
CUT GENERATION BASED ALGORITHMS FOR

UNRELATED PARALLEL MACHINE SCHEDULING PROBLEMS

by

HALİL ŞEN

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Sabancı University, İstanbul

August 2015

c©Halil Şen, 2015

All Rights Reserved

ABSTRACT

CUT GENERATION BASED ALGORITHMS FOR

UNRELATED PARALLEL MACHINE SCHEDULING PROBLEMS

HALİL ŞEN

Ph.D. Dissertation, August 2015

Dissertation Supervisor: Assoc. Prof. Dr. Kerem Bülbül

Keywords: unrelated parallel machine scheduling, Benders decomposition,

logic-based Benders decomposition, exact method, heuristics

Research on scheduling in the unrelated parallel machine environment is at
best scarce. Moreover, almost all existing work in this area is focused on the
minimization of completion time related performance measures and the solution
approaches available in the literature suffer from scalability issues. In this dis-
sertation, we leverage on the success of the mathematical programming based
decomposition approaches and devise scalable, efficient, and effective cut gener-
ation based algorithms for four NP-hard unrelated parallel machine scheduling
problems.

In the first part, we develop a new preemptive relaxation for the total weighted
tardiness and total weighted earliness/tardiness problems and devise a Benders
decomposition algorithm for solving this preemptive relaxation formulated as a
mixed integer linear program. We demonstrate the effectiveness of our approach
with instances up to 5 machines and 200 jobs.

The second part deals with the problem of minimizing the total weighted
completion time and proves that the preemptive relaxation developed in part one
is an exact formulation for this problem. By exploiting the structural properties of
the performance measure, we attain an exact Benders decomposition algorithm
which solves instances with up to 1000 jobs and 8 machines to optimality within
a few seconds.

In the last part, we tackle the unrestricted common due date just-in-time
scheduling problem and develop a logic-based Benders decomposition algorithm.
Aside from offering the best solution approach for this problem, we demonstrate
that it is possible to devise scalable logic-based algorithms for scheduling prob-
lems with irregular minsum objectives.

iv

ÖZET

ALAKASIZ PARALEL MAKİNE ÇİZELGELEME PROBLEMLERİNE

KESİ TÜRETME TABANLI ALGORİTMALAR

HALİL ŞEN

Doktora Tezi, Ağustos 2015

Tez Danışmanı: Doç. Dr. Kerem Bülbül

Anahtar Kelimeler: alakasız paralel makine çizelgeleme, Benders ayrıştırma,

mantık tabanlı Benders ayrıştırma, pekin yöntem, sezgizel yöntem

Alakasız paralel makine ortamındaki çizelgeleme problemleri üzerindeki
araştırmalar en iyimser bakış açısıyla sınırlı durumdadırlar. Dahası, bu alanda var
olan çalışmaların neredeyse tümü iş tamamlanma zamanıyla alakalı performans
ölçütlerinin enküçüklenmesine yoğunlaşmış durumdadır ve literatürdeki mev-
cut çözüm yaklaşımları ölçeklenebilirlik sorunlarından muzdaripdirler. Bu tezde,
matematiksel programlama tabanlı ayrıştırma yaklaşımlarının başarısından güç
alınarak, dört adetNP-zor alakasız paralel makine çizelgeleme problemine ölçek-
lenebilir, etkili ve yüksek verimli kesi türetme tabanlı algoritmalar tasarlanmıştır.

İlk kısımda, toplam ağırlıklandırılmış gecikme ve toplam ağırlıklandırılmış
erkenlik/gecikme problemleri için yeni bir geçişli gevşetme geliştirilmiş ve bir
karışık tamsayılı doğrusal program olarak formüle edilmiş bu geçişli gevşetmeyi
çözmek için bir Bender ayrıştırma algoritması tasarlanmıştır. Yaklaşımımızın
etkinliğini göstermek üzere 5 makine ve 200 iş büyüklüğüne kadar örnekler
çözülmüştür.

İkinci kısım toplam ağırlıklandırılmış tamamlanma zamanı problemini ele al-
makta ve ilk kısımda geliştirilen geçişli gevşetmenin bu problem için pekin bir
gösterim olduğunu ispatlamaktadır. Dahası, bu performans ölçütünün yapısal
özelliklerinden faydalanılarak, 8 makine ve 1000 iş büyüklüğüne kadar örnek-
lerin eniyi çözümlerine saniyeler içerisinde ulaşan pekin bir Benders ayrıştırma
algoritması elde edilmiştir.

Sonuncu kısımda ise kısıtlandırılmamış ortak termin zamanlı tam zamanında
çizelgeleme problemi ele alınmakta ve mantık tabanlı Benders ayrıştırma algorit-
ması geliştirilmektedir. Bu problem için en başarılı çözüm yaklaşımını sunmanın
yanı sıra, bu kısım, düzenli olmayan enküçük-toplam performans ölçütlü çizel-
geleme problemleri için ölçeklenebilir bir mantık tabanlı algoritma tasarlamanın
mümkün olduğunu göstermektedir.

v

to Babik, my love and muse

and

to my friends and parents

Acknowledgments

First and foremost I would like to express my gratitude and appreciation to

my advisor, Kerem Bülbül, who continued to believe in me despite me not giving

him a reason to. I have been lucky enough to work with him, and without his

substantial help, support and encouragement, this dissertation would not have

been possible.

I would like to express my deepest love and gratitude to Babik, without whom

I wouldn’t be the person I am today. Her love, support, and encouragement

nurtured my spirit and soul. I will be eternally in her debt. I would also like to

thank İnci and Öncel Koca who opened their home to me and treated me as one

of their own.

Many thanks to all of my friends for being there whenever I needed, and for

tolerating me at my bad moments. I cannot possibly state all, but I would like to

mention some of them for sharing important moments of my life. Belit and Ozan

Dağdeviren, Sezen and Anıl Can, Nurşen and Ömer M. Özkırımlı, Neva Özcü,

Selin Erçil, Arda Kurtoğlu, U. Mahir Yıldırım, Gülnur Kocapınar, Belma Yelbay,

Koray Kuvvet, and Funda Aktan, I am very happy to have you in my life. I would

not be able to keep my sanity if it weren’t for you.

I also would like to thank the people of VanDerSal – especially, Barış Özgür

Çıtır, Eren Kozluca, Mert Soykan, and İlhan Şahiner – for the occasionally wasteful,

but nevertheless wonderful times we have spent all together.

Many thanks to Sinem Aydın, Banu Akıncı, Barış Tümer, and Osman Rahmi

Fıçıcı for all of their help with the bureaucratic and technical university matters.

Finally, I would like to thank the Scientific and Technological Research Council

of Turkey (TÜBİTAK) for financially supporting me throughout my graduate life

within the frameworks of the 2210- and 2211-National Scholarship Programme

for Graduate Students.

vii

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Outline . 3

2 A STRONG PREEMPTIVE RELAXATION FOR
TOTAL WEIGHTED TARDINESS AND EARLINESS/TARDINESS 5
2.1 Introduction . 6
2.2 Review of Related Literature . 8
2.3 Problem Statement and Preemptive Relaxation 17
2.4 Benders Decomposition . 23

2.4.1 Validity and Strengthening of the Benders Cuts 26
2.5 Computational Results . 32

2.5.1 Results for Rm-TWT . 35
2.5.2 Results for Rm-TWET . 42

3 AN EXACT EXTENDED FORMULATION FOR
TOTAL WEIGHTED COMPLETION TIME 48
3.1 Introduction . 49
3.2 Review of Related Literature . 51
3.3 Formulation and Solution Approach 54

3.3.1 Benders Decomposition . 62
3.4 Computational Results . 72

4 LOGIC-BASED BENDERS DECOMPOSITION FOR
COMMON DUE DATE TOTAL WEIGHTED EARLINESS/TARDINESS 80
4.1 Introduction . 81
4.2 Review of Related Literature . 82

4.2.1 Parallel Machine Scheduling 83
4.2.2 LBBD in Scheduling . 85

4.3 Solution Approach . 87
4.3.1 Overview of LBBD . 88
4.3.2 LBBD for Rm-UCDD . 90
4.3.3 Strengthened Bounding Functions 92

4.4 Computational Results . 101

5 CONCLUSION AND FUTURE RESEARCH 109

Bibliography 111

viii

LIST OF TABLES

2.1 Summary of the important points in Section 2.2. 15
2.2 Instance generation parameters. 33
2.3 Results for Rm-TWT. 36
2.4 Results for Rm-TWET. 44

3.1 Average optimality gap and solution time results for Rm-TWCT. . . 75

4.1 Average optimality gap and solution time results for Rm-UCDD . . 103

ix

LIST OF FIGURES

2.1 The empirical distributions of the optimality gaps of the upper
bounds by (TR −A)-BDS for Rm-TWT. 39

2.2 The empirical distributions of the solution times of (TR −A)-BDS
and (TR −A)-CPX for Rm-TWT. 41

2.3 The empirical distributions of the optimality gaps of the upper
bounds by (TR −A)-BDS for Rm-TWET. 45

2.4 The empirical distributions of the solution times of (TR −A)-BDS
and (TR −A)-CPX for Rm-TWET. 46

3.1 The empirical distributions of the solution times and the optimality
gaps of (TR −A)-BDS (—) and (CQ) -CPLEX (– –) for Rm-TWCT
instances with 2, 4, and 6 machines. 77

3.2 The empirical distributions of the solution times and the optimality
gaps of (TR −A)-BDS (—) and (CQ) -CPLEX (– –) for Rm-TWCT
instances with 8, 16, and 30 machines. 78

4.1 The empirical distributions of the solution times and the optimality
gaps of BDS (—) and CPX (– –) for Rm-UCDD instances with 50,
60, and 80 jobs. 106

4.2 The empirical distributions of the solution times and the optimality
gaps of BDS (—) and CPX (– –) for Rm-UCDD instances with 100,
400, and 1000 jobs. 107

x

LIST OF ABBREVIATIONS

Notation Description Page List
B&B Branch-and-bound 2, 6, 8, 9, 15, 51, 52, 109

CG Column generation 10, 52, 86

CP Constraint programming 84, 85, 86

CQIP Convex quadratic integer
programming

15, 52, 54, 72, 81, 84, 88, 90,
100

LBBD Logic-based Benders
decomposition

2, 4, 80, 81, 82, 84, 86, 88, 89,
90, 99, 105, 110

LP Linear programming 6, 10, 12, 19, 22, 23, 38, 40, 41,
43, 50, 52, 54, 57, 61, 62, 63,
83, 84, 85, 89

LR Lagrangian relaxation 1, 10, 11, 12, 15

MIP Mixed integer linear
programming

2, 3, 5, 6, 22, 25, 48, 49, 50, 52,
54, 57, 84, 85, 86, 109

Rm-UCDD Rm/d j = dl/
∑

j ǫ jE j + π jT j 81, 82, 83, 84, 87, 88, 89, 90,
100, 104, 105, 108, 110

Rm-TWCT Rm//
∑

j w jC j 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 61, 64, 69, 72,
74, 76, 109

Rm-TWET Rm//
∑

j ǫ jE j + π jT j 5, 6, 12, 17, 18, 19, 21, 22, 24,
25, 26, 28, 30, 32, 33, 34, 35,
40, 41, 42, 43, 45, 46, 49, 50,
57, 58, 109, 110

Rm-TWT Rm//
∑

j π jT j 5, 6, 12, 17, 18, 19, 21, 22, 23,
24, 25, 26, 30, 31, 32, 33, 34,
35, 37, 40, 41, 42, 43, 45, 46,
49, 50, 57, 58, 109, 110

xi

Notation Description Page List
TWCT Total weighted completion time 3, 4, 48, 50, 51, 57, 61, 62, 68,

84

TWET Total weighted earliness/tardiness 3, 5, 6, 47, 49, 50, 53

TWT Total weighted tardiness 3, 5, 6, 9, 49, 50, 53

UCDD Unrestrictive common due date
total weighted earliness/tardiness

3, 4, 80, 90

WLPT Weighted longest processing time 90, 100

WSPT Weighted shortest processing time 49, 55, 59, 61, 65, 68, 69, 70,
71, 90, 100

xii

CHAPTER 1

INTRODUCTION

The prevalence of actual manufacturing environments where a set of tasks has to

be executed on a set of alternate resources attests to the practical relevance of the

parallel machine scheduling environment. For instance, many production steps

in semiconductor manufacturing feature unrelated parallel machines because ex-

isting machines are augmented over time with machines of newer technology for

ramping up production (Shim and Kim, 2007a). Another setting observed in the

inspection operations in semiconductor manufacturing creates the context for a

recent work by Detienne et al. (2011) on unrelated parallel machines with step-

wise individual job cost functions. Several other industries, such as the beverage,

printing, and pharmaceutical industries, require processing steps performed by a

set of parallel machines (Biskup et al., 2008). Therefore, a thorough understanding

of the trade-offs that govern the parallel machine environment is fundamental for

the successful operation in many different manufacturing settings.

The scheduling literature is often criticized for its emphasis on the single-

machine environment which is arguably not encountered frequently in today’s

complex shop floors. However, virtually every scheduling algorithm conceived

for multi-stage production systems does either generalize or depend upon the fun-

damental principles derived from the basic single-machine scheduling problems.

A similar argument is valid for the parallel machine environment as well (Pinedo,

2008, p.111). Decomposition algorithms devised for multi-stage systems, such

as Lagrangian relaxation (LR), Dantzig-Wolfe reformulation, Benders decompo-

sition, and the shifting bottleneck heuristic, give rise to either single- or parallel

machine scheduling subproblems that have to be solved many times in an iter-

1

ative framework. The ultimate performance of such decomposition approaches

depends critically on our ability to solve these machine scheduling subproblems

with a high solution quality in short computational times. Moreover, the study of

parallel machines is the immediate logical extension of single-machine schedul-

ing from a theoretical perspective and for a given partition of the set of jobs over

the set of machines, a parallel machine scheduling problem is just a collection of

independent single-machine scheduling problems. Therefore, parallel machine

scheduling problems are generally regarded as set partitioning problems where

the complexity of calculating the cost of a partition depends on the difficulty of

the underlying single-machine scheduling problem. Furthermore, our specific

interest in unrelated parallel machines is also prompted by a simple observation –

i.e., capacity expansions over time naturally result in production steps performed

on a set of unrelated parallel machines as equipment technology evolves. Shim

and Kim (2007a), for instance, discuss this issue in the context of semiconductor

manufacturing. Thus, there is a clear need for good algorithms tailored to the un-

related parallel machine environment. However, the literature reviews presented

in Sections 2.2, 3.2, and 4.2 reveal that the research on unrelated parallel machine

scheduling is at best scarce in the fullest sense of the word.

