139 research outputs found

    Design of broadband inductor-less RF front-ends with high dynamic range for G.hn

    Get PDF
    System-on-Chip (SoC) was adopted in recent years as one of the solutions to reduce the cost of integrated systems. When the SoC solution started to be used, the final product was actually more expensive due to lower yield. The developments in integrated technology through the years allowed the integration of more components in lesser area with a better yield. Thus, SoCs became a widely used solution to reduced the cost of the final product, integrating into a single-chip the main parts of a system: analog, digital and memory. As integrated technology kept scaling down to allow a higher density of transistors and thus providing more functionality with the same die area, the analog RF parts of the SoC became a bottleneck to cost reduction as inductors occupy a large die area and do not scale down with technology. Hence, the trend moves toward the research and design of inductor-less SoCs that further reduce the cost of the final solution. Also, as the demand for home networking high-data-rates communication systems has increased over the last decade, several standards have been developed to satisfy the requirements of each application, the most popular being wireless local area networks (WLANs) based on the IEEE 802.11 standard. However, poor signal propagation across walls make WLANs unsuitable for high-speed applications such as high-definition in-home video streaming, leading to the development of wired technologies using the existing in-home infrastructure. The ITU-T G.hn recommendation (G.9960 and G.9961) unifies the most widely used wired infrastructures at home (coaxial cables, phone lines and power lines) into a single standard for high-speed data transmission of up to 1 Gb/s. The G.hn recommendation defines a unified networking over power lines, phone lines and coaxial cables with different plans for baseband and RF. The RF-coax bandplan, where this thesis is focused, uses 50 MHz and 100 MHz bandwidth channels with 256 and 512 carriers respectively. The center frequency can range from 350 MHz to 2450 MHz. The recommendation specifies a transmission power limit of 5 dBm for the 50 MHz bandplan and 8~dBm for the 100 MHz bandplan, therefore the maximum transmitted power in each carrier is the same for both bandplans. Due to the nature of an in-home wired environment, receivers that can handle both very large and very small amplitude signals are required; when transmitter and receiver are connected on the same electric outlet there is no channel attenuation and the signal-to-noise-plus-distortion ratio (SNDR) is dominated by the receiver linearity, whereas when transmitter and receiver are several rooms apart channel attenuation is high and the SNDR is dominated by the receiver noise figure. The high dynamic range specifications for these receivers require the use of configurable-gain topologies that can provide both high-linearity and low-noise for different configurations. Thus, this thesis has been aimed at researching high dynamic range broadband inductor-less topologies to be used as the RF front-end for a G.hn receiver complying with the provided specifications. A large part of the thesis has been focused on the design of the input amplifier of the front-end, which is the most critical stage as the noise figure and linearity of the input amplifier define the achievable overall specifications of the whole front-end. Three prototypes has been manufactured using a 65 nm CMOS process: two input RFPGAs and one front-end using the second RFPGA prototype.El "sistema en un chip" (SoC) fue adoptado recientemente como una de las soluciones para reducir el coste de sistemas integrados. Cuando se empezó a utilizar la solución SoC, el producto final era más caro debido al bajo rendimiento de producción. Los avances en tecnología integrada a lo largo de los años han permitido la integración de más componentes en menos área con mejoras en rendimiento. Por lo tanto, SoCs pasó a ser una solución ampliamente utilizada para reducir el coste del producto final, integrando en un único chip las principales partes de un sistema: analógica, digital y memoria. A medida que las tecnologías integradas se reducían en tamaño para permitir una mayor densisdad de transistores y proveer mayor funcionalidad con la misma área, las partes RF analógicas del SoC pasaron a ser la limitación en la reducción de costes ya que los inductores ocupan mucha área y no escalan con la tecnología. Por lo tanto, las tendencias en investigación se mueven hacia el diseño de SoCs sin inductores que todavía reducen más el coste final del producto. También, a medida que la demanda en sistemas de comunicación domésticos de alta velocidad ha crecido a lo largo de la última década, se han desarrollado varios estándares para satisfacer los requisitos de cada aplicación, siendo las redes sin hilos (WLANs) basadas en el estándar IEEE 802.11 las más populares. Sin embargo, una pobre propagación de señal a través de las paredes hacen que las WLANs sean inadecuadas para aplicaciones de alta-velocidad como transmisión de vídeo de alta definición en tiempo real, resultando en el desarrollo de tecnologías con hilos utilizando la infraestructura existente en los domicilios. La recomendación ITU-T G.hn (G.9960 and G.9961) unifica las principales infraestructuras con hilos domésticas (cables coaxiales, línias de teléfono y línias de electricidad) en un sólo estándar para la transmisión de datos hasta 1 Gb/s. La recomendación G.hn define una red unificada sobre línias de electricidad, de teléfono y coaxiales con diferentes esquemas para banda base y RF. El esquema RF-coax en el cual se basa esta tesis, usa canales con un ancho de banda de 50 MHz y 100 MHz con 256 y 512 portadoras respectivamente. La frecuencia centra puede variar desde 350 MHz hasta 2450 MHz. La recomendación especifica un límite en la potencia de transmisión de 5 dBm para el esquema de 50 MHz y 8 dBm para el esquema de 100 MHz, de tal forma que la potencia máxima por portadora es la misma en ambos esquemas. Debido a la estructura de un entorno doméstico con hilos, los receptores deben ser capaces de procesar señales con amplitud muy grande o muy pequeña; cuando transmisor y receptor están conectados en la misma toma eléctrica no hay atenuación de canal y el ratio de señal a rudio más distorsión (SNDR) está dominado por la linealidad del receptor, mientras que cuando transmisor y receptor están separados por varias habitaciones la atenuación es elevada y el SNDR está dominado por la figura de ruido del receptor. Los elevados requisitos de rango dinámico para este tipo de receptores requieren el uso de topologías de ganancia configurable que pueden proporcionar tanto alta linealidad como bajo ruido para diferentes configuraciones. Por lo tanto, esta tesis está encarada a la investigación de topologías sin inductores de banda ancha y elevado rango dinámico para ser usadas a la entrada de un receptor G.hn cumpliendo con las especificaciones proporcionadas. Una gran parte de la tesis se ha centrado en el diseño del amplificador de entrada al ser la etapa más crítica, ya que la figura de ruido y linealidad del amplificador de entrada definen lás máximas especificaciones que el sistema puede conseguir. Se han fabricado 3 prototipos con un proceso CMOS de 65 nm: 2 amplificadores y un sistema completo con amplificador y mezclador.Postprint (published version

