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Abstract: An Analog to Digital Converter (ADC) using the low duty-cycle nature of pulse-based Ultra Wide-Band (UWB) 
communications to reduce its power consumption is proposed. Implemented in CMOS 180 nm technology, it can capture a 5 ns 
window at 4 GS/seach 100 ns, which corresponds to the acquisition of one UWB pulse at the pulse repetition rate of 10 mega pulses per 
second (Mpps). By using time-interleaved Redundant Signed Digit (RSD) ADCs, the complete ADC occupies only 0.15 mm2 and 
consumes only 1.4 mW from a 1.8 V power supply. The ADC can be operated in two modes using the same core circuits (operational 
transconductance amplifier, comparators, etc.). The first mode is the standard RSD doubling mode, while the second mode allows 
improving the signal-to-noise ratio by adding coherently the transmitted pulses of one symbol. For example, for audio applications, a 
300 kbps data rate and processing gain up to 15 dB can be achieved at a clock frequency of 10 MHz. 
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1. Introduction 

There has been recently a lot of interest for low-cost, 

low-power solutions short range wireless 

communications for applications such as body area 

networks or binaural hearing aids [1-3]. The ADC 

presented in this paper is designed for the system 

architecture published in [4], which allows reducing 

the receiver’s complexity and power consumption with 

regard to a direct-conversion receiver. This system 

architecture is based on the transmission of Ultra 

Wide-Band (UWB) pulses and has been conceived to 

operate in three scenarios presented in Table 1. The 

corresponding specifications of the ADC have been 

derived as 4-6-bit resolution with input bandwidth of 1 

GHz and sampling frequency of 2-4 GS/s. Due to the 

large bandwidth of the UWB signals, the ADC is one of 

the receiver’s most critical circuit, and the subject of 
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this paper. 

2. ADC Architecture 

Time-Interleaved (TI) cyclic ADCs are ideally 

suited for high-speed, medium resolution applications 

which have low-power constraints [5]. Also, cyclic 

ADCs occupy a minimal area by reusing the same 

circuits for each conversion cycle. Moreover, the 

Redundant Signed Digit (RSD) architecture allows 

relaxing the comparators’ accuracy, which in turn 

reduces the ADC’s power consumption significantly. 

Based on these facts, and considering the specific 

UWB applications considered in this paper, a TI-RSD 

architecture has been chosen for the ADC. 

The proposed ADC is shown in Fig. 1 and is 

composed of 20 TI ADC cells. Each cell consists of a 

RSD ADC [6] and few logics. In this implementation, 

the ADCs are operated at the master clock’s (MCLK) 

frequency and the interleaving time between the ADC 

cells is set by a voltage controlled delay line (VCDL).  
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communication systems [8-9] , in which, a single bit of 

information can be transmitted using multiple pulses. 

3.1 Doubler Mode of Operation 

In doubler mode, the ADC operates as a standard 

RSD ADC. During the initial 250 ps of the first half 

clock cycle, the signal is sampled by T/H1 and the 

value of the integrator is reset. During the second half 

of the first clock cycle, the charge on C1 is transferred 

on C3. The resulting voltage is then compared with 

two threshold voltages, Vthresh+ and Vthresh−. During the 

following clock cycles, T/H1 is inactive. Instead, T/H2 

is used to replicate the voltage at the output of the 

OTA to its input. Also, depending on the result of the 

comparison, a voltage offset of -FSR/2, 0 or +FSR/2 is 

added at the input of the integrator. In this mode of the 

ADC, n−1 cycles are required to provide a resolution 

of n bits. Therefore T/H1 stays inactive for n−1  

clock cycles. However the error sampled during the 

first half clock cycle is doubled at each clock    

cycle. 

3.2 Adder Mode of Operation 

In the adder mode, the signal is sampled by T/H1 

during the initial 250 ps of each clock cycle. Then the 

charge on C1 is transferred on C3 during the second 

half of each clock cycle. The replication module is 

inactive in this mode. Therefore, in order to achieve a 

resolution of n bits, 2n−1 instead of n−1 clock cycles are 

required. Hence the same symbol should be transmitted 

2n−1 times and captured 2n−1 times by T/H1. As a 

consequence, the maximum achievable data rate is 

reduced by 2n−1. However, this mode also allows 

achieving a processing gain equal to 10log(2n−1), which 

is of great help due to the limited transmitted power 

and the important Path Loss (PL) encountered by the 

UWB pulses when they propagate from a distant 

transmitter to the receiver. For example, for a carrier 

frequency of 5.5 GHz, 0 dBi antennas and a 

communication distance of 10 m, the PL can be 

computed using Friis transmission equation as: 