Multi-machine scheduling problems may be modeled as mixed integer linear

programming (MIP) problems in which all necessary decisions – e.g., assignment,

sequencing, scheduling – are handled simultaneously by a monolithic formula-

tion. However, exploiting the aforementioned set partitioning nature of the prob-

lem and separating some of these decisions from each other and tackling them

synchronously may go a long way in terms of computational efficiency. It turns

out that similar exact solution procedures – that rely on mathematical program-

ming based decomposition techniques – proposed for identical parallel machine

scheduling problems and their performances are far more promising compared

to those of monolithic formulations and custom branch-and-bound (B&B) proce-

dures. Furthermore, this is true for both completion time and the due date related

performance measures.

Another line of successful solution methods for multi-machine scheduling

problems is due to the logic-based Benders decomposition (LBBD) framework

developed in recent years. The basic principle of this framework is to find a

2

valid bounding function which represents a lower bound on the optimal objective

function value of the problem. Then, this bounding function is used to create

cuts in the Benders decomposition algorithm. The efficacy of this type of solution

procedure is demonstrated in the literature on several scheduling problems with

basic objective functions – such as finding a feasible solution, minimizing job to

machine assignment costs, etc. – and on those with regular minmax performance

measures – e.g., minimizing makespan, maximum lateness.

Motivated by these practical and theoretical considerations, our primary objec-

tive in this dissertation is to devise scalable, efficient, and effective cut generation

based algorithms for unrelated parallel machine scheduling problems. To this

end, we study four NP-hard unrelated parallel machine scheduling problems,

tree of which are proven to be NP-hard in the strong sense. More specifically,

the performance measures considered in this dissertation are total weighted tardi-

ness (TWT), total weighted earliness/tardiness (TWET), total weighted completion

time (TWCT), and last but not least, unrestrictive common due date total weighted

earliness/tardiness (UCDD).

The specific motivations behind the selection of each performance measure

and their significance are outlined in the introduction section of their respective

chapters. Nevertheless, the common thread to all these performance measures is

that even though they all are very fundamental scheduling objectives and studied

extensively under other machine scheduling settings, they are not well studied in

the unrelated parallel machine environment.

1.1 Outline

To facilitate the possibility of studying each problem independently, the results

of this dissertation are presented in three separate main chapters. Each chapter is

designed to be self contained in the sense that they can be read with little to no

smattering from other chapters. In each chapter, we first present a brief summary

of the work carried out, then introduce the problem and the motivation behind

studying this specific performance measure. This is followed by the sections in

which we present our main theoretical and methodological contributions, and we

conclude each chapter with the results of the computational experiments.

3

In Chapter 2, we study TWT and TWET, and develop a new preemptive

relaxation which provides tight lower bounds and near-optimal job to machine

partitions. This relaxation turns out to be a hard to solve MIP problem and we

devise a computationally effective Benders decomposition algorithm which can

handle very large instances of this formulation. This chapter has been published

as (Şen and Bülbül, 2015b).

Chapter 3 is dedicated to one of the most frequently studied fundamental

scheduling objectives – i.e., TWCT. We prove that the preemptive relaxation of

Chapter 2 is an exact formulation when the performance measure is TWCT. By

exploiting the structural properties of TWCT, we attain a very fast and scalable

exact Benders decomposition-based algorithm for solving this formulation. This

chapter has been submitted as (Bülbül and Şen, 2015).

In Chapter 4, we consider the unrestricted common due date just-in-time

scheduling problem and devise an exact LBBD algorithm by studying the combi-

natorial structure of UCDD. The proposed solution approach turns out to be very

efficient, and it is by far the best performing exact algorithm up to date for solving

this hard scheduling problem. The manuscript of this chapter is in preparation

(Şen and Bülbül, 2015a).

We conclude the dissertation in Chapter 5 with a summary of the conclusions

drawn from Chapters 2–4 and indicate possible future research directions.

4

CHAPTER 2

A STRONG PREEMPTIVE

RELAXATION FOR TOTAL

WEIGHTED TARDINESS AND

EARLINESS/TARDINESS

Research on due date oriented objectives in the parallel machine environment

is at best scarce compared to objectives such as minimizing the makespan or

the completion time related performance measures. Moreover, almost all exist-

ing work in this area is focused on the identical parallel machine environment.

In this chapter, we leverage on our previous work on the single-machine total

weighted tardiness (TWT) and total weighted earliness/tardiness (TWET) prob-

lems and develop a new preemptive relaxation for the TWT and TWET problems

on a bank of unrelated parallel machines. The key contribution of this study is

devising a computationally effective Benders decomposition algorithm for solv-

ing the preemptive relaxation formulated as a mixed integer linear programming

(MIP) problem. The optimal solution of the preemptive relaxation provides a

tight lower bound. Moreover, it offers a near-optimal partition of the jobs to the

machines, and then we exploit recent advances in solving the non-preemptive

single-machine TWT and TWET problems for constructing non-preemptive solu-

tions of high quality to the original problem. We demonstrate the effectiveness of

our approach with instances up to 5 machines and 200 jobs.

5

2.1 Introduction

Most of the studies in the scheduling literature are typically concerned with de-

veloping algorithms for a single objective function. The proposed approaches

tend to be highly specialized and not easily extensible to other objectives and

settings. Ultimately, scheduling software is tailored to individual settings, and

scheduling research is fragmented. In this context, we emphasize that in this

chapter we attack two popular scheduling objectives TWT and TWET within a

single algorithmic framework. The TWT objective is a special case of the TWET

objective; however, observe that TWET is non-regular while TWT is regular. It

is well-established that non-regular objectives give rise to new theoretical and

computational issues (Baker and Scudder, 1990, Kanet and Sridharan, 2000), and

we point out that it is uncommon to tackle both objectives simultaneously. For-

mally, we characterize the problems we consider as Rm//
∑

j π jT j (Rm-TWT) and

Rm//
∑

j ǫ jE j + π jT j (Rm-TWET) for minimizing the TWT and TWET on a set of

m unrelated parallel machines, respectively, following the three field notation of

Graham et al. (1979) in classifying scheduling problems. The notation Rm in the

first field stands for a bank of m unrelated machines. The earliness and tardiness

of job j are represented by E j and T j, respectively, and ǫ j and π j are the associated

unit weights. Both Rm-TWT and Rm-TWET are strongly NP-hard because the

strongly NP-hard single-machine scheduling problem 1//
∑

π jT j (Lenstra et al.,

1977) is a special case of both of these problems. We next summarize briefly our

motivation and main contributions in this chapter.

The review of the related literature in Section 2.2 identifies the lack of strong

lower bounds as a major impediment to the development of exact algorithms

and the performance analysis of heuristics for the TWT and TWET objectives in

the parallel machine environment. Shim and Kim (2007a) attack the unweighted

version of Rm-TWT, and their branch-and-bound (B&B) algorithm does not scale

beyond 5 machines and 20 jobs. In their concluding remarks, the authors state

that “..., further research is needed if one needs to solve problems of larger or

practical sizes. One way may be to develop more effective or tighter lower

bounds since the lower bound used in the B&B algorithm suggested in this study

does not seem to be very tight.” More generally, in their effort to compute

6

strong linear programming (LP) based bounds for a class of parallel machine

scheduling problems with additive objectives, van den Akker et al. (1999) observe

that “additive objective functions pose a computational challenge because it is

difficult to compute strong lower bounds.” These comments provide a strong

motivation for the study in this chapter. All promising existing results assume

that the machines are identical and often exploit this fact in some way; e.g., by

aggregating the machine capacity constraints. Clearly, such approaches do not

necessarily extend to or yield similar results for unrelated parallel machines. In

this chapter, we set out to provide tight lower bounds and near-optimal solutions

for the TWT and TWET objectives in the unrelated parallel machine environment.

To this end, we propose a new preemptive relaxation that explicitly assigns jobs

to specific machines. This preemptive relaxation generalizes and builds upon the

success of the related previous studies on the single-machine weighted tardiness

and weighted earliness/tardiness scheduling problems (Bülbül et al., 2007, Pan

and Shi, 2007, Şen and Bülbül, 2012, Sourd and Kedad-Sidhoum, 2003). The

resulting lower bound is tight, and perhaps more importantly, the job partition

retrieved from the (near-)optimal solution of the preemptive relaxation provides

us with sufficient information to construct feasible non-preemptive schedules of

high quality for the original problem. That is, we recognize that the main practical

difficulty of solving Rm-TWT and Rm-TWET to (near-)optimality is determining

a good job partition, and we directly incorporate this aspect of the problem into

our rationale for developing this particular relaxation. Once a job partition is

available, we rely on recent advances by Tanaka et al. (2009) and Tanaka and

Fujikuma (2012) to solve m independent single-machine TWT or TWET problems,

respectively, to construct a non-preemptive solution of high quality to the original

unrelated parallel machine scheduling problem. The downside of our preemptive

relaxation is that it is formulated as a difficult MIP problem. A key contribution

of this chapter is devising a computationally effective Benders decomposition

algorithm that can handle very large instances of this formulation. Here, the lazy

constraint generation scheme of IBM ILOG CPLEX (2011) proves instrumental for a

successful implementation. Moreover, as we point out in the previous paragraph,

both objectives TWT and TWET are tackled successfully by the same algorithm.

In the next section, we review the related literature and put our work into

7

perspective. We introduce and formulate the proposed preemptive relaxation in

Section 2.3 and then develop our solution approach based on Benders decom-

position in Section 2.4. This is followed in Section 2.5 by an extensive set of

computational experiments.

2.2 Review of Related Literature

Early research on parallel machine scheduling is primarily concerned with the

makespan and total (weighted) completion time objectives (Cheng and Sin, 1990).

We refer the reader to Pinedo (2008) for a comprehensive discussion of the polyno-

mially solvable cases and structural results of interest for these problems. Some of

the more recent and well-known examples of the papers that studyNP-complete

problems in this domain include van den Akker et al. (1999), Chen and Powell

(1999b), Azizoglu and Kirca (1999a), and Azizoglu and Kirca (1999b). Studies

on due date related performance measures in the parallel machine environment

commenced in earnest in the 1990’s and picked up more significantly during the

last decade. In this review, we mainly restrict our attention to the literature on

parallel machine tardiness and earliness/tardiness scheduling problems with job

dependent due dates. This part of the literature creates the context for our study,

and we provide a few important pointers otherwise. The great majority of the

existing studies on due date related performance measures assumes that the ma-

chines are identical, and only a handful of papers consider the case of unrelated

parallel machines. For most of the proposed exact approaches, computational

scalability remains an issue due to the lack of strong lower bounds. Therefore,

we also specifically elaborate on the existing lower bounding methods for paral-

lel machine scheduling problems with additive tardiness and earliness/tardiness

objective functions in order to justify our alternate lower bounding scheme intro-

duced in Section 2.3. See Table 2.1 at the end of this section for a summary of

the important points in this section. Note that the performance figures presented

in this section are obtained by their respective authors on different computing

platforms.

The first exact approach for minimizing the total tardiness with distinct due

dates on identical parallel machines is due to Azizoglu and Kirca (1998). The

8

authors integrate some dominance rules and a simple bounding technique into a

B&B procedure for this problem Pm//
∑

j T j, where Pm in the first field indicates a

set of m identical parallel machines. The algorithm is able to handle instances with

up to 15 jobs and 3 machines. The lower bound of Azizoglu and Kirca belongs

to a very common and simple set of lower bounds which rely on determining

a lower bound for the jth smallest job completion time C[j], j = 1, . . . ,n, among

the set of all feasible schedules. These lower bounds on the completion times

are then matched with the weights and the due dates in some appropriate order

so that the resulting expression yields a lower bound for the problem under

consideration. Lower bounding techniques based on such minimal completion

times are developed or employed in several other papers with tardiness related

objectives (Koulamas, 1997, Liaw et al., 2003, Shim and Kim, 2007a,b, Souayah

et al., 2009, Yalaoui and Chu, 2002). There is a consensus in the literature that this

class of lower bounds is not strong in general. Furthermore, in problems with

earliness/tardiness objectives the presence of unforced idle time renders similar

lower bounding techniques invalid. For the same problem Pm//
∑

j T j, Yalaoui

and Chu (2002) devise another B&B scheme. The limit of this algorithm appears

to be 20 jobs and 2 machines within a time limit of 30 minutes.

The series of papers by Liaw et al. (2003), Shim and Kim (2007a), and Shim

and Kim (2007b) develop a set of closely related optimal methods. Liaw et al.

(2003) attack the problem Rm//
∑

j π jT j of minimizing TWT on unrelated parallel

machines. This study appears to be the first exact approach for this problem. The

lower bounding scheme is very similar to that in Azizoglu and Kirca (1999b) with

a simple enhancement based on the structure of the tardiness objective; however,

the method does not scale beyond 4 machines and 18 jobs. Shim and Kim (2007a)

tackle the unweighted version Rm//
∑

j T j in the same machine environment. The

proposed B&B method employs some of the existing dominance properties in ad-

dition to new ones. The lower bounding technique of Liaw et al. (2003) is adopted,

and an alternate lower bound is obtained by reducing the original problem into

a single-machine problem by modifying the processing times appropriately and

using a previously existing result for the single-machine total tardiness problem.

The largest problem size that can be handled successfully within 1 hour is 5 ma-

chines and 20 jobs. In a similar work, Shim and Kim (2007b) address the problem

9

Pm//
∑

T j, and instances with up to 5 machines and 30 jobs are solved optimally

within 1 hour. Jouglet and Savourey (2011) devise dominance rules and filtering

methods for the problem Pm/r j/
∑

j π jT j, where the notation r j in the second field

indicates that the release dates may be non-identical, and embed these into a B&B

procedure along with an existing lower bound. The authors argue that the lack of

good lower bounds prevents them from solving instances with more than 20 jobs

and 3 machines.

All of the optimal methods discussed so far base their lower bounding ef-

forts on combinatorial arguments that rely on simple properties of the scheduling

objectives under consideration. The resulting bounds are generally loose. How-

ever, the most promising lower bounds for parallel machine total (weighted)

tardiness and earliness/tardiness problems are derived through mathematical

programming techniques. For instance, the LP relaxations of the set partition-

ing formulations of common due date / common due window earliness/tardiness

problems solved by column generation (CG) yield a prominent class of tight lower

bounds (Chen and Lee, 2002, Chen and Powell, 1999a). Bounds obtained from var-

ious relaxations of time-indexed formulations are also popular in parallel machine

scheduling. An arc-time-indexed formulation whose LP relaxation is tackled by

CG is at the heart of the highly efficient branch-cut-and-price algorithm of Pes-

soa et al. (2010) for Pm//
∑

π jT j. This study is by far the most successful exact

algorithm to date on parallel machine tardiness problems and delivers optimal

solutions to instances with up to 100 jobs and 4 machines. Tanaka and Araki

(2008) apply Lagrangian relaxation (LR) to the time-indexed formulation of the

problem Pm//
∑

T j in an effort to develop tight lower bounds. Instances with up

to 25 jobs and 10 machines are solved optimally. The average gap of the initial

lower bound is 2.4% for the instances not solved at the root node. Souayah et al.

(2009) take on the weighted version of the problem and study Pm//
∑

j π jT j. With

a mix of combinatorial, mathematical programming, and LR based lower bounds,

about half of the instances with up to 35 jobs and 2 machines are solved to op-

timality within 20 minutes. We refer the interested reader to the review paper

Sen et al. (2003) where the tardiness literature on multi-machine systems is briefly

addressed as well.

