implicitly read from

on every cycle, causing unnecessary power draw from the power supply. For example,

while executing the program fft.c, at most 3 out of the 27 SRAM blocks need to

be active for reads or writes. The Verilog code for the next version of pAMPS was

modified to disable memory read ports when not active, which should cause the peak

memory access energy to decrease by a factor of 9.

The pAMPS chip uses mostly dual-port SRAMs (24 out of 27) for on-chip SRAMs.

This option was adopted in order to allow the DSP and DMA to have concurrent

data memory access, as well as to synchronize the system clock and FFT clock do-

mains. However, dual-port SRAMs have about twice as many transistors as single-

port SRAMs, thus doubling both leakage current and silicon area. Since leakage

current and long wire lengths are large contributors to the overall power consump-

tion of the pAMPS chip, it is recommended that the next chip uses only single-port

SRAMs. The concurrent DSP and DMA access to data memory can still take place,

as long as it accesses different segments (the current data memory has 16 segments).

Similarly, considering that the memory buffer between the DSP and the FFT blocks

is not accessed at the same time from the two different clock domains, a single-port

SRAM with a multiplexed clock would be sufficient as the FFT buffer.

Since the compiled SRAMs account for about 90% of the transistors on the

piAMPS chip, they are also the major source of leakage current. The use of leakage-

tolerant SRAM designs would allow for a drastic reduction in the total leakage current.

The insertion of header or footer power-gating transistors between the SRAMs and

the power supply can reduce leakage by a factor of 40 with negligible decrease in per-

formance, as demonstrated in [15]. This technique, only applicable if multi-threshold

transistors are available, can also be applied to the rest of the logic cells.
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However, power gating usually causes complete loss of state information in the

system's flip-flops and SRAMs. For the SRAM case, [16] shows that lowering the

supply voltage from the nominal 1.OV to 0.35V, rather than shutting it off, leads to

a more than 90% reduction in leakage power, while safely retaining the state of the

SRAMs.

6.3 Sub-threshold Supply and DVFS

A reduction in switching power can be achieved through lowering the supply voltage

of logic cells, down to the subthreshold region of operation. To enable this, we must

create new standard cell libraries and memories that can function at these ultra-low

voltages. These new cells must be accurately simulated at all possible operating

voltages in order for timing verification to guarantee correct functionality. As the

supply voltage is lowered into the subthreshold region, the circuit delays become so

large that leakage energy begins to dominate the total energy used. Thus, there is an

optimal Vdd that yields a minimal sum of active and leakage energies/cycle.

In order to find the optimal point for the pAMPS design, the standard cell libraries

were recharacterized using Signalstorm for the following Vdd values: 1.8V, 1.5V, 1.OV,

0.6V, 0.5V, 0.4V, and 0.3V. The design was synthesized in DC-shell using each of

the new libraries, and an estimate of active and leakage power was obtained using

the report-power command. The power and delay of SRAMs and wires was not

included in this study, the DC-shell default statistical switching activity was used

when reporting active power, and the standard-cell libraries were characterized at

25 C. Figure 6-3 shows the resulting energy per cycle plot for this design. As it

can be seen, for supply voltages above 0.5V, the switching energy dominates total

energy, while leakage energy rises exponentially for subthreshold supply voltages. For

this particular experiment, the optimal supply voltage was found to be 0.5V, which

corresponds to the minimum operating voltage of the pAMPS ASIC.

In a sensor node processor, there is a tradeoff between extending battery lifetime,

which tends to push circuit operation to the lowest possible supply level, and the
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Figure 6-3: Variation of total energy/cycle with supply voltage excluding SRAMs and
wire parasitics.

acceptable level of performance, which places a lower bound on the clock frequency

and implicitly also on the supply voltage. The system software determines the mini-

mum operating frequency for the executing application and sets the supply voltage as

low as possible, all these without violating any of the timing paths inside the digital

circuits. This scheme is known as Dynamic Voltage and Frequency Scaling (DVFS).

A simple implementation of DVFS would use a lookup table to determine the operat-

ing voltage for a given frequency. Alternatively, a feedback loop would automatically

adjust the supply voltage such that the circuit's critical path equals the desired clock

period, as described in [17].

6.4 Layout for reducing interconnect loads

The charging up of wire loads make up a significant portion of total switching energy

and delay for the pAMPS ASIC. To quantify the effect of wires, we performed a
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DC-shell analysis of the post-layout design with and without wire parasitics included.

