206 research outputs found

    An exact extended formulation for the unrelated parallel machine total weighted completion time problem

    Get PDF
    The plethora of research on NP-hard parallel machine scheduling problems is focused on heuristics due to the theoretically and practically challenging nature of these problems. Only a handful of exact approaches are available in the literature, and most of these suffer from scalability issues. Moreover, the majority of the papers on the subject are restricted to the identical parallel machine scheduling environment. In this context, the main contribution of this work is to recognize and prove that a particular preemptive relaxation for the problem of minimizing the total weighted completion time (TWCT) on a set of unrelated parallel machines naturally admits a non-preemptive optimal solution and gives rise to an exact mixed integer linear programming formulation of the problem. Furthermore, we exploit the structural properties of TWCT and attain a very fast and scalable exact Benders decomposition-based algorithm for solving this formulation. Computationally, our approach holds great promise and may even be embedded into iterative algorithms for more complex shop scheduling problems as instances with up to 1000 jobs and 8 machines are solved to optimality within a few seconds

    A hybrid shifting bottleneck-tabu search heuristic for the job shop total weighted tardiness problem

    Get PDF
    In this paper, we study the job shop scheduling problem with the objective of minimizing the total weighted tardiness. We propose a hybrid shifting bottleneck - tabu search (SB-TS) algorithm by replacing the reoptimization step in the shifting bottleneck (SB) algorithm by a tabu search (TS). In terms of the shifting bottleneck heuristic, the proposed tabu search optimizes the total weighted tardiness for partial schedules in which some machines are currently assumed to have infinite capacity. In the context of tabu search, the shifting bottleneck heuristic features a long-term memory which helps to diversify the local search. We exploit this synergy to develop a state-of-the-art algorithm for the job shop total weighted tardiness problem (JS-TWT). The computational effectiveness of the algorithm is demonstrated on standard benchmark instances from the literature

    Cut generation based algorithms for unrelated parallel machine scheduling problems

    Get PDF
    Research on scheduling in the unrelated parallel machine environment is at best scarce. Moreover, almost all existing work in this area is focused on the minimization of completion time related performance measures and the solution approaches available in the literature suffer from scalability issues. In this dissertation, we leverage on the success of the mathematical programming based decomposition approaches and devise scalable, efficient, and effective cut generation based algorithms for four NP-hard unrelated parallel machine scheduling problems. In the first part,we develop a newpreemptive relaxation for the totalweighted tardiness and total weighted earliness/tardiness problems and devise a Benders decomposition algorithm for solving this preemptive relaxation formulated as a mixed integer linear program. We demonstrate the effectiveness of our approach with instances up to 5 machines and 200 jobs The second part deals with the problem of minimizing the total weighted completion time and proves that the preemptive relaxation developed in part one is an exact formulation for this problem. By exploiting the structural properties of the performance measure, we attain an exact Benders decomposition algorithm which solves instances with up to 1000 jobs and 8 machines to optimality within a few seconds. In the last part, we tackle the unrestricted common due date just-in-time scheduling problemand develop a logic-based Benders decomposition algorithm. Aside from offering the best solution approach for this problem, we demonstrate that it is possible to devise scalable logic-based algorithms for scheduling problems with irregular minsum objectives