Following this discussion, two observations are due regarding the state of the

10

literature. First, there is a clear need for studying the tardiness related objectives

in the unrelated parallel machine environment; we can pinpoint only two studies

which focus on the unrelated parallel machine environment. Second, more than

20 to 30 jobs and a few machines seems to be generally beyond the reach for the

existing exact methods, attributed to the lack of strong lower bounds. We hope to

provide a potential remedy to this issue in this chapter.

Several heuristics have been proposed for minimizing the total (weighted)

tardiness on identical parallel machines. Many of them apply list scheduling

based on some priority index and sometimes enhance the initial schedule by

local search. Yalaoui and Chu (2002) review several heuristics of this kind. An

interesting deviation from the mainstream here is the decomposition heuristic by

Koulamas (1997). The author heuristically extends the well-known decomposition

principle valid for 1//
∑

T j to the problem Pm//
∑

T j with very good results. At

each iteration, the position of one job in the overall schedule is fixed, where the

subproblems in the decomposition are solved by a fast and effective heuristic for

Pm//
∑

T j that observes the decomposition principle for the individual machine

schedules. Furthermore, a hybrid simulated annealing heuristic is devised which

is outperformed by the decomposition heuristic based on the solution quality

and time trade-off. The results for 100-job instances indicate that the proposed

heuristics are on average about 10-11% away from optimality with respect to a

lower bound. A recent list scheduling heuristic by Biskup et al. (2008) for Pm//
∑

T j

yields somewhat better results than those of Koulamas for large instances with up

to 5 machines and 200 jobs. An absolute assessment of the solution quality is not

available due to the lack of a good lower bound or a scalable exact method. For

the weighted version, i.e., the problem Pm//
∑

π jT j, Armentano and Yamashita

(2000) design a tabu search heuristic. For evaluation purposes, they benchmark

their feasible solutions against the LR based lower bound by Luh et al. (1990).

This lower bound is obtained by dualizing the machine capacity constraints in

an integer programming formulation of the problem, similar to that by Tanaka

and Araki (2008) discussed in the main text. In the original paper, Luh et al.

include very limited computational experience, but the results of Armentano and

Yamashita (2000) for instances with up to 10 machines and 150 jobs are promising.

For instances with 100 jobs, the average optimality gap with respect to the LR

11

bound of Luh et al. (1990) is 8.14% which drops to 5.80% for 150-job instances. On

the flip side, Armentano and Yamashita report that computing the lower bound

of Luh et al. takes about 3 hours for 100- and 150-job instances.

For unrelated parallel machines, we are aware of only three papers by Zhou

et al. (2007), Mönch (2008), and Lin et al. (2011) which focus on heuristics for

Rm//
∑

j π jT j. The first two studies rely on ant colony optimization and benchmark

their algorithms against simple heuristics which makes it difficult to evaluate

the solution quality in absolute terms. Lin et al. propose a genetic algorithm

and two simpler heuristics. The genetic algorithm outperforms all others in the

computational experiments and deviates from the optimal solution by 1.8% on

average for small instances with 4 machines and 20 jobs. The heuristic that

we develop in this chapter is scalable to large instances with up to 200 jobs

and simultaneously produces both lower and upper bounds of high quality. As

evident from the discussion here, this is a significant edge over those in the

literature, and we make a valuable contribution to the (unrelated) parallel machine

scheduling research with tardiness objectives.

To the best of our knowledge, no exact algorithm has been designed to date

for the problem of scheduling a set of independent jobs on a bank of unrelated

parallel machines with the objective of minimizing the total (weighted) earliness

and tardiness. However, various studies investigate special cases of this problem

– see the literature review given in Section 4.2.1 of Chapter 4. The most closely re-

lated works to our problem Rm-TWET are by Kedad-Sidhoum et al. (2008), Mason

et al. (2009), and M’Hallah and Al-Khamis (2012). Kedad-Sidhoum et al. experi-

ment with various relaxations of the problem Pm/r j/
∑

j π jT j+ ǫ jE j by recognizing

that the main difficulty in solving earliness/tardiness scheduling problems stems

from the lack of strong lower bounds. The authors extend two classes of lower

bounds originally proposed for the single-machine case to the identical parallel

machine environment. Their discrete assignment-based lower bound is discussed

further in Section 2.3 because it is closely related to our preemptive lower bound-

ing method for Rm-TWT and Rm-TWET. Kedad-Sidhoum et al. report that the

LR obtained by dualizing the machine capacity constraints in the time-indexed

formulation outperforms others, taking into account both the solution quality and

gap. Tanaka and Araki (2008) – discussed previously – employ the same LR for

12

Pm//
∑

T j. The best bound attained by solving the Lagrangian dual problem in

these relaxations is equivalent to that provided by the LP relaxation of the time-

indexed formulation. However, solving the Lagrangian dual problem – generally

by subgradient optimization – is often computationally more efficient. We also

attest to the rapidly increasing computational effort required to solve the LP relax-

ation of the time-indexed formulation in Section 2.5. Kedad-Sidhoum et al. obtain

upper bounds through a simple local search. Experimental results attest to the

quality of both the lower and upper bounds. The average optimality gap attained

for instances with up to six machines and 90 jobs is around 1.5%. However, we cite

two good reasons for not following a similar path to that of Kedad-Sidhoum et al.

and Tanaka and Araki. First, the machine capacity constraints in the time-indexed

formulation may be aggregated in the identical parallel machine environment by

defining a single resource with a capacity of performing m jobs simultaneously,

and this renders the number of dual variables in the LR independent from the

number of machines in the problem. This, however, is not possible for Rm-TWT

and Rm-TWET, and relaxing the machine capacity constraints – one for each com-

bination of time period and machine – would result in mH dual variables instead

of just H. Consequently, solving the Lagrangian dual problem would quickly

become a formidable task with an increasing number of machines. Second, the

solution retrieved from the LR does offer little information on how to identify

near-optimal job to machine assignments. The job start times provided by the LR

for a given set of dual multipliers form the basis for a dispatch rule in Tanaka

and Araki (2008); however, both these authors and Kedad-Sidhoum et al. need to

devise independent heuristics in order to obtain feasible solutions of high-quality

for their original problems.

The moving block heuristic of Mason et al. (2009) for Pm//
∑

E j + T j is tested

against an integer programming formulation over instances with up to 40 jobs

and 4 machines. The heuristic identifies feasible solutions which are on average

better than the incumbent for 20- and 40-job instances. Like Kedad-Sidhoum

et al., M’Hallah and Al-Khamis tackle the weighted version of the problem. Their

integer programming formulation points out and corrects an error in that of

Mason et al. (2009). The limit of the formulation appears to be instances with no

more than 20 jobs. In addition, several new heuristics are introduced. The best

13

performing contender turns out to be a hybrid heuristic which is benchmarked

against the lower and upper bounds of Kedad-Sidhoum et al. (2008). The hybrid

heuristic improves some of the best known solutions for the instances of Kedad-

Sidhoum et al.; however, it yields slightly worse solutions on average. The median

gap of the hybrid heuristic ranges from 1.4% to 6.1% with respect to the lower

bounds of Kedad-Sidhoum et al. (2008) depending on the problem size. It is

evident that there is a gap in the literature with respect to the parallel machine

earliness/tardiness scheduling problems with distinct due dates. To the best of our

knowledge, our work provides the first viable solution approach for the unrelated

parallel machine environment in this context.

14

Table 2.1 Summary of the important points in Section 2.2.

Paper Problem Method Main Results. [n, m]†, Time/Gap†

Liaw et al. (2003) Rm//
∑

j π jT j Exact B&B. First exact approach. [18, 4]
Shim and Kim (2007a) Rm//

∑

j T j Exact B&B. Bound of Liaw et al. (2003) and an alternate one. [20, 5], 60 min
Zhou et al. (2007) Rm//

∑

j π jT j Heuristic Ant colony optimization
Mönch (2008) Rm//

∑

j π jT j Heuristic Ant colony optimization. ATC dispatching, decomposition heuristic
Lin et al. (2011) Rm//

∑

j π jT j Heuristic Genetic algorithm and two simple heuristics. [20, 4], 1.8%
Plateau and Rios-Solis (2010) Rm/d j = d/

∑

j ǫ jE j + π jT j Exact Convex quadratic integer programming (CQIP) formulation. Results
for d j = dr not satisfactory. [50, 4], 60 min

Azizoglu and Kirca (1998) Pm//
∑

j T j Exact B&B. Dominance rules. Lower bound based on minimal completion
times. [15, 3]

Yalaoui and Chu (2002) Pm//
∑

j T j Exact B&B. [20, 2], 30 min
Shim and Kim (2007b) Pm//

∑

j T j Exact B&B. Dominance rules. [30, 5], 60 min
Tanaka and Araki (2008) Pm//

∑

j T j Exact Lagrangian relaxation (LR) to time-indexed formulation. [25, 10]
Souayah et al. (2009) Pm//

∑

j π jT j Exact Mix of bounds. [35, 2], 20 min
Pessoa et al. (2010) Pm//

∑

j π jT j Exact Branch-cut-and-price. Arc-time-indexed. Best to date. [100, 4]
Jouglet and Savourey (2011) Pm/r j/

∑

j π jT j Exact B&B. Dominance rules. [20, 3]
Koulamas (1997) Pm//

∑

j T j Heuristic Decomposition heuristic. [100, 8], ∼ 10%
Armentano and Yamashita (2000) Pm//

∑

j π jT j Heuristic Tabu search. LR of Luh et al. (1990). [150, 10], 5%-10%
Biskup et al. (2008) Pm//

∑

j T j Heuristic List scheduling. [200, 5]
Chen and Powell (1999a) Pm/d j = dl/

∑

j ǫ jE j + π jT j Exact Set partitioning formulation. Dantzig-Wolfe decomposition. [60, 6]
Chen and Lee (2002) Pm/[d1, d2] /

∑

j ǫ jE j + π jT j Exact Extends (Chen and Powell, 1999a). Common due window. Column
generation (CG). [40, m]

Kedad-Sidhoum et al. (2008) Pm/r j/
∑

j ǫ jE j + π jT j Heuristic LR to time-indexed formulation. [90, 6], 1.5%
Rios-Solis and Sourd (2008) Pm/d j = dr/

∑

j ǫ jE j + π jT j Heuristic Dynamic programming to explore exponential-size neighborhood
†: Largest instance size tackledsuccessfully and the associated time / optimality gap informationif available.

Continued on next page. . .

15

Table 2.1 continued. . .

Paper Problem Method Main Results. [n, m]†, Time/Gap†

Mason et al. (2009) Pm//
∑

j E j + T j Heuristic Moving-block heuristic. [40, 4]
M’Hallah and Al-Khamis (2012) Pm//

∑

j ǫ jE j + π jT j Heuristic Two constructive and three meta-heuristics. [90, 6], 1.4%-6.4%

Cheng and Sin (1990) “A State-of-the-Art Review of Parallel-Machine Scheduling”
Baker and Scudder (1990) “Sequencing with Earliness and Tardiness Penalties: A Review”
Kanet and Sridharan (2000) “Scheduling with Inserted Idle Time: Problem Taxonomy and Literature Review”
Sen et al. (2003) “Static Scheduling Research to Minimize Weighted and Unweighted Tardiness: A State-of-the-Art Survey”
Lauff and Werner (2004) “Scheduling with Common Due Date, Earliness and Tardiness Penalties for Multimachine Problems: A Survey”
†: Largest instance size tackled successfully and the associated time / optimality gap information if available.

16

2.3 Problem Statement and Preemptive Relaxation

We consider a bank of m unrelated parallel machines and n jobs, which are all

ready at time zero. Each job is processed on exactly one of the machines, where

the processing of job j on machine k requires an integer duration of p jk time units.

The completion time of job j is denoted by C j. A due date d j – also assumed

to be integral – is associated with each job j, and we incur a cost π j per unit

time if job j completes processing after d j. Thus, the total weighted tardiness

over all jobs is determined as
∑

j π jT j, where the tardiness of job j is calculated as

T j = max(0,C j−d j). For the problem Rm//
∑

j π jT j+ǫ jE j, the objective additionally

penalizes the completion of job j prior to its due date d j at a rate of ǫ j per unit

time, where the earliness of job j is defined as E j = max(0, d j − C j). All machines

are available continuously from time zero onward, and a machine can execute at

most one operation at a time. An operation must be carried out to completion

once started, i.e., preemption is not allowed.

In this section, we introduce our preemptive lower bounding scheme for Rm-

TWT and Rm-TWET. We define two primary design goals for our preemptive

relaxation. The tightness of the lower bound is clearly a major concern. Equally

important is the information that can be extracted from the optimal solution of

the preemptive relaxation to construct feasible solutions of high quality for the

original non-preemptive problem. We attain both of these goals – somewhat more

successfully for Rm-TWT than for Rm-TWET from a computational perspective

– and demonstrate the effectiveness of the proposed lower and upper bounds in

Section 2.5.

A class of highly efficient lower bounds based on a particular preemption

scheme was developed for single-machine tardiness and earliness/tardiness sched-

uling problems during the last decade (Bülbül et al., 2007, Şen and Bülbül, 2012,

Sourd and Kedad-Sidhoum, 2003). The key idea of these preemptive relaxations

is to divide up jobs with integer processing times into jobs of unit-length and

associate a cost with the completion of each of these unit-length jobs. That is,

jobs may only be preempted at integer points in time. In this setting, the prob-

lem of solving the preemptive relaxation is formulated as an assignment or a

transportation problem, where the length of the planning horizon depends on the

17

magnitude of the due dates and the sum of the processing times. Therefore, the

formulation size is pseudo-polynomial. On the up side, the availability of very

fast algorithms for the assignment and transportation problems does still render

this lower bounding technique viable. The formulation (TR) below is due to

Kedad-Sidhoum et al. (2008), where the original approach in the single-machine

environment is extended to m identical parallel machines.

(TR) minimize
n

∑

j=1

H
∑

t=1

c′jtx jt (2.1)

subject to
H

∑

t=1

x jt = p j, j = 1, . . . ,n, (2.2)

n
∑

j=1

x jt ≤ m, t = 1, . . . ,H, (2.3)

0 ≤ x jt ≤ 1, j = 1, . . . ,n, t = 1, . . . ,H. (2.4)

In the model (TR), the time period t represents the time interval (t − 1, t], and

consequently in any optimal schedule all jobs finish processing no later than in

period H, where

H =































































n
∑

j=1

max
k

(

p jk

)

/m





















+ pmax for Rm-TWT, and





















n
∑

j=1

max
k

(

p jk

)

/m





















+ pmax + dmax for Rm-TWET.