    An high-speed parametric ADC and a co-designed mixer for CMOS RF receivers

    Get PDF
    Dissertação apresentada na faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresThe rapid growth of wireless communications and the massive use of wireless end-user equipments have created a demand for low-cost, low-power and low-area devices with tight specifications imposed by standards. The advances in CMOS technology allows, nowadays, designers to implement circuits that work at high-frequencies, thus, allowing the complete implementation of RF front ends in a single chip. In this work, a co-design strategy for the implementation of a fully integrated CMOS receiver for use in the ISM band is presented. The main focus is given to the Mixer and the ADC blocks of the presented architecture. The traditional approach used in RF design requires 50 matching buffers and networks and AC coupling capacitors between Mixer inputs and LNA and LO outputs. The codesign strategy avoids the use of DC choke inductors for Mixer biasing, because it is possible to use the DC level from the output of the LNA and the LO to provide bias to the Mixer. Moreover, since the entire circuit is in the same chip and the Mixer inputs are transistors gates, we should consider voltage instead of power and avoid the 50 matching networks. The proposed ADC architecture relies on a 4-bit flash converter. The main goals are to achieve low-power and high sampling frequency. To meet these goals, parametric amplification based on MOS varactors is applied to reduce the offset voltage of the comparators, avoiding the traditional and power-consuming approach of active pre-amplification gain stages