    Energy-aware scheduling in heterogeneous computing systems

    Get PDF
    In the last decade, the grid computing systems emerged as useful provider of the computing power required for solving complex problems. The classic formulation of the scheduling problem in heterogeneous computing systems is NP-hard, thus approximation techniques are required for solving real-world scenarios of this problem. This thesis tackles the problem of scheduling tasks in a heterogeneous computing environment in reduced execution times, considering the schedule length and the total energy consumption as the optimization objectives. An efficient multithreading local search algorithm for solving the multi-objective scheduling problem in heterogeneous computing systems, named MEMLS, is presented. The proposed method follows a fully multi-objective approach, applying a Pareto-based dominance search that is executed in parallel by using several threads. The experimental analysis demonstrates that the new multithreading algorithm outperforms a set of fast and accurate two-phase deterministic heuristics based on the traditional MinMin. The new ME-MLS method is able to achieve significant improvements in both makespan and energy consumption objectives in reduced execution times for a large set of testbed instances, while exhibiting very good scalability. The ME-MLS was evaluated solving instances comprised of up to 2048 tasks and 64 machines. In order to scale the dimension of the problem instances even further and tackle large-sized problem instances, the Graphical Processing Unit (GPU) architecture is considered. This line of future work has been initially tackled with the gPALS: a hybrid CPU/GPU local search algorithm for efficiently tackling a single-objective heterogeneous computing scheduling problem. The gPALS shows very promising results, being able to tackle instances of up to 32768 tasks and 1024 machines in reasonable execution times.En la última década, los sistemas de computación grid se han convertido en útiles proveedores de la capacidad de cálculo necesaria para la resolución de problemas complejos. En su formulación clásica, el problema de la planificación de tareas en sistemas heterogéneos es un problema NP difícil, por lo que se requieren técnicas de resolución aproximadas para atacar instancias de tamaño realista de este problema. Esta tesis aborda el problema de la planificación de tareas en sistemas heterogéneos, considerando el largo de la planificación y el consumo energético como objetivos a optimizar. Para la resolución de este problema se propone un algoritmo de búsqueda local eficiente y multihilo. El método propuesto se trata de un enfoque plenamente multiobjetivo que consiste en la aplicación de una búsqueda basada en dominancia de Pareto que se ejecuta en paralelo mediante el uso de varios hilos de ejecución. El análisis experimental demuestra que el algoritmo multithilado propuesto supera a un conjunto de heurísticas deterministas rápidas y e caces basadas en el algoritmo MinMin tradicional. El nuevo método, ME-MLS, es capaz de lograr mejoras significativas tanto en el largo de la planificación y como en consumo energético, en tiempos de ejecución reducidos para un gran número de casos de prueba, mientras que exhibe una escalabilidad muy promisoria. El ME-MLS fue evaluado abordando instancias de hasta 2048 tareas y 64 máquinas. Con el n de aumentar la dimensión de las instancias abordadas y hacer frente a instancias de gran tamaño, se consideró la utilización de la arquitectura provista por las unidades de procesamiento gráfico (GPU). Esta línea de trabajo futuro ha sido abordada inicialmente con el algoritmo gPALS: un algoritmo híbrido CPU/GPU de búsqueda local para la planificación de tareas en en sistemas heterogéneos considerando el largo de la planificación como único objetivo. La evaluación del algoritmo gPALS ha mostrado resultados muy prometedores, siendo capaz de abordar instancias de hasta 32768 tareas y 1024 máquinas en tiempos de ejecución razonables

    PET, a performance evaluation tool for flexible modeling and analysis of computer systems

    Get PDF

    Theoretical and Computational Research in Various Scheduling Models

    Get PDF
    Nine manuscripts were published in this Special Issue on “Theoretical and Computational Research in Various Scheduling Models, 2021” of the MDPI Mathematics journal, covering a wide range of topics connected to the theory and applications of various scheduling models and their extensions/generalizations. These topics include a road network maintenance project, cost reduction of the subcontracted resources, a variant of the relocation problem, a network of activities with generally distributed durations through a Markov chain, idea on how to improve the return loading rate problem by integrating the sub-tour reversal approach with the method of the theory of constraints, an extended solution method for optimizing the bi-objective no-idle permutation flowshop scheduling problem, the burn-in (B/I) procedure, the Pareto-scheduling problem with two competing agents, and three preemptive Pareto-scheduling problems with two competing agents, among others. We hope that the book will be of interest to those working in the area of various scheduling problems and provide a bridge to facilitate the interaction between researchers and practitioners in scheduling questions. Although discrete mathematics is a common method to solve scheduling problems, the further development of this method is limited due to the lack of general principles, which poses a major challenge in this research field

    Column generation for minimizing total completion time in a parallel-batching environment

    Get PDF
    This paper deals with the 1 | p- batch , sj≤ b| ∑ Cj scheduling problem, where jobs are scheduled in batches on a single machine in order to minimize the total completion time. A size is given for each job, such that the total size of each batch cannot exceed a fixed capacity b. A graph-based model is proposed for computing a very effective lower bound based on linear programming; the model, with an exponential number of variables, is solved by column generation and embedded into both a heuristic price and branch algorithm and an exact branch and price algorithm. The same model is able to handle parallel-machine problems like Pm| p- batch , sj≤ b| ∑ Cj very efficiently. Computational results show that the new lower bound strongly dominates the bounds currently available in the literature, and the proposed heuristic algorithm is able to achieve high-quality solutions on large problems in a reasonable computation time. For the single-machine case, the exact branch and price algorithm is able to solve all the tested instances with 30 jobs and a good amount of 40-job examples
    corecore