(2.5)

The end of the planning horizon H is determined based on the following observa-

tion. For Rm-TWT with a regular objective function, all machines are continuously

busy until some time t′ ≤
⌈

∑n
j=1 maxk

(

p jk

)

/m
⌉

if at least m jobs are still not com-

pleted. Therefore, after time t′ the remaining m − 1 jobs are finished in at most

pmax = max j,k

(

p jk

)

time periods. The end of the planning horizon may thus be set

to the value in the first row of (2.5). An optimal solution of Rm-TWET, on the

other hand, may include unforced idleness, and the argument just described is

only valid if we conservatively assume that all jobs are started at dmax = max j d j.

Clearly, pmax may be omitted from (2.5) in the case of a single-machine.

If a unit job of job j is executed during the time interval (t − 1, t], the decision

18

variable x jt assumes the value one, and the objective is charged a cost of c′
jt
. The

constraints (2.2) mandate that each job j receives p j units of processing. To observe

the machine capacities, constraints (2.3) require that no more than m unit jobs are

processed simultaneously in a given period. Note that the machine index is

omitted from the processing times because they are all identical for a given job.

Furthermore, no integrality is imposed on the decision variables due to the total

unimodularity of the constraint matrix of (TR). The optimal objective function

value of (TR) is a lower bound on that of Pm//
∑

j π jT j+ǫ jE j, as long as the objective

function coefficients satisfy

t
∑

s=t−p j+1

c′js ≤ ǫ j(d j − t)+ + π j(t − d j)+, j = 1, . . . ,n, t = p j, . . . ,H. (2.6)

That is, the total cost incurred in (TR) by any job that is scheduled non-preemp-

tively is no larger than that in the original non-preemptive problem (Bülbül et al.,

2007). Naturally, the strength of the lower bound depends on the objective coeffi-

cients c′
jt
, and this is where the existing works in the literature take different paths.

For instance, the cost coefficients of Sourd and Kedad-Sidhoum (2003) satisfy (2.6)

as an equality. Bülbül et al. (2007) characterize and develop an expression for the

cost coefficients that are the best among those with a piecewise linear structure

with two segments. For these cost coefficients, (2.6) holds as a strict inequality

for some values of t. For the one machine problem, these authors also show that

the lower bound retrieved from (TR) is no better than that provided by the LP

relaxation of the time-indexed formulation. Conversely, Pan and Shi (2007) prove

the existence of a set of objective coefficients for (TR) so that the LP relaxation of

the time-indexed formulation and (TR) yield identical lower bounds. However,

computing the values of these cost coefficients is no less time consuming than

solving the LP relaxation of the time-indexed formulation. We also note that the

empirical performance of the algorithms based on this set of relaxations is more

than satisfactory (Bülbül et al., 2007, Pan and Shi, 2007, Şen and Bülbül, 2012,

Sourd and Kedad-Sidhoum, 2003). They strike a good balance between solution

quality and time.

Factoring in all arguments in this section, the set of preemptive relaxations

19

discussed in the previous paragraph emerges as a strong candidate for deriving

strong lower bounds for our problems of interest Rm-TWT and Rm-TWET. How-

ever, one hurdle remains in the pursuit of our second design goal of constructing

non-preemptive solutions of high quality directly based on the information re-

trieved from the optimal solution of the preemptive relaxation. In the optimal

solution of (TR), the unit jobs of job j cannot overlap in time, but they can be

processed on different machines. Consequently, no explicit assignment of the jobs

to the machines is available. This is a major drawback because it complicates

the task of obtaining a non-preemptive feasible solution to the original problem.

In the sequel, we demonstrate that overcoming this difficulty allows us to attain

good upper bounds in addition to good lower bounds.

The downside of (TR) is that the optimal solution does not guarantee that

we can assign all unit jobs of a job to the same machine. Such a requirement

is incorporated in the following model (TR −A) at the expense of additional

variables and destroying the desirable polyhedral structure of the transportation

problem. The binary variable y jk takes the value 1 if job j is assigned to machine

k, and is zero otherwise. In addition, the x−variables and the associated objective

coefficients are supplemented with a machine index k to allow us to assign a unit

job of job j explicitly to machine k in period t.

(TR −A) minimize
n

∑

j=1

m
∑

k=1

H
∑

t=1

c jktx jkt (2.7)

subject to
H

∑

t=1

x jkt = p jky jk, j = 1, . . . ,n, k = 1, . . . ,m, (2.8)

n
∑

j=1

x jkt ≤ 1, k = 1, . . . ,m, t = 1, . . . ,H, (2.9)

m
∑

k=1

y jk = 1, j = 1, . . . ,n, (2.10)

x jkt ≥ 0, j = 1, . . . ,n, k = 1, . . . ,m, t = 1, . . . ,H, (2.11)

y jk ∈ {0, 1}, j = 1, . . . ,n, k = 1, . . . ,m. (2.12)

(TR −A) differs from (TR) in two main aspects. The capacity constraints (2.9)

appear in a disaggregated form, and all unit jobs of job j are performed on the

20

same machine by constraints (2.8) and the job partitioning constraints (2.10). As

we hinted at earlier, the cost coefficients c′
jkt

are of critical importance for the

strength of the lower bounds provided by the preemptive relaxation. In this

research, we stick with the cost coefficients by Bülbül et al. (2007) given in (2.13)

and adapted in an obvious way to the unrelated parallel machine environment for

two reasons. They empirically outperform those by Sourd and Kedad-Sidhoum

(2003) on average (Bülbül et al., 2007, Kedad-Sidhoum et al., 2008), and computing

the best set of cost coefficients for a given instance by the method of Pan and Shi

(2007) is expensive.

c′jkt =



















ǫ j

p jk

[

(d j −
p jk

2) − (t − 1
2)
]

for t ≤ d j, and
π j

p jk

[

(t − 1
2) − (d j −

p jk

2)
]

for t > d j.
(2.13)

We next provide a proposition that the optimal solution of (TR −A) with the

cost coefficients given above provides a lower bound on the optimal objective

function value of the original problem Rm-TWT or Rm-TWET. The result is a

corollary of Bülbül et al. (2007, Theorem 2.2), where the authors show that the

cost coefficients in (2.13) satisfy (2.6).

Proposition 2.1. The optimal objective function value of (TR −A) with the cost coeffi-

cients given by equation (2.13) is a lower bound on the optimal objective function value

of the original non-preemptive problem Rm-TWT or Rm-TWET.

Proof. Let SP represent a feasible schedule for problem (P) with a total cost of

TC
(

SP

)

. The notation (P(y)) stands for problem (P) in which the jobs are assigned

to the machines a priori, but the individual machine schedules for this job partition

y are to be optimized. An optimal schedule is denoted by an asterisk in the

superscript.

For any given fixed job partition y, both the original non-preemptive prob-

lems Rm-TWT and Rm-TWET – denoted by (NP) – and the preemptive relaxation

decompose into m independent single-machine problems. Therefore, we have

TC
(

S∗
NP(y)

)

=
∑m

k=1 TC
(

S∗
NP(yk)

)

and TC
(

S∗
TR−A(y)

)

=
∑m

k=1 TC
(

S∗
TR−A(yk)

)

, where

S∗
NP(yk)

and S∗
TR−A(yk)

stand for the optimal non-preemptive and preemptive sched-

ules on machine k under y, respectively. By Bülbül et al. (2007, Theorem 2.2),

21

TC
(

S∗
TR−A(yk)

)

≤ TC
(

S∗
NP(yk)

)

for k = 1, . . . ,m, and we have

TC
(

S∗
TR−A(y)

)

=

m
∑

k=1

TC
(

S∗
TR−A(yk)

)

≤

m
∑

k=1

TC
(

S∗
NP(yk)

)

= TC
(

S∗
NP(y)

)

.

This relationship is independent from y and does also hold for the optimal job

partition y∗ which concludes the proof. �

Our overall strategy for obtaining near-optimal feasible solutions and good

lower bounds for Rm-TWT and Rm-TWET is now clear. We first solve (TR −A),

retrieve the job partition, and then build m individual machine schedules inde-

pendently. Several heuristics with excellent empirical performance are available

for both 1//
∑

j π jT j and 1//
∑

j π jT j + ǫ jE j to perform the latter task. However,

in this work we rely on the recent powerful optimal algorithms of Tanaka et al.

(2009) and Tanaka and Fujikuma (2012) to handle the single-machine problems

as we mentioned in Section 2.1. Our computational experiments in Section 2.5

ultimately support this decision. Thus, only one major challenge remains. The

formulation (TR −A) is an MIP problem that is time consuming to solve based on

our preliminary computational experiments. However, for a fixed job partition

it decomposes into m independent LP problems – m independent transportation

problems –, and these LP problems are solved to optimality very efficiently. These

observations suggest that (TR −A) is amenable to Benders decomposition (Ben-

ders, 1962), and developing a Benders decomposition algorithm with strengthened

cuts for (TR −A) is our main methodological contribution in this chapter.

One final remark is due before we delve into the specifics of our solution

method for (TR −A). For Rm-TWT, the formulation may be strengthened by the

load balancing constraints (2.14) which assert that the workloads of two machines

cannot differ by more than pmax in an optimal solution of the original non-preemp-

tive parallel machine scheduling problem. Otherwise, we could transfer the final

job on one of these machines to the other one without degrading the objective

function value. Note that similar concepts have been incorporated into various

properties and dominance rules elsewhere in the literature (Azizoglu and Kirca,

1999b, Theorem 1). However, for Rm-TWET with a non-regular objective function,

22

we can easily create instances for which no optimal solution satisfies (2.14).

−pmax ≤

n
∑

j=1

p jky jk −

n
∑

j=1

p jly jl ≤ pmax, k = 1, . . . ,m − 1, l = k + 1, . . . ,m. (2.14)

These cuts are added to the preemptive formulation (TR −A) when solving Rm-

TWT and help speed up the solution process for large instances.

2.4 Benders Decomposition

Parallel machine scheduling problems have a partitioning and a scheduling com-

ponent. That is, if we assign jobs to machines by fixing the variables y jk, j =

1, . . . ,n, k = 1, . . . ,m, so that the constraints (2.10) are satisfied, then the model

(TR −A) decomposes into m independent transportation problems. We exploit

this key observation to design an algorithm based on Benders decomposition for

solving (TR −A) efficiently. To this end, we reformulate (TR −A) for a fixed y by

replacing the right hand side of the set of constraints (2.8) by p jky jk and dropping

the set of constraints (2.10) and (2.12) from the model. In the resulting LP problem
(

TR −A(y)
)

, u jk, j = 1, . . . ,n, k = 1, . . . ,m, and vkt, k = 1, . . . ,m, t = 1, . . . ,H, are

the dual variables associated with the set of constraints (2.8) and (2.9), respec-

tively. The dual of
(

TR −A(y)
)

is then stated below, where the decomposition

into m independent transportation problems is made explicit:

z(y) =
m

∑

k=1

zk(y), (2.15)

where

(

DSk − F
)

zk(y) = maximize
n

∑

j=1

p jky jku jk +

H
∑

t=1

vkt (2.16)

subject to u jk + vkt ≤ c jkt, j = 1, . . . ,n, t = 1, . . . ,H, (2.17)

vkt ≤ 0, t = 1, . . . ,H, (2.18)

23

is the dual of the transportation problem
(

TRk

)

for machine k. In the sequel,
(

TRk

)

and
(

DSk − F
)

are also referred to as the cut generation subproblem and the

dual slave problem, respectively, by following the common terminology for Benders

decomposition.

Based on the objective function (2.16) of
(

DSk − F
)

, we obtain the following

relaxed Benders master problem (RMP), where C denotes the current number

of times the cut generation subproblems
(

TRk

)

, k = 1, . . . ,m, have been solved.

The optimal values of the dual variables u jk, j = 1, . . . ,n, k = 1, . . . ,m, and vkt, k =

1, . . . ,m, t = 1, . . . ,H, in round c of the cut generation are represented by uc
jk

and vc
kt

,

respectively. The auxiliary variable ηk indicates a lower bound on the total cost

incurred by the jobs assigned to machine k, and the objective function value
∑m

k=1 ηk

of (RMP) is therefore a lower bound on the optimal objective values of (TR −A)

and the original non-preemptive scheduling problem Rm-TWT or Rm-TWET.

(RMP) minimize
m

∑

k=1

ηk (2.19)

subject to
m

∑

k=1

y jk = 1, j = 1, . . . ,n, (2.20)

ηk ≥

n
∑

j=1

p jku
c
jky jk +

H
∑

t=1

vc
kt, k = 1, . . . ,m, c = 1, . . . ,C, (2.21)

y jk ∈ {0, 1}, j = 1, . . . ,n, k = 1, . . . ,m. (2.22)

Note that
(

TR −A(y)
)

is feasible and
(

DSk − F
)

, k = 1, . . . ,m, is bounded for any

y that satisfies the constraints (2.10). Therefore, no feasibility cuts are required,

and only optimality cuts are generated and added iteratively to (RMP) during

the course of the algorithm. Furthermore, the cut generation subproblem
(

TRk

)

for machine k includes all jobs and is solved by considering the full length of the

planning horizon. From a computational point of view, however, we are better off

by defining the set of jobs to be processed on machine k as Jk = { j | y jk = 1}, setting

the last period of processing on machine k – designated by Hk – as appropriate

based on (2.5), and then solving a restricted version of
(

TRk

)

over these jobs and

time periods only. This restricted cut generation subproblem formulation and the

corresponding dual slave problem are referred to as
(

TRk − R
)

and
(

DSk − R
)

,

24

respectively. Obviously, the optimal solution of
(

TRk − R
)

may be extended to an

optimal solution of
(

TRk

)

trivially by setting x jkt = 0 for j ∈ Jk, t = Hk+1, . . . ,H, and

j 6∈ Jk, t = 1, . . . ,H. The relationship between the optimal solutions of
(

DSk − F
)

and
(

DSk − R
)

and its implications for the dynamic generation of the constraints

(2.21) require a deeper discussion which is relegated to the next section.

In the multi-cut relaxed master problem formulation (RMP) above, we approx-

imate the objective function of (TR −A) by estimating the cost accumulated on

each machine separately as evident from the set of constraints (2.21). Alterna-

tively, we could have employed a weaker single-cut version of the relaxed master

problem by aggregating all m cuts generated after solving
(

TRk

)

, k = 1, . . . ,m,

and replacing
∑m

k=1 ηk by a single variable η in the formulation as appropriate. The

single-cut version results in fast solution times for the relaxed master problem

at the expense of more iterations overall. Ultimately, the trade-off between these

two alternatives is only decided during the computations. In our preliminary

testing, the cut generation algorithm based on (RMP) was clearly superior to that

based on the single-cut version in terms of speed. Thus, the rest of the chapter is

focused exclusively on (RMP). The pseudo-code of the cut generation procedure

is stated in Algorithm 1.

Algorithm 1: Procedure generate_cuts.
input : A feasible partition y of jobs to machines.
output :Returns zk(y) and the strengthened cuts of the form (2.24) for k = 1, . . . ,m.