    Ultra Small Antenna and Low Power Receiver for Smart Dust Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks have the potential for profound impact on our daily lives. Smart Dust Wireless Sensor Networks (SDWSNs) are emerging members of the Wireless Sensor Network family with strict requirements on communication node sizes (1 cubic centimeter) and power consumption (< 2mW during short on-states). In addition, the large number of communication nodes needed in SDWSN require highly integrated solutions. This dissertation develops new design techniques for low-volume antennas and low-power receivers for SDWSN applications. In addition, it devises an antenna and low noise amplifier co-design methodology to increase the level of design integration, reduce receiver noise, and reduce the development cycle. This dissertation first establishes stringent principles for designing SDWSN electrically small antennas (ESAs). Based on these principles, a new ESA, the F-Inverted Compact Antenna (FICA), is designed at 916MHz. This FICA has a significant advantage in that it uses a small-size ground plane. The volume of this FICA (including the ground plane) is only 7% of other state-of-the-art ESAs, while its efficiency (48.53%) and gain (-1.38dBi) are comparable to antennas of much larger dimensions. A physics-based circuit model is developed for this FICA to assist system level design at the earliest stage, including optimization of the antenna performance. An antenna and low noise amplifier (LNA) co-design method is proposed and proven to be valid to design low power LNAs with the very low noise figure of only 1.5dB. To reduce receiver power consumption, this dissertation proposes a novel LNA active device and an input/ouput passive matching network optimization method. With this method, a power efficient high voltage gain cascode LNA was designed in a 0.13um CMOS process with only low quality factor inductors. This LNA has a 3.6dB noise figure, voltage gain of 24dB, input third intercept point (IIP3) of 3dBm, and power consumption of 1.5mW at 1.0V supply voltage. Its figure of merit, using the typical definition, is twice that of the best in the literature. A full low power receiver is developed with a sensitivity of -58dBm, chip area of 1.1mm2, and power consumption of 2.85mW

    A reconfigurable 60GHz receiver : providing robustness to process variations

    Get PDF
    The problems associated with process-induced variability and other challenges of 60GHz circuit design and measurement are treated in this thesis. A system-level analysis is performed on a generic RF receiver. For doing that, first, bit error rate (BER) is considered as a figure of merit representing the overall performance of the Receiver. Then, each stage of the receiver is described by three parameters: voltage gain, noise, and nonlinearity which are prone to variation due to process spread. The variation of these parameters represents all lower-level sources of variability. Since bit error rate (BER), as a major performance measure of the receiver, is a direct function of the noise and distortion, the contribution of each block to the overall noise plus distortion (NPD) is analyzed, which opens the way for minimization of the sensitivity of the NPD to the performance variation of individual stages. It is shown that the first order sensitivities of NPD to the individual gains of the building blocks can all be made zero. Its second order sensitivity to the gains of the building blocks can be reduced. Its sensitivity to noise and nonlinearity of an individual building block can be reduced, but at the cost of that of other blocks; its sensitivity to noise and nonlinearity cannot be reduced over the whole system. Three design approaches are proposed, analyzed and compared. Statistical and corner simulations are performed to confirm the validity of the proposed guidelines showing significant improvement in the yield of the designs. Applying the analysis to a zero-IF three-stage 60 GHz receiver shows a significant improvement in the design yield, by nullifying the first order sensitivities of the overall performance to the individual gains of the blocks. Reduction of the second order sensitivity of the NPD to the gain of individual stages, by keeping the contribution factor of all the stages below one, results in further improvements in the design yield. The conventional optimum-power design methodology has been modified in a way that it nullifies the first order sensitivities of NPD to the individual gains of all the stages. It is shown that for simultaneous power optimization and reduced second-order sensitivity to the gains of the blocks less power hungry building blocks must be in the rear stages of the receiver and more power hungry ones in the front. After identifying the limitations of a pure system-level approach, i.e., inability to suppress the sensitivity of the overall performance to the noise and nonlinearity of all the blocks, the focus is shifted towards circuit-level methods by providing re-configurability to some RF circuits. A receiver is designed with good noise and nonlinearity performance and with accumulated noise and nonlinearity distortion contribution in its last stage (mixer). As a result, the overall performance of the receiver is more sensitive to the performance variations of the mixer. Simulations show that it is possible to correct the overall receiver performance degradations resulting from process variations by just tuning the performance of the mixer. Furthermore, a tunable mixer is presented for minimizing the IMD2 across a wide IF bandwidth. It is demonstrated both in theory and measurement that a presented three-dimensional tuning method is beneficial for wideband cancellation of second order intermodulation distortions (IMD2) in a zero-IF downconverter. A 60GHz zero-IF mixer is designed and measured on-wafer to show that the proposed tuning mechanism can simultaneously suppress IMD2 tones across the whole 1GHz IF band. To address the challenges of 60GHz circuit design, a design methodology is utilized which serves to properly model the parasitic effects and improve the predictability of the performance. The parasitic effects due to layout, which are more influential at high frequencies, are taken into account by performing automatic RC extraction and manual L extraction. The long signal lines are modeled with distributed RLC networks. The problem of substrate losses is addressed by using patterned ground shields in inductors and transmission lines. The cross-talk issue is treated by using distributed meshed ground lines, decoupled DC lines, and grounded substrate contacts around sensitive RF components. However, in practice, it is observed that accurate simulation of all the effects is sometimes very time consuming or even infeasible. For instance electromagnetic simulation of a transformer in the presence of all the dummy metals is beyond the computational capability of existing EM-simulators. Three 60GHz receiver components are analyzed, designed, and measured with good performance. A two-stage fully integrated 60 GHz differential low noise amplifier is implemented in a CMOS 65 nm bulk technology with superior noise figure compared to state-of-the-art mm-wave LNAs. A doublebalanced 60 GHz mixer with ac-coupled RF input is designed and measured with a series capacitor in the input RF path to suppress the low frequency second order intermodulation distortions generated in the previous stage. A quadrature 60 GHz VCO is presented which exhibits a comparable level of performance, in particular very good phase noise, to state-of-the-art single-phase VCOs, despite the additional challenges and limitations imposed by the quadrature topology. The on-wafer measurements on the 60GHz circuits designed in this work are performed using a waveguide-based measurement setup. The fixed waveguide structures, specially provided for the probe station, serve for the robustness of the setup as they circumvent the need for cables, which are by nature difficult to rigidify, in the vicinity of the probes. Taking advantage of magic- Ts, it is possible to measure differential mm-wave circuits with a two-port network analyzer rather than using a much more expensive four-port one. Noise, s-parameter, and phase noise measurements are performed using the mentioned setups

