1,610 research outputs found

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    Simulation-based high-level synthesis of Nyquist-rate data converters using MATLAB/SIMULINK

    Get PDF
    This paper presents a toolbox for the simulation, optimization and high-level synthesis of Nyquist-rate Analog-to-Digital (A/D) and Digital-to-Analog (D/A) Converters in MATLAB®. The embedded simulator uses SIMULINK® C-coded S-functions to model all required subcircuits including their main error mechanisms. This approach allows to drastically speed up the simulation CPU-time up to 2 orders of magnitude as compared with previous approaches - based on the use of SIMULINK® elementary blocks. Moreover, S-functions are more suitable for implementing a more detailed description of the circuit. For all subcircuits, the accuracy of the behavioral models has been verified by electrical simulation using HSPICE. For synthesis purposes, the simulator is used for performance evaluation and combined with an hybrid optimizer for design parameter selection. The optimizer combines adaptive statistical optimization algorithm inspired in simulated annealing with a design-oriented formulation of the cost function. It has been integrated in the MATLAB/SIMULINK® platform by using the MATLAB® engine library, so that the optimization core runs in background while MATLAB® acts as a computation engine. The implementation on the MATLAB® platform brings numerous advantages in terms of signal processing, high flexibility for tool expansion and simulation with other electronic subsystems. Additionally, the presented toolbox comprises a friendly graphical user interface to allow the designer to browse through all steps of the simulation, synthesis and post-processing of results. In order to illustrate the capabilities of the toolbox, a 0.13)im CMOS 12bit@80MS/s analog front-end for broadband power line communications, made up of a pipeline ADC and a current steering DAC, is synthesized and high-level sized. Different experiments show the effectiveness of the proposed methodology.Ministerio de Ciencia y Tecnología TIC2003-02355RAICONI

    High-speed high-resolution low-power self-calibrated digital-to-analog converters

    Get PDF
    High-speed and high-resolution low-power digital-to-analog converters (DACs) are basic design blocks in many applications. Several obvious conflicting requirements such as high-speed, high-resolution, low-power, and small-area have to be satisfied. In this dissertation, a modular architecture for continuous self-calibrating DACs is proposed to satisfy the above requirements. This includes a redundant-cell-relay continuous self-calibration scheme. Several prototype DACs were implemented with self-calibration schemes. Also a DAC synthesis algorithm using a direct-mapping method and the modular structure was developed and implemented in the Cadence SKILL programming language.;One of the prototypes is a 250MS/s 8-bit continuous self-calibrated DAC that has been implemented in TSMC\u27s 0.25mu single poly five metal logic CMOS process. The structure of the self-calibrated current cell has high impedance and low sensitivity to output node voltage fluctuations. The chip has achieved +0.15/-0.1 LSB DNL, -0.6/+0.4 LSB INL, and 55dB SFDR with a lower input frequency at a conversion rate of 250MS/s. It consumes 8 mW of power in a 0.13 mm2 die area.;Glitches caused by switching of the calibration clock degrade the SFDR especially in high-speed applications. A new redundant-cell-relay continuous self-calibration scheme was proposed to reduce the glitches. Simulation results showed that the glitch energy is reduced 10 fold over existing schemes. A 10-bit DAC was implemented in the 0.25mu CMOS process mentioned above. +/-0.5 LSB INL and -0.45/+0.2 LSB DNL were measured and 70dB SFDR was achieved with a lower input frequency at a 250MS/s conversion rate. Up to the Nyquist rate, the SFDR is above 53dB at a conversion rate of 200MS/s. The DAC dissipates 8mW in a 0.3mm2 die area. The testing results verified the redundant-cell-relay continuous self-calibration for high-speed high-resolution low-power and low-cost DACs.;Additionally, a DAC synthesis algorithm was developed based on a direct mapping method. Given the specifications such as the DAC\u27s resolution, full range scale and technology, the synthesizer will map them directly into pre-existing functional blocks implemented in the DAC synthesis libraries. The program will then synthesize the schematic and layout that closely meet the given specifications

    Design and implementation of 4 bit binary weighted current steering DAC

    Get PDF
    A compact current-mode Digital-to-Analog converter (DAC) suitable for biomedical application is repesented in this paper .The designed DAC is binary weighted in 180nm CMOS technology with 1.8V supply voltage. In this implementation, authors have focused on calculaton of Non linearity error say INL and DNL for 4 bit DAC having various type of switches: NMOS, PMOS and Transmission Gate. The implemented DAC uses lower area and power compared to unary architecture due to absence of digital decoders. The desired value of Integrated non linearity (INL) and Differential non linearity (DNL) for DAC for are within a range of +0.5LSB. Result obtained in this works for INL and DNL for the case DAC using Transmission Gate is +0.34LSB and +0.38 LSB respectively with 22mW power dissipation

    Design techniques for high-performance current-steering digital-to-analog converters