1 for k = 1 to m do
2 Solve

(

TRk − R
)

, retrieve zk(y) and the optimal solution (uk,vk) for the dual

slave
(

DSk − R
)

;

/* Calculate an alternate optimal solution (u′
k
,v′

k
) for

(

DSk − R
)

that satisfies Lemma 2.2 by following the construction in the

proof. */

3 vmax
k
= maxt=1,...,Hk

vkt;
4 if vmax

k
< 0 then u′

jk
= u jk− | v

max
k
|, j ∈ Jk, v′

kt
= vkt+ | v

max
k
|, t = 1, . . . ,Hk else

(u′
k
,v′

k
) = (uk,vk);

// Construct an optimal solution (u′′
k
,v′′

k
) for

(

DSk − F
)

.

5 v′′
kt
= v′

kt
, t = 1, . . . ,Hk, and v′′

kt
= 0, t = Hk + 1, . . . ,H;

6 u′′
jk
= u′

jk
, j ∈ Jk, and u′′

jk
, j 6∈ Jk, is calculated based on either (2.29) or (2.30),

respectively, depending on whether we solve an instance of Rm-TWT or
Rm-TWET;

7 Generate and add (2.24) to cuts;

25

2.4.1 Validity and Strengthening of the Benders Cuts

The validity of Benders decomposition (Benders, 1962) derives from the indepen-

dence of the feasible region of the dual slave problem from the values of the inte-

ger variables. For an MIP problem of the form minimize
{

gx + hy : Gx +Hy ≥ b,

x ∈ R+, y ∈ Z+
}

, where all matrices and vectors have appropriate dimensions, the

dual slave problem for a given y is stated as maximize
{

wT(b −Hy) : wTG ≤ g,

w ∈ R+}, where w is the vector of dual variables of appropriate size. In other

words, the dual slave problem is always solved over the same dual polyhedron
{

wTG ≤ g, w ∈ R+}, and only the objective function depends on the values of the

integer variables. As a consequence, the maximum number of cuts to be generated

is bounded from above by the number of extreme points of the dual polyhedron.

These issues need a closer look, however, if we opt for solving
(

TRk − R
)

instead

of
(

TRk

)

because this amounts to solving the dual slave problem over different fea-

sible regions every time and contradicts the basic pillar of Benders decomposition.

Observe that a cut of the form

ηk ≥
∑

j∈Jk

p jku jky jk +

Hk
∑

t=1

vkt (2.23)

produced directly out of an optimal solution of
(

DSk − R
)

relies on the assumption

that augmenting this solution trivially with u jk = 0 for j 6∈ Jk and vkt = 0 for

t = Hk + 1, . . . ,H, is feasible with respect to
(

DSk − F
)

. It is a simple matter to

show that as long as the optimal solution of
(

DSk − R
)

satisfies maxt=1,...,Hk
vkt = 0

(see Lemma 2.2), this augmented solution is feasible with respect to
(

DSk − F
)

if

we are solving an instance of Rm-TWT because the cost coefficients c′
jkt

are non-

negative and non-decreasing over time. However, the trivial augmentation is not

necessarily feasible for every instance of Rm-TWET, and (2.23) might therefore

be an invalid Benders cut. To illustrate, consider an instance of Rm-TWET and

assume that for some assignment y of the jobs to the machines we solve
(

TRk − R
)

with Hk ≤ d j − 1, where j 6∈ Jk and p jk > 1. In the trivially augmented solution

for
(

DSk − F
)

, constraint (2.17) for job j and time period d j is violated because

c′
jkd j
=
ǫ j

p jk

(

1
2 −

p jk

2

)

< 0 for ǫ j > 0 and p jk > 1, and u jk + vkd j
= 0 + 0 ≤ c′

jkd j
does

not hold. Therefore, we need a mechanism which can always extend an optimal

26

solution of
(

DSk − R
)

to an optimal solution of
(

DSk − F
)

. Proposition 2.3 proves

that the cut strengthening procedure described next fulfills this goal. This ensures

that the dual slave problem is always solved over the same feasible region and

the generated Benders cuts are valid.

Several papers in the literature report that a straightforward implementation of

Benders decomposition yields a dismal performance from a computational point

of view (Fischetti et al., 2010, Magnanti and Wong, 1981, Üster and Agrahari, 2011,

Van Roy, 1986, Wentges, 1996). This is often rooted in the primal degeneracy in

the cut generation subproblem which implies the existence of multiple optimal

solutions to the dual slave problem. That is, possibly several alternate cuts may be

generated based on the same master problem solution, and the particular choice

has a profound impact on the computational performance. These concerns are

also valid for us because the transportation problem suffers from a well-known

primal degeneracy. To address these issues, we initially adapted the generic

Benders cut strengthening method introduced recently by Fischetti et al. (2010)

to our problem. These authors argue that identifying a small set of constraints

in the subproblem that allows us to cut the current master solution is of practical

interest to enhance the computational performance. To this end, they pose the

cut generation subproblem as a pure feasibility problem and look for a minimal

infeasible subsystem of small cardinality. However, applying this technique to

our problem does not preserve the transportation problem structure in the cut

generation subproblems. This results in substantially prolonged subproblem

solution times with ultimately uncompetitive overall performance for Benders

decomposition. Instead, here we follow an approach that is similar to those of

Van Roy (1986) and Üster and Agrahari (2011) to strengthen our Benders cuts,

which also resolves the issue pointed out in the previous paragraph regarding the

validity of the cuts constructed based on an optimal solution of
(

DSk − R
)

. We

reap great savings in solution time from this enhancement. In fact, our algorithm

exhibits very poor convergence without this cut strengthening.

The key to showing the validity of our cut generation as well as strengthening

the Benders cuts is to prove that we can always augment an optimal solution

of
(

DSk − R
)

to obtain a feasible solution of
(

DSk − F
)

with the same objective

function value. This would establish that the augmented solution is optimal for

27

(

DSk − F
)

because y jk = 0 for all j 6∈ Jk and vkt ≤ 0 for all t = Hk + 1, . . . ,H

(see Proposition 2.3). Compared to (2.21), the benefit is that we can produce a

strengthened Benders cut of the form

ηk ≥

n
∑

j=1

p jku
′′
jky jk +

H
∑

t=1

v′′kt (2.24)

from an optimal solution (u′′
k
,v′′

k
) of

(

DSk − F
)

so that u′′
jk
6= 0 for j 6∈ Jk in general.

We first need the following result to attain our goal.

Lemma 2.2. There exists an optimal solution (u′
k
,v′

k
) to

(

DSk − R
)

such that

max
t=1,...,Hk

v′kt = 0.

Proof. Assume that an optimal solution (uk,vk) to
(

DSk − R
)

is available. The

claim holds trivially if there are idle periods in the schedule – which would

typically be true for an instance of Rm-TWET – because for any idle period t we

have vkt = 0 due to complementary slackness. We set (u′
k
,v′

k
) = (uk,vk).

Otherwise, assume that there is no idleness in the schedule, i.e., Hk =
∑

j∈Jk
p jk.

Define vmax
k
= maxt=1,...,Hk

vkt ≤ 0 and construct a new solution u′
jk
= u jk− | vmax

k
|

, j ∈ Jk, v′
kt
= vkt+ | v

max
k
|, t = 1, . . . ,Hk. Observe that (u′

k
,v′

k
) belongs to the feasible

region of
(

DSk − R
)

because

u′jk + v′kt = u jk− | v
max
k | +vkt+ | v

max
k |= u jk + vkt ≤ c′jkt, j ∈ Jk, t = 1, . . . ,Hk,

by the feasibility of (uk,vk) for
(

DSk − R
)

, and v′
kt
= vkt+ | vmax

k
|≤ 0 for all t =

1, . . . ,Hk, by the definition of vmax
k

. Furthermore, the objective function value

associated with (u′
k
,v′

k
) is identical to that of (uk,vk):

∑

j∈Jk

p jky jku
′
jk
+

Hk
∑

t=1
v′

kt
=

∑

j∈Jk

p jk

(

u jk− | v
max
k |

)

+

Hk
∑

t=1

(

vkt+ | v
max
k |

)

=
∑

j∈Jk

p jku jk− | v
max
k |

∑

j∈Jk

p jk +

Hk
∑

t=1

vkt+ | v
max
k | Hk

=
∑

j∈Jk

p jky jku jk +

Hk
∑

t=1

vkt.

28

Therefore, (u′
k
,v′

k
) is an alternate optimal solution, and

max
t=1,...,Hk

v′kt = max
t=1,...,Hk

{

vkt+ | v
max
k |

}

= 0

by the definition of vmax
k

. �

Assume that we are given an optimal solution (u′
k
,v′

k
) of

(

DSk − R
)

which

satisfies the property in Lemma 2.2 and a corresponding Benders cut of the form

(2.23). Clearly, we can always extend the planning horizon in
(

DSk − R
)

to

1, . . . ,H, and augment this optimal solution with zeros as necessary and still

preserve the optimality. Therefore, without loss of generality assume that an

augmented optimal solution (u′
k
,v′′

k
) is available to

(

DSk − R
)

, where v′′
kt
= v′

kt

for t = 1, . . . ,Hk, and v′′
kt
= 0 for t = Hk + 1, . . . ,H. Based on this augmented

optimal solution, we next explain how an original Benders cut of the form (2.23)

is strengthened, and then prove that this strengthened cut corresponds to an

optimal solution of
(

DSk − F
)

and is therefore valid.

The variables u jk, j 6∈ Jk, do not appear in
(

DSk − R
)

and are implicitly assumed

to be zero. Consequently, no term appears on the right hand side of a Benders cut

(2.23) for the jobs that are assigned to other machines in the current relaxed master

solution y. However, y jk = 0 for all such jobs j 6∈ Jk, and we can produce a stronger

cut by incorporating y jk, j 6∈ Jk, into the right hand side of (2.23) with positive

coefficients p jku
′′
jk
, j 6∈ Jk, if possible. In order to compute a good set of values

u′′
jk
, j 6∈ Jk, we solve the following optimization problem for a given augmented

optimal solution (u′
k
,v′′

k
) of

(

DSk − R
)

:

maximize
∑

j6∈Jk

p jku jk (2.25)

subject to u jk ≤ c′jkt − v′′kt, j 6∈ Jk, t = 1, . . . ,H. (2.26)

The constraints (2.26) are required to establish that the coefficients of the strength-

ened cut correspond to an optimal solution of
(

DSk − F
)

– see Proposition 2.3.

Clearly, (2.25)-(2.26) decomposes by job, and the optimal solution is determined

29

as:

u′′jk = min

{

min
t=1,...,Hk

(c′jkt − v′′kt), min
t=Hk+1,...,H

c′jkt

}

, j 6∈ Jk. (2.27)

For an instance of Rm-TWT, the cost coefficients c′
jkt

are non-decreasing over

t = 1, . . . ,H. In addition, we have maxt=1,...,Hk
v′′

kt
= 0. Then,

min
t=1,...,Hk

(c′jkt − v′′kt) ≤ max
t=1,...,Hk

c′jkt ≤ min
t=Hk+1,...,H

c′jkt. (2.28)

Consequently, (2.27) simplifies to

u′′jk = min
t=1,...,Hk

(c′jkt − v′′kt), j 6∈ Jk, (2.29)

for Rm-TWT.

For Rm-TWET, we have to differentiate between two cases because the cost

coefficients c′
jkt
, 1, . . . ,H, are not non-decreasing over time:

u′′jk =



























min

(

min
t=1,...,Hk

(c′
jkt
− v′′

kt
), c′

jkHk+1

)

if Hk ≥ d j

min

(

min
t=1,...,Hk

(c′
jkt
− v′′

kt
), c′

jkd j

)

if Hk ≤ d j − 1



























, j 6∈ Jk. (2.30)

Thus, the strengthened cut finally takes the form specified in (2.24), where

u′′
jk
= u′

jk
for j ∈ Jk and u′′

jk
, j 6∈ Jk, is calculated based on either (2.29) or (2.30),

respectively, depending on whether we solve an instance of Rm-TWT or Rm-TWET.

We next prove that this augmented solution (u′′
k
,v′′

k
) is optimal for

(

DSk − F
)

.

Proposition 2.3. The dual variables (u′′
k
,v′′

k
), which produce a strengthened Benders cut

(2.24), are optimal with respect to
(

DSk − F
)

.

Proof. Recall that (u′′
k
,v′′

k
) is constructed by augmenting an optimal solution (u′

k
,v′

k
)

of
(

DSk − R
)

which satisfies the property in Lemma 2.2. Therefore, u′′
jk
+ v′′

kt
≤

c′
jkt
, j ∈ Jk, t = 1, . . . ,Hk, and v′′

kt
≤ 0, t = 1, . . . ,Hk, hold automatically. In addition,

v′′
kt
, t = Hk + 1, . . . ,H, are set directly to zero. Therefore, we only need to verify

that u′′
jk
+ v′′

kt
≤ c′

jkt
, j ∈ Jk, t = Hk + 1, . . . ,H, and u′′

jk
+ v′′

kt
≤ c′

jkt
, j 6∈ Jk, t = 1, . . . ,H, to

show the feasibility of (u′′
k
,v′′

k
) for

(

DSk − F
)

. The latter inequalities are enforced

directly by the constraints (2.26). For the former, note that for any job j ∈ Jk the

30

end of the planning horizon Hk is larger than d j in both Rm-TWT and Rm-TWET.

Then, by a similar argument that leads to (2.28), u′′
jk
≤ maxt′=1,...,Hk

c′
jkt′

and we

obtain u′′
jk
+ v′′

kt
= u′′

jk
≤ maxt′=1,...,Hk

c′
jkt′
≤ c′

jkt
for all time periods t = Hk + 1, . . . ,H,

as desired.

The optimal objective function value of
(

DSk − F
)

is bounded from above by

that of
(

DSk − R
)

because all constraints of
(

DSk − R
)

are present in (2.17)-(2.18),

y jk = 0 for j 6∈ Jk, and
∑H

t=Hk+1 vkt ≤ 0. This completes the proof since the objective

function value associated with (u′′
k
,v′′

k
) in

(

DSk − F
)

is clearly identical to that

associated with the optimal solution (u′
k
,v′

k
) in

(

DSk − R
)

. �

The pseudo-code of our Benders decomposition scheme with the cut strength-

ening feature for solving (TR −A) is stated in Algorithm 2 where Procedure

generate_cuts is stated in Algorithm 1, and Proposition 2.3 proves its correctness.

The cut strengthening specified by the Steps 3–6 in Algorithm 1 has a pseudo-

polynomial time complexity of O(nH) with an overall complexity of O(mnH) for

m machines. In practice, it is very fast.

In classical textbook applications of Benders decomposition, the current re-

laxed master problem is solved to optimality and then cuts generated based on this

optimal solution are added to it before the relaxed master problem is re-optimized.