2

10( ) 10 log 67.3 ,
4tx rxPL d G G dB

d

        
 (1) 

Where Gtx is the transmitter’s antenna gain, Grx is the 

receiver’s antenna gain, λ is the signal’s wavelength 

and d is the distance between the transmitter and the 

receiver. Considering a bandwidth of Bs = 1 GHz for 

the UWB signal, the maximum transmitted power Stx 

according to regulations is 

 1041.3 / 10log / 1

11.3 ,
tx sS dBm MHz B MHz

dBm

  

 
  (2) 

resulting in a received signal power of: 

(10) 78.6rx txS S PL dBm          (3) 

At the receiver’s antenna, the noise power is: 

10

10

10 log ( )

174 / 10 log (1GHz) 84dBm.
ant sN kTB B

dBm Hz

  
   

  (4) 

Considering a receiver’s noise figure (NF) of 6 dB, 

the receiver’s noise power is -78 dBm leading to a 

Signal-to-Noise Ratio (SNR) of -0.6 dB whereas 7 dB 

is typically recommended to achieve a 0.1% Bit Error 

Rate (BER) for the modulation considered in [8]. 

Clearly, the adder and doubler modes can also be 

combined to achieve a desired processing gain in a 

minimum number of clock cycles. One of the strength 

of this implementation is that it uses the same circuits 

(OTA, comparators, etc.) for the two modes. The 

different combinations to achieve a 6-bit resolution as 

well as the associated processing gain and maximum 

achievable data rates for a 10 MHz master clock 

frequency are reported in Table 2Table 2. We can see 

that for the previous example, configuring the ADC for 

8 cycles in adder mode followed by 2 cycles in doubler 

mode would be sufficient to achieve a larger than 7 dB 

SNR. The following subsection provides a closer look 

at the circuits of the ADC cell.  

3.3 ADC Cell’s Building Blocks 

Most of the logic is used to generate 

non-overlapping control signals for the different 

switches in the RSD ADC (Fig. 3). Apart from the 

control signals of the input transistors of T/H1     

(M1, M2), all the control signals of the 20 ADC cells  
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Table 2  Possible configurations and their respective processing gain and maximum data rate (for a 10 MHz clock frequency). 

Config. 
 Number of cycles   
Res. 
bits 

Adder mode Doubler mode Total Processing Gain dB Max. data Rate kpbs 

32/0 6 32 0 32 15 312 

16/1 6 16 1 17 12 588 

8/2 6 8 2 10 9 10000 

4/3 6 4 3 7 6 1428 

2/4 6 2 4 6 3 1666 
 

aresynchronous. M1’s control signal could simply be, 

for the ith ADC cell, a replica of the master clock 

delayed by i·250 ps. Instead, It has been preferred to 

use a 250 ps pulse so that: 

(a) The circuit preceding the ADC sees a constant 

capacitive load equal to C1. 

(b) The T/H1 stage of one ADC cell is not loaded by 

the T/H1 stage of the other 19 ADC cells. 

(c) The pulses are generated in the ADC cells, as 

shown in Fig. 1, which allows propagating a 10 MHz 

clock instead of a 250 ps pulse. 

(d) For a given sampling frequency, i.e., for a given 

pulse spacing, the pulse duration is automatically set to 

the right value, and vice-versa. 

The most challenging specification to achieve for the 

input track-and-hold (T/H1) is to charge or discharge 

the sampling capacitor of T/H1 by up to the FSR in less 

than 250 ps. In addition, the ADC’s input bandwidth 

should be larger than 1 GHz. Note that T/H2 type has a 

superior performance as compared to T/H1 type 

regarding parasitic mitigations due to the symmetry of 

its circuit; however, it was not possible to implement 

T/H1 as T/H2. This is because T/H2 samples and 

changes the polarity of the signal while T/H1 is 

required to perform the fast sampling. 

Another important design issue is related to the 

sampling capacitor C1. From a bandwidth, area and 

FSR point of view, the sampling capacitor’s value 

should be minimized, while from a thermal noise and 

layout matching point of view, it should be maximized. 