Table 6.1 shows the critical path delay and dynamic switching power at 50MHz for

different supply voltages, but not including the effect of SRAMs, obtained using the

report-power command. The same data was converted to the equivalent energy/cycle

and maximum frequency and is plotted in Figure 6-4 and Figure 6-5. As can be seen,

wire loads account for 74-84% of total switching power and 10-24% of total path

delay.

Table 6.1: Effect of wire parasitics on simulated critical path and dynamic cell power

Vdd [Vj Power [p WJ Power [it W] Critical Path [ns] Critical Path [ns]
Without Wires With Wires Without Wires With Wires

1.8 3099 12143 14.9 16.6
1.5 1946 8216 17.7 19.6
1.0 740 3516 30.1 36.1
0.6 212 1210 160 204
0.5 131 823 527 696

Figure 6-4: Effect of Wire Load on Energy/Cycle.

As a result of these observations, a significant effort should be placed in reducing

wire loads. A good floorplan must be created during layout to place related compo-

nents close to each other. The amount of fill wire insertion (to meet metal density
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Figure 6-5: Effect of Wire Load on Maximum Frequency.

requirement) should be kept to a minimum in order to reduce unnecessary coupling

between signal wires. For example, DC-shell estimates show that 7% of the total

switching energy in the current design is due to additional capacitances caused by

the insertion of floating fill wires in all the available wire tracks.

6.5 Level-converting pads

In the first implementation of the pAMPS chip, the core was designed to operate at

a nominal voltage of 1.8V, while the output pads were designed to take a core swing

as an input, and output a 0-3.3V signal. The reason for choosing a 3.3V I/O signal

is to be able to correctly interface to other printed circuit board (PCB) components

(ROM, UART, ADC, etc), which all run at this standard supply voltage. This was

accomplished by the use of a level-converter circuit similar to the one shown in Figure

6-6, where a small differential input to the NMOS transistors causes a full differential

swing on the output. At an I/O supply voltage of 3.3V, the DCVSL gate operates

correctly as long as the input swing is above 0.9V. When the core supply voltage

falls below 0.9V, the NMOS transistors become too weak due to their low overdrive

voltage and are not able to fight the pull-up PMOS transistors, thus causing pad
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failure.

OUT OUT
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Figure 6-6: Differential Cascode Voltage Swing Logic (DCVSL) level-converter.

The [LAMPS DSP core can operate correctly down to a voltage of 0.5V, at which

point all the 3.3V output pads to malfunction. One possible solution to this problem is

to lower the supply voltage to the I/O pads down to about 0.6V. At this core voltage,

the DCVSL gate once again becomes operational due to the reduced overdrive on the

PMOS transistors. The I/O supply was lowered to 0.6V during measurement in order

to be able to verify correct functionality of the core down to near-threshold supply

voltages. However, this limits the chip's functionality since it can no longer interface

properly to the other off-the-shelf components in the system, which are designed to

run at the standard 3.3V.

Another solution that allows the output pads to operate at a much higher voltage

than the internal supply is to use a sense-amplifier flip-flop (SAFF) from [18], as

shown in Figure 6-7. The CLK signal that feeds the SAFF swings to the full voltage

of the I/O supply. When CLK is low, nodes NI and N2 are equalized to a high value;

this puts the output latch in a "hold" state where Q and Q retain their previous

value. As soon as CLK transitions high, the path with the higher differential input

will offer a less resistive current path to ground, and thus pull down either N1 or

N2. As soon as enough of a differential voltage develops between N1 and N2, the

two cross-coupled inverters will quickly regenerate NI and N2 to complementary full-
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swing values, thus storing a new state on the output latch. The voltage difference

between the differential inputs D and D only needs to be larger than the input offset

of the SAFF latch, which is usually smaller than 1OOmV.

"ID

NI

Figure 6-7: Standard sense-amplifier flip-flop [18].

In this setup, every output pad would be synchronized to the clock that was used

to generate the signal, and would thus add one clock cycle of latency to the output

path. Alternatively, a separate, faster, clock could be used to clock only the output

pads, although this would adversely affect overall power consumption. Once the pad

design is finalized, it should be characterized for delay and power consumption using

Signalstorm. This should be done for all operating voltages in order to be integrated

into the design tool flow.
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Chapter 7

Conclusions

This chapter summarizes the main contributions, the project results, and future plans.

This thesis presented the design and implementation of a low-energy processor

for sensor networks. The driving force of this project was the eventual maximiza-

tion of energy efficiency, even at the cost of reduced performance, increased system

complexity and larger chip area.

An architecture was developed to match a target set of wireless sensor network

applications and minimize energy per computation. This architecture contains a

programmable DSP, hardwired algorithms with local memory buffers, and interfaces

to ADC and radio components. The digital system was fully described in Verilog and

simulated to verify functionality.