    System and Circuit Design Aspects for CMOS Wireless Handset Receivers

    Get PDF

    17-21 GHz Low-Noise Amplifier with Embedded Interference Rejection

    Get PDF
    The ever-growing demand for high performance wireless connectivity has led to the development of fifth-generation (5G) wireless communication standards as well as satellite communication (Satcom). Both 5G wireless communications and Satcom use higher carrier frequencies than traditional standards such as 4G and WiFi. While the higher carrier frequencies allow for larger bandwidths and faster data rates, they come with the cost of high free-space path loss. This high loss necessitates the use of active phased array antennas, which can require hundreds of integrated circuits (ICs) designed in Complimentary Metal-Oxide Semiconductor (CMOS) processes. Furthermore, in a future world with ubiquitous 5G wireless base stations and Satcom users, it is conceivable that Satcom receivers can be jammed by high-power Satcom transmitters and 5G signals. Therefore, Satcom phased arrays must be designed for resilience against these sources of interference while supporting high data rates. One of the key components in a Satcom receiver is the low-noise amplifier (LNA). It is responsible for amplifying the weak, noisy signal received from the satellite into a signal with sufficiently high signal-to-noise ratio for demodulation. One possible solution for making the phased array resilient to sources of interference is to embed filtering in the LNA. This thesis presents two LNA designs that employ embedded filtering for resiliency to interference from 5G wireless signals and Satcom transmitters. First, the circuit-level specifications of a 17.7 - 21.2 GHz (K-band) LNA for satellite communication phased array beamformers are derived from the system requirements. Next, the LNA designs are presented. The first LNA is designed to have out-of-band filtering at 24-30 GHz, which corresponds to the bands containing both 5G and Satcom transmitter interferers. The second LNA is designed to have out-of-band filtering at 27-30 GHz, which addresses a different scenario where the Satcom transmitter is the sole source of interference. Both LNAs are implemented in the Global Foundries 130nm 8XP Silicon-Germanium Bipolar CMOS (SiGe BiCMOS) process. A novel transformer feedback notch is introduced that enhances the filtering capabilities of the amplifier. The full electromagnetic simulation of the first LNA shows a peak gain of 28.8 dB, a minimum noise figure of 1.85 dB, and and input 1 dB compression point (IP1dB) greater than -17 dBm between 24 and 30 GHz. The second LNA shows a peak gain of 27.9 dB, a minimum noise figure of 1.78 dB, and an IP1dB greater than -15 dBm between 27 and 30 GHz. Both LNAs meet specifications sufficient for a Satcom receiver at the same time as having resiliency to out-of-band interference sources

    Interpolation based wideband beamforming frontends for 5G millimetre wave communication