This loop is repeated until the optimality gap of (RMP) – the expression
z(y)−

∑m
k=1 ηk

∑m
k=1 ηk

– is smaller than a prespecified tolerance level, where the current optimal objective
∑m

k=1 ηk of (RMP) is a lower bound on that of (TR −A) and z(y) is the objective

value of a feasible solution of (TR −A). The primary drawback of this classical

scheme is that a new search tree is constructed every time the relaxed master

problem is solved (Rubin, 2011). Consequently, valuable time may be expended

toward re-evaluating the same nodes over and over again. In contrast, using

the lazy constraint technology offered by the state-of-the-art solvers allows us to

execute the entire algorithm on a single search tree (IBM ILOG CPLEX, 2011). In

Step 11 of Algorithm 1, we invoke the lazy constraint callback routine for every

candidate incumbent solution. The callback routine either identifies a missing

Benders cut violated by the candidate solution and introduces it as a lazy con-

straint into the model or certifies the candidate as valid. Ultimately, no integer

solution is evaluated multiple times during the course of the algorithm. Moreover,

31

Algorithm 2: Solving (TR −A) by Benders decomposition and lazy constraint
generation.

// Initialization

1 Create (RMP) with (2.19), (2.20), (2.22). Add the load balancing constraints (2.14)
for Rm-TWT;

2 repeat // To improve the initial objective value of (RMP).
3 Construct a feasible assignment y of jobs to m machines by some heuristic.
4 [cuts, z1(y), . . . , zm(y)] = generate_cuts(y) ; // cuts is a collection of m

cuts.

5 Add cuts to (RMP) as lazy constraints;
6 until some termination condition is satisfied; // We run a simple dispatch rule

once.

// Main loop

7 Invoke CPLEX on (RMP);
8 repeat
9 Identify a new incumbent candidate y with an objective value of

∑m
k=1 ηk;

10 accept_candidate = true;
11 [cuts, z1(y), . . . , zm(y)] = generate_cuts(y) ; // cuts is a collection of m

cuts.

12 for k = 1 to m do
13 if ηk < zk(y) then // y violates some of the missing Benders cuts.
14 Add cutsk to (RMP) as a lazy constraint, accept_candidate = false;
15 until CPLEX determines that the relative optimality gap of the current incumbent is less

than some threshold;

16 The best available job partition y∗ for (TR −A) is retrieved from CPLEX. If desired,

the associated preemptive machine schedules are obtained by solving
(

TRk − R
)

with y∗ for k = 1, . . . ,m.

labeling the generated cuts as lazy informs the solver that most of such constraints

are not expected to be active at the optimal solution. Thus, we fully exploit the

capabilities of the solver and allow it to apply the generated cuts as it deems

necessary. The use of the lazy constraint technology appears to be relatively rare

in the operations research literature, and we hope that it will be employed more

frequently in the future given that it may unleash the power of a cut generation

algorithm which seems impractical otherwise.

2.5 Computational Results

Outstanding among the accomplishments of this research is that both Rm-TWT

with a regular scheduling objective (see Section 2.5.1) and Rm-TWET with a non-

regular scheduling objective (see Section 2.5.2) are tackled successfully by the

32

exact same solution approach. For both problems, the overarching goal of our

computational study is to demonstrate that the proposed Benders-type method

solves the preemptive relaxation (TR −A) to (near-)optimality in short computa-

tion times and provides tight lower bounds as well as high quality job partitions

for the original problems. Very large instances of both problems are within the

reach of our algorithm; however, we concede that the performance is somewhat

better for Rm-TWT than for Rm-TWET.

The size of an instance is determined by the parameters m and n′ so that the

number of jobs is set to n = mn′. For each job j ∈ {1, . . . ,n}, the processing time

p j1 on the first machine is randomly drawn from the discrete uniform distribution

U
[

pmin, pmax
]

. The processing times p jk for k ∈ {2, . . . ,m} are then created as

max
(

1,
⌊

U [1 − θ, 1 + θ] p j1

⌋)

. The earliness weight per unit time ǫ j is generated

from a discrete uniform distribution U [ǫmin, ǫmax], and the corresponding unit

tardiness weight is computed as
⌈

U
[

α, β
]

ǫ j

⌉

. For Rm-TWT, all unit earliness

weights are then set to zero. We generate the due dates by following the method

of Potts and van Wassenhove (1982), which is a popular scheme in the literature

(Liaw et al., 2003, Lin et al., 2011, Shim and Kim, 2007a). The integral due date

d j of job j is calculated as
⌊

U
[

P
(

1 − TF − RDD
2

)+

,P
(

1 − TF + RDD
2

)

]⌋

, where the

tardiness factor TF controls the tightness of the due dates and the due date range

factor RDD determines their spread. P =
∑

j

∑

k p jk/m
2 may be considered as the

average load per machine. The parameters of the instance generation procedure

are summarized in Table 2.2.

Table 2.2 Instance generation parameters.

m n′
[

pmin, pmax
]

θ [ǫmin, ǫmax]
[

α, β
]

TF RDD

{2, 3, 4, 5} {20, 30, 40} [25, 100] 0.25 [1, 10] [1.5, 3.0] {0.4, 0.6, 0.8, 1.0} {0.2, 0.4, 0.6}

There are 12 combinations of the TF, RDD values and for each combination,

5 instances are generated. Therefore, we create 60 instances for each pair of m,

n′ values and a total of 720 instance pairs. The instances in a pair are identical,

except that ǫ j = 0, j = 1, . . . ,n, in the Rm-TWT instance. This data generation

scheme allows us to draw clear conclusions about the relative difficulty of Rm-

TWET with respect to Rm-TWT. As pointed out by Kedad-Sidhoum et al. (2008),

the motivation for the relatively large TF and small RDD values is that in most

33

practical production environments the due dates are not loose and not distant

from each other. The rationale behind the selected
[

α, β
]

values reflects that the

earliness cost is typically regarded as a finished goods inventory holding cost and

should be less than the cost of loss of customer goodwill or a contractual penalty

represented by the tardiness cost.

The computational results are obtained on a personal computer with a 3.80

GHz Intel Core i7 920 CPU with Hyper-Threading enabled and 24 GB of mem-

ory running on Windows 7. Algorithms 1-2, which are collectively referred to

as (TR −A)-BDS in this section, were implemented in C++ using the Concert

Technology component library of IBM ILOG CPLEX 12.4. The cut generation

procedure in Algorithm 2 is parallelized through the Boost 1.51 library. More

specifically, when a new integer feasible solution is identified in the search tree for

(RMP), m threads are constructed in the lazy constraint callback routine to solve
(

TRk

)

, k = 1, . . . ,m, in parallel. Note that in the presence of a control callback –

such as the lazy constraint callback in (TR −A)-BDS – CPLEX applies a traditional

branch-and-cut strategy by switching off its dynamic search feature and operates

in an opportunistic parallel search mode. Following the termination of (TR −A)-

BDS, we call the SiPS/SiPSi1 libraries (Tanaka and Fujikuma, 2012, Tanaka et al.,

2009) to solve m single-machine problems for each job partition present in the

final “solution pool” of CPLEX and obtain feasible solutions for Rm-TWT and Rm-

TWET. Note that the current CPLEX engine generates and keeps multiple feasible

solutions in addition to the optimal solution in a solution pool to help the user

choose one that may fit criteria not represented explicitly in the current model

solved (IBM ILOG CPLEX, 2011). Furthermore, to promote the quality of the job

partitions, the switch MIPEmphasis in (TR −A)-BDS is set to 4 in order to urge

CPLEX “to apply considerable additional effort toward finding high quality feasi-

ble solutions that are difficult to locate” (IBM ILOG CPLEX, 2011). The source

code of our algorithms and the test instances are available at this location2.

To justify the use of the proposed Benders-type approach to solve (TR −A), we

benchmark it against (TR −A)-CPX, where the monolithic formulation (TR −A)

is solved directly by invoking CPLEX. In this case, we let CPLEX decide whether

1https://sites.google.com/site/shunjitanaka/sips/
2http://people.sabanciuniv.edu/bulbul/publications.html

34

https://sites.google.com/site/shunjitanaka/sips/
http://people.sabanciuniv.edu/bulbul/publications.html
https://sites.google.com/site/shunjitanaka/sips/
http://people.sabanciuniv.edu/bulbul/publications.html

to apply its dynamic search by running it with the default parameter settings,

except that the opportunistic parallel search mode is turned on for a head-to-head

comparison with (TR −A)-BDS. The relative gap tolerance parameter EpGap of

CPLEX is set to 3% while solving (TR −A) by either (TR −A)-CPX or (TR −A)-

BDS. In addition, to illustrate the value of our approach in the absence of scalable

alternate solution approaches for Rm-TWT and Rm-TWET in the literature and be

able to provide more accurate optimality gaps for our lower and upper bounds,

we also solve a time-indexed integer programming formulation for Rm-TWT and

Rm-TWET via CPLEX under the default parameter settings. This formulation is

referred to as (TI) in the sequel and obtained from that in Kedad-Sidhoum et al.

(2008) in a straightforward way by augmenting the time-indexed variables with a

machine index and imposing a machine capacity constraint for each combination

of machine and time period so that no more than one job is in process at any time

instant on any machine. The best lower bound retrieved from (TI) at termination

provides an alternate lower bound for the original non-preemptive problems, and

the best available objective value at termination provides us with a benchmark

for the non-preemptive solutions we construct for Rm-TWT and Rm-TWET.

All formulations are solved within the same working memory limit of 15 GB

(WorkMem = 15000). However, the memory footprint of (TR −A)-BDS does not

exceed a few gigabytes even for the largest instances with 200 jobs and 5 machines.

The maximum number of threads that CPLEX is allowed to use – governed by the

parameter Threads – is seven for all methods. The time limit parameter TiLim

takes on the values 1800, 1800 and 600 seconds for (TI), (TR −A)-CPX, and

(TR −A)-BDS, respectively.

The next section reports the results obtained for Rm-TWT, and the results for

Rm-TWET are relegated to Section 2.5.2. For ease of perusal, all tables employ

a color formatting scheme so that the values of a performance indicator ranging

from better to worse are indicated with colors changing from green towards red.

2.5.1 Results for Rm-TWT

Table 2.3 consists of 12 parts, one for each possible combination of n and m listed

in the first two columns. We report three types of percentage gaps in the table,

35

labeled as “(TR −A)-BDS”, “LB Quality”, and “Feasible Sol’n” in Columns 4–12.

The average times needed to solve the preemptive relaxation (TR −A) to within

3% of optimality by (TR −A)-CPX and (TR −A)-BDS are presented in Columns

13–18. The color formatting is applied to these two sets of columns together to

facilitate a head-to-head comparison. For each performance indicator, detailed

results for each possible combination of TF and RDD values are included. The

TF values appear in the third column, and the RDD values are specified in the

column headers. All gaps larger than 100% are set to 100%, and the gap of a

feasible solution with a positive objective function value with respect to a lower

bound of zero is assumed to be 100%. Each value in the table represents an average

over five instances based on our data generation scheme discussed previously.

Table 2.3 Results for Rm-TWT.

TF

RDD Percentage Gaps (TR −A) - Solution Times

(TR −A)-BDS LB Quality Feasible Sol’n CPX BDS

n m 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

40 2

0.4 1.3 1.6 0.5 3.0 7.5 13.2 1.6 4.5 6.3 2 3 10 2 2 3
0.6 2.0 2.2 2.2 2.8 3.5 6.4 1.0 1.8 2.2 4 3 4 2 2 3
0.8 2.5 2.6 2.4 2.8 3.6 3.7 0.8 0.6 0.6 6 5 5 1 1 3
1.0 2.4 2.1 2.2 2.3 2.4 2.3 0.5 0.5 0.8 6 6 5 1 1 1

60

2

0.4 2.2 1.8 1.6 3.5 5.3 9.5 0.9 2.0 5.0 8 7 11 5 7 10
0.6 2.4 2.4 2.6 3.3 4.4 5.7 0.9 1.3 1.7 15 12 11 5 7 18
0.8 2.7 1.7 2.5 3.1 2.7 4.4 1.2 0.6 1.2 21 19 17 3 6 9
1.0 2.2 2.8 2.8 1.9 2.2 2.5 0.6 1.2 1.0 24 25 24 2 2 2

3

0.4 2.4 2.1 1.4 5.0 9.3 42.9 1.9 3.6 36.8 20 60 215 2 4 4
0.6 2.7 2.7 2.8 3.8 5.0 8.7 1.5 1.7 3.0 32 30 36 1 2 12
0.8 2.8 2.8 2.6 3.1 4.3 4.8 1.4 0.9 0.9 40 40 36 1 2 3
1.0 2.6 2.5 2.5 2.2 2.6 3.2 0.8 0.6 0.8 41 44 41 1 1 1

80

2

0.4 2.0 2.2 2.0 3.0 5.0 11.6 1.1 2.0 6.8 15 12 44 8 17 20
0.6 2.2 1.4 2.6 2.9 2.8 4.2 1.0 1.1 0.9 33 27 30 10 21 36
0.8 2.9 2.3 2.7 3.3 3.0 4.3 1.5 0.7 1.1 52 56 44 3 9 10
1.0 2.2 2.4 2.3 1.6 2.7 2.7 1.1 0.4 0.6 69 63 59 3 6 7

4

0.4 2.7 2.6 1.2 6.8 10.4 38.0 3.7 5.0 36.6 42 295 1716 5 7 11
0.6 2.7 2.5 3.8 4.2 5.5 10.1 1.6 2.1 4.2 79 73 484 2 7 462
0.8 2.8 2.4 2.9 3.6 4.3 5.9 1.1 0.7 1.0 111 104 98 1 6 11
1.0 2.5 2.8 2.8 2.2 3.1 3.7 0.7 1.1 0.7 118 112 121 1 1 2

90 3

0.4 2.2 2.2 0.9 3.8 7.3 26.9 1.6 3.5 21.2 34 112 1030 5 11 28
0.6 2.6 2.8 2.9 3.3 4.3 6.3 1.2 1.4 2.1 93 87 93 2 5 24
0.8 2.6 2.5 2.6 3.3 3.8 4.5 1.1 0.9 1.2 122 121 117 2 3 5
1.0 2.6 2.4 2.4 2.1 3.0 3.2 1.2 0.8 1.0 148 142 138 2 2 2

Continued on next page. . .

36

Table 2.3 continued. . .