    Get PDF
    Digital-to-Analog Converter (DAC) is a crucial building block limiting the accuracy and speed of many signal processing and telecommunication systems. To achieve high speed and high resolution, the current-steering architecture is almost exclusively used. Three important issues for current-steering DAC design are addressed in this dissertation. In a current-steering DAC design, it is essential that a designer determine the minimum required current source accuracy to overcome random current mismatch and achieve high linearity with guaranteed yield. Simple formulas are derived that clearly exhibit the relationship between the standard deviation of unit current sources, the bits of resolution, the INL/DNL, and the soft yield of DAC arrays. It is shown that these formulas are very effective for optimizing the DAC segmentation so as to achieve high performance and high yield with minimal area and power consumption. To overcome random mismatch effects without any trimming, the current source array of a high-accuracy DAC is usually rather large, causing the gradient errors in these arrays to become significant. How gradient errors affect the DAC linearity and how to compensate for them through switching sequence optimization is analyzed in the second part of this dissertation. To overcome technology barriers, relax the requirements on layout and reduce the sensitivities of DACs to process, temperature and aging, calibration is emerging as an attractive solution for the next-generation high-performance DACs, especially as process feature size keeps shrinking and supply voltage is reduced correspondingly. A new foreground calibration technique suitable for low-voltage environment is presented in the third part of this dissertation. It can effectively compensate for current source mismatches, and achieve high linearity with small die size and low power consumption. The dynamic performance of the DAC is also improved due to the dramatic reduction of parasitic effects. To demonstrate this technique, a 14-bit prototype was designed and fabricated in a 0.13u digital CMOS process. It is the first 14-bit CMOS DAC ever reported that operates with a single 1.5V power supply, occupies an active area less than 0.1mm2, and requires only 16.7mW at 100MHz sampling rate, but still maintains state-of-art linearity and speed

    Precise linear signal generation with nonideal components and deterministic dynamic element matching

    Get PDF
    A dynamic element matching (DEM) approach to ADC testing is introduced. Two variants of this method are introduced and compared; a deterministic DEM method and a random DEM method. With both variants, a highly non-ideal DAC is used to generate an excitation for a DUT that has effective linearity that far exceeds that of the DAC. Simulation results show that both methods can be used for testing of ADCs. The deterministic DEM (DDEM) offers potential for a substantial reduction in the number of samples when compared with a random DEM approach with the same measurement accuracy. It is shown that the concept of usinf DEM for signal generation in a test environment finds applications well-beyond ADC testing. The DDEM approach offers potential for use in both production test and BIST environments

    Concepts for smart AD and DA converters

    Get PDF
    This thesis studies the `smart' concept for application to analog-to-digital and digital-to-analog converters. The smart concept aims at improving performance - in a wide sense - of AD/DA converters by adding on-chip intelligence to extract imperfections and to correct for them. As the smart concept can correct for certain imperfections, it can also enable the use of more efficient architectures, thus yielding an additional performance boost. Chapter 2 studies trends and expectations in converter design with respect to applications, circuit design and technology evolution. Problems and opportunities are identfied, and an overview of performance criteria is given. Chapter 3 introduces the smart concept that takes advantage of the expected opportunities (described in chapter 2) in order to solve the anticipated problems. Chapter 4 applies the smart concept to digital-to-analog converters. In the discussed example, the concept is applied to reduce the area of the analog core of a current-steering DAC. It is shown that a sub-binary variable-radix approach reduces the area of the current-source elements substantially (10x compared to state-of-the-art), while maintaining accuracy by a self-measurement and digital pre-correction scheme. Chapter 5 describes the chip implementation of the sub-binary variable-radix DAC and discusses the experimental results. The results confirm that the sub-binary variable-radix design can achieve the smallest published current-source-array area for the given accuracy (12bit). Chapter 6 applies the smart concept to analog-to-digital converters, with as main goal the improvement of the overall performance in terms of a widely used figure-of-merit. Open-loop circuitry and time interleaving are shown to be key to achieve high-speed low-power solutions. It is suggested to apply a smart approach to reduce the effect of the imperfections, unintentionally caused by these key factors. On high-level, a global picture of the smart solution is proposed that can solve the problems while still maintaining power-efficiency. Chapter 7 deals with the design of a 500MSps open-loop track-and-hold circuit. This circuit is used as a test case to demonstrate the proposed smart approaches. Experimental results are presented and compared against prior art. Though there are several limitations in the design and the measurement setup, the measured performance is comparable to existing state-of-the-art. Chapter 8 introduces the first calibration method that counteracts the accuracy issues of the open-loop track-and-hold. A description of the method is given, and the implementation of the detection algorithm and correction circuitry is discussed. The chapter concludes with experimental measurement results. Chapter 9 introduces the second calibration method that targets the accuracy issues of time-interleaved circuits, in this case a 2-channel version of the implemented track-and-hold. The detection method, processing algorithm and correction circuitry are analyzed and their implementation is explained. Experimental results verify the usefulness of the method
    corecore