3,895 research outputs found

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Resilient and Real-time Control for the Optimum Management of Hybrid Energy Storage Systems with Distributed Dynamic Demands

    Get PDF
    A continuous increase in demands from the utility grid and traction applications have steered public attention toward the integration of energy storage (ES) and hybrid ES (HESS) solutions. Modern technologies are no longer limited to batteries, but can include supercapacitors (SC) and flywheel electromechanical ES well. However, insufficient control and algorithms to monitor these devices can result in a wide range of operational issues. A modern day control platform must have a deep understanding of the source. In this dissertation, specialized modular Energy Storage Management Controllers (ESMC) were developed to interface with a variety of ES devices. The EMSC provides the capability to individually monitor and control a wide range of different ES, enabling the extraction of an ES module within a series array to charge or conduct maintenance, while remaining storage can still function to serve a demand. Enhancements and testing of the ESMC are explored in not only interfacing of multiple ES and HESS, but also as a platform to improve management algorithms. There is an imperative need to provide a bridge between the depth of the electrochemical physics of the battery and the power engineering sector, a feat which was accomplished over the course of this work. First, the ESMC was tested on a lead acid battery array to verify its capabilities. Next, physics-based models of lead acid and lithium ion batteries lead to the improvement of both online battery management and established multiple metrics to assess their lifetime, or state of health. Three unique HESS were then tested and evaluated for different applications and purposes. First, a hybrid battery and SC HESS was designed and tested for shipboard power systems. Next, a lithium ion battery and SC HESS was utilized for an electric vehicle application, with the goal to reduce cycling on the battery. Finally, a lead acid battery and flywheel ES HESS was analyzed for how the inclusion of a battery can provide a dramatic improvement in the power quality versus flywheel ES alone

    A survey on wireless body area networks for eHealthcare systems in residential environments

    Get PDF
    The progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to the base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments

    Energy autonomous systems : future trends in devices, technology, and systems

    Get PDF
    The rapid evolution of electronic devices since the beginning of the nanoelectronics era has brought about exceptional computational power in an ever shrinking system footprint. This has enabled among others the wealth of nomadic battery powered wireless systems (smart phones, mp3 players, GPS, 
) that society currently enjoys. Emerging integration technologies enabling even smaller volumes and the associated increased functional density may bring about a new revolution in systems targeting wearable healthcare, wellness, lifestyle and industrial monitoring applications

    Providing efficient services for smartphone applications

    Get PDF
    Mobile applications are becoming an indispensable part of people\u27s lives, as they allow access to a broad range of services when users are on the go. We present our efforts towards enabling efficient mobile applications in smartphones. Our goal is to improve efficiency of the underlying services, which provide essential functionality to smartphone applications. In particular, we are interested in three fundamental services in smartphones: wireless communication service, power management service, and location reporting service.;For the wireless communication service, we focus on improving spectrum utilization efficiency for cognitive radio communications. We propose ETCH, a set of channel hopping based MAC layer protocols for communication rendezvous in cognitive radio communications. ETCH can fully utilize spectrum diversity in communication rendezvous by allowing all the rendezvous channels to be utilized at the same time.;For the power management service, we improve its efficiency from three different angles. The first angle is to reduce energy consumption of WiFi communications. We propose HoWiES, a system-for WiFi energy saving by utilizing low-power ZigBee radio. The second angle is to reduce energy consumption of web based smartphone applications. We propose CacheKeeper, which is a system-wide web caching service to eliminate unnecessary energy consumption caused by imperfect web caching in many smartphone applications. The third angle is from the perspective of smartphone CPUs. We found that existing CPU power models are ill-suited for modern multicore smartphone CPUs. We present a new approach of CPU power modeling for smartphones. This approach takes CPU idle power states into consideration, and can significantly improve power estimation accuracy and stability for multicore smartphones.;For the location reporting service, we aim to design an efficient location proof solution for mobile location based applications. We propose VProof, a lightweight and privacy-preserving location proof scheme that allows users to construct location proofs by simply extracting unforgeable information from the received packets

    Evolvable Smartphone-Based Point-of-Care Systems For In-Vitro Diagnostics

    Get PDF
    Recent developments in the life-science -omics disciplines, together with advances in micro and nanoscale technologies offer unprecedented opportunities to tackle some of the major healthcare challenges of our time. Lab-on-Chip technologies coupled with smart-devices in particular, constitute key enablers for the decentralization of many in-vitro medical diagnostics applications to the point-of-care, supporting the advent of a preventive and personalized medicine. Although the technical feasibility and the potential of Lab-on-Chip/smart-device systems is repeatedly demonstrated, direct-to-consumer applications remain scarce. This thesis addresses this limitation. System evolvability is a key enabler to the adoption and long-lasting success of next generation point-of-care systems by favoring the integration of new technologies, streamlining the reengineering efforts for system upgrades and limiting the risk of premature system obsolescence. Among possible implementation strategies, platform-based design stands as a particularly suitable entry point. One necessary condition, is for change-absorbing and change-enabling mechanisms to be incorporated in the platform architecture at initial design-time. Important considerations arise as to where in Lab-on-Chip/smart-device platforms can these mechanisms be integrated, and how to implement them. Our investigation revolves around the silicon-nanowire biological field effect transistor, a promising biosensing technology for the detection of biological analytes at ultra low concentrations. We discuss extensively the sensitivity and instrumentation requirements set by the technology before we present the design and implementation of an evolvable smartphone-based platform capable of interfacing lab-on-chips embedding such sensors. We elaborate on the implementation of various architectural patterns throughout the platform and present how these facilitated the evolution of the system towards one accommodating for electrochemical sensing. Model-based development was undertaken throughout the engineering process. A formal SysML system model fed our evolvability assessment process. We introduce, in particular, a model-based methodology enabling the evaluation of modular scalability: the ability of a system to scale the current value of one of its specification by successively reengineering targeted system modules. The research work presented in this thesis provides a roadmap for the development of evolvable point-of-care systems, including those targeting direct-to-consumer applications. It extends from the early identification of anticipated change, to the assessment of the ability of a system to accommodate for these changes. Our research should thus interest industrials eager not only to disrupt, but also to last in a shifting socio-technical paradigm
    • 

    corecore