A Xilinx FPGA platform was used to physically verify the full sensor-node system,

including the digital logic and off-the-shelf ADC and radio. Since FPGAs are usually

used as a logic prototyping platform, an ASIC was built to characterize the energy and

performance of a final sensor node processor implementation. This thesis described

the key steps in the design, verification, and testing of the ASIC. The first ASIC

implementation produced a functional chip that was demonstrated as a stand-alone

sensor node. Given the availability of some networking software, a wireless sensor

network made up of several of these sensor nodes could easily be demonstrated as

well.

The first ASIC was used mainly as a way to identify a comprehensive ASIC design
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flow, at which it succeeded quite well. As a next step, this thesis proposes some

aggressive energy reduction techniques that should make a future implementation

very energy efficient.
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Appendix A

Sample Source Code and Design

Scripts

A.1 Sample DSP C source code

This section contains sample C source code which was used to program the pIAMPS

DSP. The program shown below performs an FFT using the hardwired FFT module

and then displays the output for debugging. At the start of the main function,

the 16-bit general-purpose I/O port is configured to be an output port. Next, the

DSP registers the interrupt handler function fftihandler, which is called whenever the

FFT interrupt is raised by the FFT module. The FFT interrupt line also needs to

be enabled, since all interrupts are ignored by default. The program then enters an

infinite while loop, in which it first pulls a block of test data from the off-chip ROM

and places it in the DSP data memory. The DSP then displays the data through

the debug port, from which a logic analyzer produces a plot as illustrated by Figure

3-3. Next, the DSP programs the FFT module to perform a 128-point, 16-bit FFT,

and then feeds it the block of 128 data words, after which it waits for the FFT to be

done. When the FFT completes execution, the fftihandler function is called, where

the results of the FFT are read back into the DSP's memory and printed out through

the debug port to produce a spectral plot similar to the solid line of Figure 3-3.

Finally, the DSP performs some multiplications whose result is verified through the
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debug port to ensure the multiplier unit works correctly.

// defines compiler libraries, common functions, constants

#include <uamps.h>

// holds FFT configuration parameters

#include "fftdefines.h"

// 128-word FFT

#define FFTLENGTHCODE FFT_LENGTH_128

#define FFTLENGTH 2<<(10-FFTLENGTHCODE-1)

// 16-bit precision

#define FFT_PRECISION FFTPRECISION_16

// memory block to hold FFT input/output data

unsigned int data[1024];

// memory block to hold configuration words

unsigned int cfg[100];

// set when a FFT interrupt is received by DSP

int fftdone=O;

// loop counter

int i=0;

// this is the FFT interrupt handler

void ffthandler(void)

I

// at this point FFT should be complete

// so DMA reads out words into DSP data memory

u_dmatransfer(UDMATYPEFFTTODMEM, &data, FFTLENGTH);

// wait for DMA engine to complete transfer

while (!udmaisidleo);
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u-gpio-set-outputs(OxDEAD);

// print read data to the gpio pins

for (i=0; i<FFTLENGTH; i++){

u-gpio-setoutputs(data[i]);

}

// raise the done flag to indicate FFT is done

fftdone =1;

}

// this is the main program thread

int main(void){

int val =0;

// configure gpio pins as outputs

u-gpio-set-directions(OxFFFF);

// set up fft interrupt handler

u-register-interrupt-handler(ffthandler, UFFTIRQCHANNEL);

u_enableinterrupt-source(U-FFTJIRQCHANNEL);

u_enableinterrupts();

while (1) { // run forever

// DMA Read data from ROM and put it in data memory

udmatransfer( UDMATYPEROMTODMEM, &data, FFT_LENGTH);

// print read data to the gpio pins

for (i=0; i<FFTLENGTH; i++){

u-gpio-setoutputs(data[i]);

}

// Now that we have adc data in memory, do FFT on it
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cfg[O] = FFTCMDLOADLENGTH + FFTLENGTHCODE;

cfg[1] = FFTCMDLOADBITPRECISION + FFTPRECISION;

// configure FFT

u_dmatransfer( UXFERDMEMFFTCFG,

// send input data to FFT

u_dmatransfer( UXFERDMEM_FFT,

while (!udmaisidleo);

// Loop until fft is done

while (fft-done == 0);

// test the DSP multiplier

for (i=0; i<FFTLENGTH; i++){

val = i*2;

u_gpio-setoutputs(val);

}

((short)&cfg), 2);

((short)&data), FFTLENGTH);

}

while(0);

return 0;

}
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