    Get PDF

    HIGH LINEARITY UNIVERSAL LNA DESIGNS FOR NEXT GENERATION WIRELESS APPLICATIONS

    Get PDF
    Design of the next generation (4G) systems is one of the most active and important area of research and development in wireless communications. The 2G and 3G technologies will still co-exist with the 4G for a certain period of time. Other applications such as wireless LAN (Local Area Network) and RFID are also widely used. As a result, there emerges a trend towards integrating multiple wireless functionalities into a single mobile device. Low noise amplifier (LNA), the most critical component of the receiver front-end, determines the sensitivity and noise figure of the receiver and is indispensable for the complete system. To satisfy the need for higher performance and diversity of wireless communication systems, three LNAs with different structures and techniques are proposed in the thesis based on the 4G applications. The first LNA is designed and optimized specifically for LTE applications, which could be easily added to the existing system to support different standards. In this cascode LNA, the nonlinearity coming from the common source (CS) and common gate (CG) stages are analyzed in detail, and a novel linear structure is proposed to enhance the linearity in a relatively wide bandwidth. The LNA has a bandwidth of 900MHz with the linearity of greater than 7.5dBm at the central frequency of 1.2GHz. Testing results show that the proposed structure effectively increases and maintains linearity of the LNA in a wide bandwidth. However, a broadband LNA that covers multiple frequency ranges appears more attractive due to system simplicity and low cost. The second design, a wideband LNA, is proposed to cover multiple wireless standards, such as LTE, RFID, GSM, and CDMA. A novel input-matching network is proposed to relax the tradeoff among noise figure and bandwidth. A high gain (>10dB) in a wide frequency range (1-3GHz) and a minimum NF of 2.5dB are achieved. The LNA consumes only 7mW on a 1.2V supply. The first and second LNAs are designed mainly for the LTE standard because it is the most widely used standard in the 4G communication systems. However, WiMAX, another 4G standard, is also being widely used in many applications. The third design targets on covering both the LTE and the WiMAX. An improved noise cancelling technique with gain enhancing structure is proposed in this design and the bandwidth is enlarged to 8GHz. In this frequency range, a maximum power gain of 14.5dB and a NF of 2.6-4.3dB are achieved. The core area of this LNA is 0.46x0.67mm2 and it consumes 17mW from a 1.2V supply. The three designs in the thesis work are proposed for the multi-standard applications based on the realization of the 4G technologies. The performance tradeoff among noise, linearity, and broadband impedance matching are explored and three new techniques are proposed for the tradeoff relaxation. The measurement results indicate the techniques effectively extend the bandwidth and suppress the increase of the NF and nonlinearity at high frequencies. The three proposed structures can be easily applied to the wideband and multi-standard LNA design

    Parallel integrated receivers for multiple antenna wireless LAN systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 147-154).This thesis focuses on the design of power- and area-efficient parallel integrated receivers for multiple antenna wireless LAN systems. These receivers are part of an indoor parallel radio system that achieves 1 gigabit per second data rates and enables high bandwidth wireless communication between portable user devices and a high speed wired internet connection. Since a critical aspect for efficiency is that an optimal number of transceivers be used to meet system requirements, this thesis first considers power dissipation and area. consumption for parallel integrated transceivers. It develops parallel transceiver power dissipation and area consumption models that are functions of distance, data rate, and noise figure and incorporate the behavior of a multiple-input, multiple-output channel and power dissipation and area consumption values for typical RF circuits. These models properly balance benefits of multiple antennas with drawbacks due to parallel radio overhead. Their application shows that the combined transceiver power dissipation can actually decrease with more antennas and also provides a circuits-based number of antennas upper bound that has not been established previously.(cont.) The thesis then proposes a solution that applies multiple antenna signal-to-noise ratio (SNR) gain at the receiver to reduce its power dissipation and area consumption. SNR gain trades noise figure for power- and area-efficient circuits. The implementation of a, single chip 5.22-GHz area-efficient parallel receiver RFIC that shows practical application of these models, SNR gain, and area-efficient circuits is demonstrated. The context of this design comes from the Wireless Gigabit Local Area Network (WiGLAN). It's system characteristics such as a wide 150 MHz bandwidth and parallel radios uniquely determine a WiGLAN parallel receiver design.by Lunal Khuon.Ph.D

    GigaHertz Symposium 2010

    Get PDF
    corecore