TF

RDD Percentage Gaps (TR −A) - Solution Times

(TR −A)-BDS LB Quality Feasible Sol’n CPX BDS

n m 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

100 5

0.4 2.7 2.7 2.8 7.3 13.7 20.0 6.2 13.3 20.0 104 1119 1800 6 13 125
0.6 2.7 2.8 5.9 4.2 5.7 12.8 2.9 4.6 9.3 149 168 883 4 15 601
0.8 2.6 2.8 3.1 3.7 4.9 6.5 2.3 3.5 4.9 235 182 242 2 15 308
1.0 2.5 2.5 2.8 2.8 3.3 4.3 1.4 1.9 2.7 253 233 235 2 2 3

120

3

0.4 2.5 1.9 1.1 3.7 6.5 42.5 2.3 5.8 42.5 48 66 1367 7 20 109
0.6 2.2 2.6 2.4 2.9 4.2 5.6 1.6 2.9 4.6 205 172 162 4 8 49
0.8 2.6 2.9 2.7 3.0 4.0 4.5 1.5 2.3 2.8 262 254 221 4 5 8
1.0 2.8 2.3 2.6 3.0 2.7 3.3 1.1 1.3 1.4 338 344 303 3 4 6

4

0.4 2.2 2.9 10.8 4.1 9.1 20.0 3.0 7.9 20.0 96 516 1816 13 18 135
0.6 2.7 2.6 3.1 3.6 4.4 7.4 2.4 2.8 5.9 205 209 327 4 18 225
0.8 2.5 2.5 2.9 3.2 4.1 5.0 1.9 2.6 3.2 316 315 287 3 6 16
1.0 2.7 2.7 2.7 3.0 3.2 3.7 1.4 1.6 2.3 346 326 291 2 3 3

150 5

0.4 2.5 2.9 0.0 5.2 10.0 0.0 4.0 9.0 0.0 216 1356 1527 19 35 18
0.6 2.7 2.7 3.8 3.7 4.6 8.8 2.1 3.3 6.6 380 379 804 5 39 415
0.8 2.6 2.7 2.9 3.3 4.3 5.5 1.8 2.8 4.1 683 646 600 4 11 48
1.0 1.3 2.5 2.4 1.6 3.1 3.5 0.8 1.7 2.3 752 713 653 5 4 4

160 4

0.4 2.8 2.8 0.0 4.5 9.2 0.0 3.1 7.9 0.0 143 451 1361 9 40 29
0.6 2.7 2.9 2.9 3.3 4.2 6.4 1.6 2.7 4.8 429 302 704 6 11 176
0.8 2.6 2.2 2.6 3.1 3.3 4.3 1.6 2.2 2.8 713 742 668 5 9 12
1.0 2.0 2.0 2.6 2.2 2.4 3.3 0.9 1.1 1.8 934 836 851 5 6 6

200 5

0.4 2.5 3.4 0.0 4.5 12.3 0.0 3.3 10.8 0.0 345 1476 793 24 324 35
0.6 2.5 2.8 3.9 3.2 4.5 7.9 1.7 2.7 5.4 964 752 1327 11 33 510
0.8 2.6 2.7 2.7 3.1 3.9 4.6 1.9 2.2 3.0 1720 1708 1440 7 29 36
1.0 2.4 2.0 2.3 2.7 2.4 3.1 2.5 1.8 2.1 1803 1771 1719 7 9 9

The optimality gaps depicted in Columns 4–6 are retrieved from CPLEX at the

termination of (TR −A)-BDS, where CPLEX computes the optimality gap by tak-

ing the ratio of the best available lower bound to the objective value associated

with the best integer solution at termination and then subtracting this ratio from

1. These results indicate that (TR −A)-BDS is able to solve the preemptive relax-

ation to the targeted precision of 3%. More specifically, (TR −A)-BDS terminates

due to the time limit of 600 seconds for only 22 instances out of a total of 720.

The corresponding number for (TR −A)-CPX is 47 with a time limit of 1800 sec-

onds. The average (& median) gaps of (TR −A)-BDS and (TR −A)-CPX for those

instances that could not be solved within the specified time limits are 7.22% (&

4.05%) and 74.14% (& 100%), respectively. Therefore, we conclude that the use of

our Benders-type method for solving (TR −A) is well-justified.

The next three columns under “LB Quality” attest to the quality of the lower

bound (LB) provided by (TR −A)-BDS for the optimal objective value of Rm-TWT.

37

For a given instance, the expression (“Best Integer”−“LB”)
(“Best Bound”) provides an upper bound

on the gap of LB, where “Best Integer” and “Best Bound” are the objective

function values associated with the best feasible solution available – retrieved

from either our approach or (TI) – and the best lower bound provided by any one

of the methods (TR −A)-CPX, (TR −A)-BDS, or (TI), respectively. For any n, m

combination, the average LB gap summarized across all TF and RDD values does

not exceed 8.15%, and the average LB gap across all instances is just 5.64%. In

fact, only 8% of the instances (58 instances) have an LB gap larger than 10%.

The following three columns under “Feasible Sol’n” present the average upper

bounds on the optimality gaps attained by our non-preemptive feasible solutions.

For a given feasible solution, an upper bound on the optimality gap is calculated

as (“OFV”−“Best Bound”)
(“Best Bound”) , where “OFV” is the objective function value of the feasible

solution. We do not include detailed results about (TI) but note that the incumbent

from (TI) is hardly competitive with the best feasible solution obtained from

(TR −A)-BDS, except for the 40-job instances. Moreover, even the LP relaxation

of (TI) is not solved within half an hour for instances with 100 or more jobs. The

average (& median) optimality gaps over all instances solved are 3.55% (& 1.73%)

and 30.28% (& 10.20%) for (TR −A)-BDS and (TI), respectively. Perhaps more

importantly, the proposed approach delivers a robust performance and scales to

very large instances. With the exception of a little over 4% of the instances (31 out

of 720), the optimality gap is always below 10%. The corresponding number for

(TI) is 50% (181 out of 360).

The relatively higher gaps under “LB Quality” and “Feasible Sol’n” in Table 2.3

for TF = 0.4 stem from the small objective function values associated with loose

due dates. Even small errors result in large percentage gaps in this case. Note that

the objective function value of an instance with TF = 0.6, 0.8, and 1.0 is on average

7.5, 25.1, and 45.9 times larger, respectively, compared to that of an instance with

TF = 0.4. A second contributing factor here is the growing size of (TI) with looser

due dates. Frequently, even the LP relaxation is not solved within the allotted

time for such instances, and this results in smaller “Best Bound” values in general.

In other words, the actual performance for TF = 0.4 is probably better than what

it appears to be.

The robustness of the quality of the feasible solutions obtained from our

38

Percentage Gap (%)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−1 100 101 102
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

Percentage Gap (%)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−1 100 101 102
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(a) m = 2 (—) and 3 (– –)

Percentage Gap (%)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−1 100 101 102
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

Percentage Gap (%)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−1 100 101 102
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(b) m = 4 (—) and 5 (– –)

Figure 2.1 The empirical distributions of the optimality gaps of the upper bounds
by (TR −A)-BDS for Rm-TWT.

Benders-type approach is further illustrated in Figures 2.1a–2.1b. The empiri-

cal distributions of the optimality gaps of the feasible solutions associated with

(TR −A)-BDS are plotted in these figures. The horizontal axes are in logarithmic

scale to increase the readability of the graph. Note that the median percentage gap

for each curve corresponds to the 50% mark on the vertical axis, and the average

gaps are explicitly indicated. The curves are clustered and rise steeply. That is, the

quality of the partitions retrieved from (TR −A)-BDS is not particularly sensitive

to the increasing number of jobs n′ per machine.

The solution time performance of (TR −A)-BDS is overwhelmingly superior

to that of (TR −A)-CPX. Based on the instances that are solved by both methods

within the time limit, the ratio of the solution time of (TR −A)-CPX to that of

(TR −A)-BDS is 46.7 on average. Out of a total of 720 instances, only 35 of them

take slightly more time to solve for (TR −A)-BDS compared to (TR −A)-CPX. For

both methods, instances with loose average due dates within a relatively wide

range are more problematic. However, tightening the due dates does also hurt

the performance of (TR −A)-CPX while it benefits that of (TR −A)-BDS.

The empirical distributions of the solution times of (TR −A)-BDS and (TR −A)-

CPX are plotted with solid and dashed lines in Figure 2.2, respectively. Similar

to those in Figure 2.1, the horizontal axes are in logarithmic scale. The perfor-

mance of (TR −A)-CPX is adversely affected by both an increasing number of

39

machines m and an increasing number of jobs per machine n′ in an instance. To

make the former observation concrete, note that the percentage of the instances

with n′ = 20 solved to optimality by (TR −A)-CPX within 60 seconds is 100%,

88.3%, 6.7%, and 0% for m = 2, 3, 4, 5, respectively. In comparison, (TR −A)-BDS

obtains the optimal solution for 100%, 98.9%, 93.3%, and 82.8% of the instances

with m = 2, 3, 4, 5, respectively, in less than 60 seconds. Note that these latter

numbers are aggregated over n′, including larger instances with n′ = 30, 40 as

well. Clearly, (TR −A)-BDS displays a significantly more stable performance.

Finally, we note that the solution times of (TR −A)-BDS are strongly correlated

with the number of Benders cuts generated, as expected. The median percentage

of the active Benders cuts for the final node problem in the search tree is 86.4%

with a corresponding average of 81.3%.

Recall that we call the SiPS/SiPSi libraries (Tanaka and Fujikuma, 2012,

Tanaka et al., 2009) to solve m single-machine problems for each job partition

present in the final solution pool of CPLEX and obtain feasible solutions for Rm-

TWT and Rm-TWET following the termination of (TR −A)-BDS. We do not report

detailed results for the sake of brevity, but our use of an optimal algorithm to solve

the single-machine problems for a given job partition is well-justified. Even for

the five machine and 200 job instances, it takes an average of 2.31 seconds and

no more than 6.96 seconds to solve all single-machine problems to optimality by

the SiPS/SiPSi solver for all job partitions identified. This solver is extremely

fast; the time expended for a 40-job single-machine instance is about 30 millisec-

onds. We emphasize that the best solution of the preemptive relaxation does not

necessarily produce the best non-preemptive solution for the original problem.

Therefore, the ability of locating many high-quality job partitions in the search

tree is a critical advantage of (TR −A)-BDS, which identifies on average 4.7 times

more job partitions per instance compared to (TR −A)-CPX. This characteristic

may also prove useful in order to jump start a population based heuristic follow-

ing the completion of (TR −A)-BDS. In summary, coupled with its demonstrated

ability to construct high-quality lower and upper bounds for the original problem,

the outstanding total solution time performance of our approach makes it a viable

alternative for tackling very large instances of Rm-TWT successfully.

We conclude this section with a brief discussion on the time-indexed formula-

40

https://sites.google.com/site/shunjitanaka/sips/
https://sites.google.com/site/shunjitanaka/sips/

Solution Time

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

100 101 102 103
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(a) m = 2

Solution Time

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

100 101 102 103
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(b) m = 3

Solution Time

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

100 101 102 103
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(c) m = 4

Solution Time

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

100 101 102 103
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(d) m = 5

Figure 2.2 The empirical distributions of the solution times of (TR −A)-BDS and
(TR −A)-CPX for Rm-TWT.

tion (TI). The main purpose of solving (TI) in this work is to incorporate the objec-

tive function value of the incumbent solution and the best lower bound available

at termination into the “Best Integer” and “Best Bound” values, respectively,

so that we quantify the gaps of our lower and upper bounds as accurately as

possible. Otherwise, solving (TI) is not a scalable solution approach for Rm-TWT

as we discussed previously in this section. In addition, the LP relaxation of (TI)

does also suffer from the same scalability issue as a lower bounding method. We

provide further specifics and settle this issue below.

41

On the one hand, the LP relaxations of time-indexed formulations are strong

and provide very tight bounds. On the other hand, however, the size of a time-

indexed formulation grows with the length of the planning horizon and is there-

fore pseudo-polynomial. From a computational perspective, the solution effort

expended increases rapidly with longer processing times, and CPLEX cannot solve

the LP relaxation of (TI) or find any feasible solution within the time limit of

1800 seconds for the Rm-TWT (and Rm-TWET) instances with greater than 90

jobs. For the sake of completeness, we benchmarked the lower bound produced

by (TR −A)-BDS against the optimal objective function value of the LP relax-

ation of (TI). These two lower bounds do not dominate each other. There are

instances in which the objective value of the LP relaxation of (TI) is larger than

that of (TR −A) and vice versa. The best lower bound retrieved from (TR −A)-

BDS at termination is on average 97.04% of the optimal objective value of the LP

relaxation of (TI), computed over 360 Rm-TWT instances with n ≤ 90. The corre-

sponding figure for the Rm-TWET instances is 94.29%. Furthermore, recall that

(TR −A)-BDS terminates with a 3% relative optimality gap. Therefore, it is fair

to state that the lower bounds provided by (TR −A)-BDS and the LP relaxation

of (TI) are of comparable quality. Ultimately, (TR −A)-BDS is the clear choice as

a lower bounding technique given its superior computational time performance

and the high quality of the non-preemptive schedules based on the solution of

(TR −A)-BDS.

2.5.2 Results for Rm-TWET

Table 2.4 is structured identically to Table 2.3 in Section 2.5.1 and depicts the

percentage gap and solution time results for Rm-TWET. Unsurprisingly, both

solving the preemptive relaxation and obtaining high-quality non-preemptive

solutions pose a more difficult challenge for Rm-TWET than for Rm-TWT. In

general, the gaps are larger and the solution times are longer than those in Section

2.5.1. However, in the grand scheme of things – also factoring in the lack of

scalable alternate algorithms for this problem in the literature – we attain pretty

promising results for Rm-TWET as well.

As before, the purpose of the figures presented under “(TR −A)-BDS” in

42

Columns 4–6 is to argue the value of the our approach for solving (TR −A). The

number of instances not solved to within the targeted gap of 3% by (TR −A)-BDS

within 600 seconds is 159 out of a total of 720. The corresponding number for

(TR −A)-CPX is 252 with a time limit of 1800 seconds. Moreover, the median

gap of 8.3% for those instances that could not be solved within the specified time

limit by (TR −A)-BDS stands in stark contrast to the corresponding gap of 100%

for (TR −A)-CPX. The respective average gaps are 12.6% and 80.2%. We reckon

that (TR −A)-BDS tackles the preemptive relaxation (TR −A) of Rm-TWET suc-

cessfully. In addition, observe that the monolithic formulation of (TR −A) with

200 jobs and 5 machines grows too large for CPLEX, and even the root relaxation

is not solved within the allotted time. Therefore, no results are reported for

(TR −A)-CPX for this instance size.

(TR −A)-BDS yields very good lower bounds for Rm-TWET. The average

lower bound gap in Columns 7–9 is no more than 14.75% for all n, m combinations

with an average of 9.02% across all instances. The gap is in excess of 15% for only

13% of the instances (93 instances).

The results on the optimality gaps of the non-preemptive solutions included

under “Feasible Sol’n” in Table 2.4 certify (TR −A)-BDS as a viable and scalable

algorithm for solving large instances of Rm-TWET. As is the case with Rm-TWT,

even the LP relaxation of (TI) is not solved within half an hour for instances with

100 or more jobs. Among the smaller 360 instances, (TI) beats (TR −A)-BDS in

125 cases with an average improvement of 0.84%. For the other 235 instances,

(TR −A)-BDS outperforms (TI) by 40.17% on average. The optimality gap of

the incumbent from (TI) is over 15% in 39% of these instances (142 instances)

while (TR −A)-BDS does always keep the gap below the same threshold with

the exception of 5 instances. Even for the 360 larger instances with 100 or more

jobs, the proposed Benders-type method finds a feasible solution for the original

problem with an optimality gap less than 15% in 86% of the cases (310 instances).