Considering a tradeoff between these two requirements, 

we have then determined that, with a small sampling 

capacitor of 103 fF, a 250 mVpp FSR at 1 GHz 

bandwidth could be achieved. Note also that the 

thermal noise contribution from the 103 fF sampling 

capacitor, kT/C = 200 µV, is negligible considering 

that one LSB is 3.9 mV (for a 6 bits resolution and 250 

mVpp FSR). Due to the ADC’s moderate resolution and 

high-speed, we have decided to embed the sampling 

capacitors within each ADC cell rather than to use a 

capacitor array. 

The integrator is based on a two-stage symmetrical 

OTA and has been designed to minimize its power 

consumption while having sufficient gain to achieve 

the desired ADC resolution and sufficient phase 

margin to guarantee stability. The comparators are 

based on the StrongArm Latch [10] which uses positive 

feedback rather than cascaded amplifiers and consumes 

no static power. The comparator is followed by an 

output latch which conserves the output state until the 

next clock’s falling edge. 

4. Experimental Results 

The prototype ADC has been fabricated in 180 nm 

CMOS technology along with a LNA, mixer and VCO 

as a full UWB receiver chip. The die photography of 

the UWB receiver is shown in Fig. 4. The ADC cells 

are arranged in two rows separated from the analog 

signals and surrounded by the digital ones. For testing, 

the die has been wire bonded on a test PCB for 

measurements. The peak Differential Non-Linearity 

(DNL) and Integral Non-Linearity (INL) are 0.15 LSB 

and -1.0 LSB, respectively. Since the ADC is operating 

during 5 ns windows, computing the Fast Fourier 

Transform (FFT) of the signal measured at the ADC’s 

output is not directly possible. Instead, its Signal-to-Noise 
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Table 4  Performances of the ADC in burst mode. 

Parameter Unit Value 

Resolution bits 6 

Technology nm 180 

FSR mVpp 250 

Sampling Frequency GS/s 4 

Input bandwidth GHz 0.9 

DBL LSBs 0.15 

INL LSBs -1.0 

ENOB Bits 5.7 

Active area mm2 0.15 
 

Table 5  Performances of the ADC in continuous mode and 
comparison with state of the arts. 

Parameter Unit This work [11] [12] [13] [14] 

Type  RSD SAR Flash Flash Flash

Technology nm 180 130 65 
32-SO
I 

40 

Resolution bits 6 6 4 6 7 
Conversion 
rate 

GS/s 4 1.25 7.5 5 2.2 

Supply 
voltage 

V 1.8 1.2 1.1 0.85 1.1 

Power mW 28 32 52 8.5 27.4 

INL LSBs 0.15 NA 0.38 0.37 1 

DNL LSBs -1.0 NA 0.35 0.52 0.6 

FOM 
pJ/con
v. 

0.14 0.4 0.50 0.059 0.2 

Active area mm2 3.0 0.09 0.01 0.02 0.052
 

at 4 GS/s. Therefore: 

5.7

2 1.4
0.135 / .

2 2 4
c

ENOB
s

P mW
FOM pJ conv

f GHz


  


 (5) 

The performances of the ADC are adjusted, to allow 

fair comparison with prior art ADCs operating in 

continuous mode, and reported in Table 5. As we can 

see, despite using an older technology, the achieved 

FOM is smaller than the best FOM reported in Table 5 

except [13] which uses 32 nm CMOS SOI technology. 

Currently, the area is larger than [11-14], due to the fact 

that we have considered that 20 times the active area 

reported in Table 4 Table 4would be required to sample 

continuously at 4 GS/s. In reality, if continuous 

sampling was the aim, an analysis would be performed 

to find the optimal balance between the master clock’s 

frequency and the number of ADC cells required. Also, 

the use of a newer technology as well as smaller 

sampling capacitors may help to reduce the area by a 

great extent. 

5. Conclusions 

An ADC based on TI-RSD ADC cells has been 

proposed for pulsed-based UWB communications. The 

cyclic nature of the RSD ADC allows reducing the size 

of each ADC cell, while the RSD algorithm allows 

relaxing the comparators accuracy, which in turn 

allows reducing the power consumption. Interleaving 

20 RSD ADC cells by 250 ps allows achieving 

sampling rates up to 4 GS/s during 5 ns, while only 

consuming a peak power of 1.4 mW and occupying an 

area of 0.15 mm2. 
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