The behavior of (TR −A)-BDS with respect to the varying TF and RDD levels in

Table 2.4 is consistent with our observations for Table 2.3 in Section 2.5.1. The

adverse effect of low TF and high RDD values on both the lower and upper bound

quality persists with the same underlying reasons explained in Section 2.5.1.

43

Table 2.4 Results for Rm-TWET.

TF

RDD Percentage Gaps (TR −A) - Solution Times

(TR −A)-BDS LB Quality Feasible Sol’n CPX BDS

n m 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

40 2

0.4 2.7 2.9 4.4 4.7 6.9 15.1 0.8 0.9 3.2 15 13 21 16 22 454
0.6 2.6 2.8 2.9 4.7 7.4 10.3 0.8 2.0 0.7 16 12 14 14 21 48
0.8 2.0 2.3 2.8 3.1 4.6 5.7 1.0 0.8 0.6 17 15 14 10 10 17
1.0 1.9 1.4 1.5 2.2 2.2 2.7 0.3 0.2 0.2 16 16 15 5 6 8

60

2

0.4 2.1 3.0 5.4 3.8 6.6 13.7 0.7 1.1 2.7 59 43 47 47 146 550
0.6 2.2 2.7 3.0 3.9 6.8 10.0 0.7 1.7 2.6 62 48 45 41 52 249
0.8 1.8 1.8 2.6 2.9 3.8 5.7 0.4 0.6 0.8 65 56 53 24 35 72
1.0 1.6 0.6 1.7 1.8 1.1 2.8 0.2 0.1 0.3 69 71 70 14 23 26

3

0.4 2.6 3.0 10.1 5.3 8.1 17.4 1.5 1.3 2.3 121 219 384 17 207 601
0.6 2.9 2.9 6.0 5.0 7.9 17.9 1.4 2.3 5.3 199 183 382 6 20 541
0.8 2.0 2.6 2.9 3.4 5.7 7.0 0.9 0.8 1.1 256 216 211 3 9 18
1.0 2.4 2.4 2.6 2.4 2.7 4.3 0.7 0.7 0.8 231 237 232 2 2 5

80

2

0.4 2.1 2.8 6.6 3.5 5.6 13.3 0.9 1.1 2.6 198 156 118 68 142 588
0.6 2.0 2.7 3.1 3.1 5.4 7.9 0.5 1.5 1.7 194 140 143 47 74 328
0.8 1.9 1.7 2.6 2.6 3.1 5.0 0.4 0.5 1.0 210 198 155 35 51 70
1.0 1.9 1.0 1.0 2.0 1.5 1.9 0.3 0.2 0.3 227 224 204 19 33 39

4

0.4 2.9 5.9 31.2 5.8 12.1 50.7 2.8 4.9 20.6 433 647 1708 48 596 609
0.6 2.7 3.6 20.3 6.4 9.7 35.6 2.8 4.6 11.5 604 611 1947 23 324 605
0.8 2.4 2.8 3.0 4.2 6.2 8.2 1.1 1.9 1.5 628 526 644 17 31 426
1.0 2.8 2.1 2.7 3.1 3.1 4.6 1.0 0.9 1.4 773 685 680 10 8 18

90 3

0.4 2.7 3.7 15.2 4.6 8.3 27.3 1.9 3.3 8.6 439 495 920 16 335 606
0.6 2.1 2.8 6.6 4.0 6.8 15.7 1.2 3.0 5.3 721 595 757 13 120 605
0.8 2.8 2.7 2.6 3.9 5.0 5.9 0.8 1.6 1.9 800 716 578 10 11 43
1.0 2.7 2.4 2.2 2.7 3.4 3.4 1.0 0.9 1.0 739 691 669 8 10 11

100 5

0.4 3.1 9.6 34.6 6.1 16.9 57.9 4.2 10.5 30.9 1555 1805 1849 394 611 606
0.6 2.9 6.5 22.2 6.1 14.1 41.5 4.5 10.0 22.9 1498 1670 1804 99 601 600
0.8 2.6 3.0 6.2 4.7 6.5 12.0 3.4 5.1 7.4 1363 1111 1399 8 109 490
1.0 2.5 1.9 2.8 3.0 3.1 5.1 1.4 2.1 3.5 1614 1480 1382 3 4 16

120

3

0.4 2.4 3.0 11.5 3.8 6.6 20.9 2.5 5.0 12.0 1331 1053 978 33 376 601
0.6 1.9 2.9 5.0 3.2 6.5 12.8 2.0 4.9 9.2 1448 1098 1037 15 136 601
0.8 2.7 2.2 2.8 3.6 4.1 5.5 1.5 2.9 3.9 1679 1416 1103 9 13 55
1.0 2.7 2.4 2.2 2.9 3.0 3.2 1.3 2.0 1.8 1699 1726 1481 7 7 11

4

0.4 2.9 4.3 24.4 5.1 8.6 41.4 3.8 5.9 22.6 1710 1568 1819 64 601 601
0.6 2.6 3.5 12.2 4.6 8.6 24.8 4.3 6.5 15.6 1805 1691 1789 19 311 601
0.8 2.4 2.8 3.2 3.8 5.4 7.4 3.8 4.8 6.3 1812 1802 1692 9 56 244
1.0 2.7 2.5 2.3 3.2 3.4 3.9 3.0 3.4 3.6 1812 1806 1803 5 7 10

150 5

0.4 2.9 8.3 30.4 4.9 14.8 66.9 4.9 14.8 66.0 1895 1865 2093 154 601 602
0.6 2.9 4.8 17.3 5.2 10.8 36.0 5.2 10.8 36.0 1843 1986 1859 46 601 601
0.8 2.4 2.9 3.8 4.0 5.7 8.3 4.0 5.7 8.3 1858 1858 1850 13 83 507
1.0 2.5 1.9 2.1 3.0 2.8 3.6 3.0 2.8 3.6 1900 1822 1812 7 10 12

160 4

0.4 2.6 4.3 18.1 3.9 8.5 35.1 3.9 8.5 35.1 1880 1850 1819 78 489 601
0.6 2.1 3.0 10.6 3.6 6.6 22.7 3.6 6.6 22.7 1876 1836 1880 23 200 601
0.8 2.6 2.6 2.8 3.7 4.6 5.8 3.7 4.6 5.8 1907 1841 1843 15 41 138
1.0 2.1 2.6 1.8 2.5 3.3 3.0 2.3 3.3 3.0 1886 1844 1836 10 11 18

Continued on next page. . .

44

Table 2.4 continued. . .

TF

RDD Percentage Gaps (TR −A) - Solution Times

(TR −A)-BDS LB Quality Feasible Sol’n CPX BDS

n m 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

200 5

0.4 2.9 6.9 28.3 4.4 11.9 58.4 4.4 11.9 58.4 127 601 601
0.6 2.1 2.9 14.9 3.5 7.2 30.7 3.5 7.2 30.7 28 325 601
0.8 2.0 2.8 3.0 3.0 4.7 6.4 3.0 4.7 6.4 22 81 378
1.0 2.3 2.8 2.7 2.7 3.6 3.9 2.7 3.6 3.9 11 13 19

Percentage Gap (%)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−1 100 101 102
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

Percentage Gap (%)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−1 100 101 102
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(a) m = 2 (—) and 3 (– –)

Percentage Gap (%)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−1 100 101 102
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

Percentage Gap (%)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−1 100 101 102
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(b) m = 4 (—) and 5 (– –)

Figure 2.3 The empirical distributions of the optimality gaps of the upper bounds
by (TR −A)-BDS for Rm-TWET.

Figure 2.3 is the counterpart of Figure 2.1 in Section 2.5.1 where the empiri-

cal distributions of the optimality gaps of the feasible solutions associated with

(TR −A)-BDS are plotted. As previously, (TR −A)-BDS generally exhibits a ro-

bust behavior with respect to varying values of n′ for a fixed m. The problem gets

more challenging with an increasing number of machines, and the percentage

gaps associated with (TR −A)-BDS demonstrate a modest increase with increas-

ing m. For instance, for 70% of the instances with 2, 3, 4, and 5 machines, the gaps

are less than 2%, 5%, 7%, and 11%, respectively.

The performance patterns observed for Rm-TWT pretty much carry over to

Rm-TWET as well. The solution times of (TR −A)-BDS are in general better

than those of (TR −A)-CPX by a large margin. Based on the 399 instances that

are solved by both methods within their respective time limits, the ratio of the

solution time of (TR −A)-CPX to that of (TR −A)-BDS is 48.0 on average. Among

45

Solution Time

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

100 101 102 103
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(a) m = 2

Solution Time

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

100 101 102 103
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(b) m = 3

Solution Time

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

100 101 102 103
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(c) m = 4

Solution Time

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

100 101 102 103
0

10

20

30

40

50

60

70

80

90

100

n
′ = 20

n
′ = 30

n
′ = 40

Avg.

(d) m = 5

Figure 2.4 The empirical distributions of the solution times of (TR −A)-BDS and
(TR −A)-CPX for Rm-TWET.

these instances, only 52 of the relatively smaller instances with less than 90 jobs

and generally large RDD values take longer for (TR −A)-BDS. As in Table 2.3 in

Section 2.5.1, low TF and high RDD values result in tough instances to handle for

(TR −A)-BDS while instances with tight due dates are solved extremely well.

The empirical distributions of the solution times of (TR −A)-BDS and (TR −A)-

CPX, plotted with solid and dashed lines in Figure 2.4, respectively, reveal that the

median solution times of (TR −A)-BDS are in the range from 11 to 125 seconds

for all m, n′ combinations. (TR −A)-CPX features a much less robust behavior

46

with a median solution time of 15 seconds for n′ = 20 and m = 2 that quickly

increases to 220, 649, and 1589 seconds for n′ = 20 and m = 3, 4, 5, respectively.

Compared to those in Table 2.3 in Section 2.5.1, the computational effort expended

is significantly more. To be specific, the median solution times of (TR −A)-CPX

for the Rm-TWET instances with 2, 3, 4, and 5 machines are 5, 7, 7, and 4 times

of those for the corresponding Rm-TWT instances, respectively. The respective

ratios for (TR −A)-BDS are 11, 4, 6, and 8. The greater planning horizons in

the formulations are a primary factor here in addition to the inherent difficulty of

Rm-TWET over Rm-TWT. This difficulty is also reflected in the number of Benders

cuts generated. (TR −A)-BDS needs to create 5.7 times more cuts for Rm-TWET

compared to Rm-TWT, and the great majority of these cuts is not redundant. The

median percentage of the active Benders cuts for the final node problem in the

search tree is 95.5% with a corresponding average of 92.1%. Note that these

numbers are higher than their counterparts for Rm-TWT.

The times expended to solve the single-machine problems for a given job par-

tition – omitted from Table 2.4 for the sake of brevity – are more than satisfactory.

The SiPS/SiPSi solver returns the optimal solution for a single-machine TWET

problem in about 27, 110, and 305 milliseconds for instances with n′ = 20, 30, 40,

respectively. These numbers translate into 23 seconds on average to solve all

single-machine problems to optimality for a five machine and 200 job instance

with a maximum of 56 seconds. While these figures are greater than their coun-

terparts for Rm-TWT, they still make up for a small part of the total solution

time. The time spent for calculating the non-preemptive solutions accounts for

only 12.5% of the total solution time on average. Finally, we note that (TR −A)-

BDS identifies on average 5.4 times more job partitions per instance compared to

(TR −A)-CPX, where the average number of partitions retrieved from the search

tree of (TR −A)-BDS is 14.4. As we discussed in Section 2.5.1, this is a critical

advantage that improves the quality of the best non-preemptive solution.

47

https://sites.google.com/site/shunjitanaka/sips/

CHAPTER 3

AN EXACT EXTENDED

FORMULATION FOR TOTAL

WEIGHTED COMPLETION TIME

The plethora of research on NP-hard parallel machine scheduling problems is

focused on heuristics due to the theoretically and practically challenging nature

of these problems. Only a handful of exact approaches are available in the liter-

ature, and most of these suffer from scalability issues. Moreover, the majority of

the papers on the subject are restricted to the identical parallel machine sched-

uling environment. In this context, the main contribution of this chapter is to

recognize and prove that a particular preemptive relaxation for the problem of

minimizing the total weighted completion time (TWCT) on a set of unrelated par-

allel machines naturally admits a non-preemptive optimal solution and gives rise

to an exact mixed integer linear programming (MIP) formulation of the problem.

Furthermore, we exploit the structural properties of TWCT and attain a very fast

and scalable exact Benders decomposition-based algorithm for solving this for-

mulation. Computationally, our approach holds great promise and may even be

embedded into iterative algorithms for more complex shop scheduling problems

as instances with up to 1000 jobs and 8 machines are solved to optimality within

a few seconds.

48

3.1 Introduction

Motivated by the practical and theoretical considerations outlined in Chapter 1,

our primary objective in this chapter is to devise a scalable effective exact method

for solving the problem of minimizing the weighted completion time on a bank of

unrelated parallel machines. The objective is one of the most frequently studied

fundamental scheduling objectives as it tends to minimize the cycle time of the

tasks on the shop floor. Formally, we characterize this problem as Rm//
∑

j w jC j

(Rm-TWCT), following the three field notation of Graham et al. (1979) in classifying

scheduling problems. The notation Rm in the first field stands for a bank of

m unrelated machines. The completion time of job j is represented by C j and

penalized at a rate of w j per unit time. Bruno et al. (1974) prove that minimizing

the weighted completion time on two identical parallel machines is NP-hard

which also renders Rm-TWCT NP-hard.

Any algorithm for a parallel machine scheduling problem has two major

components: the jobs are assigned to the machines, and an optimal schedule

is determined for each of the machines given the objective function and the job-

to-machine assignments. In other words, we may think of a parallel machine

scheduling problem as a set partitioning problem where computing the cost of

a partition requires solving m independent single-machine scheduling problems.

Based on theNP−hardness of the classical set partitioning problem – where each

assignment decision is explicitly associated with a fixed cost –, we are already

aware that determining the optimal job-to-machine assignments is a challenging

task. However, for a parallel machine scheduling problem there may be a second

layer of difficulty if the underlying single-machine scheduling problem is not

polynomially solvable. This – for instance – is the setting for the problems of mini-

mizing the total weighted tardiness (TWT) and total weighted earliness/tardiness

(TWET) on m unrelated parallel machines studied in Chapter 2, where the corre-

sponding single-machine problems are strongly NP−hard. These two problems

are referred to as Rm-TWT and Rm-TWET in the sequel, respectively. In contrast,

in this chapter the cost of a given partition is calculated in polynomial time by

applying the well-known weighted shortest processing time (WSPT) rule (Smith,

1956) to each of the m machines separately. This really is the key difference that

49

allows us to turn an MIP formulation that only yields lower bounds for Rm-TWT

and Rm-TWET into an exact formulation for Rm-TWCT.

The work in Chapter 2 was motivated by the lack of strong lower bounds for

parallel machine scheduling problems with additive objectives (van den Akker

et al., 1999) and focused on the due date related objectives TWT and TWET. Given

the two-stage structure inherent in parallel machine scheduling discussed above,

the key idea in that chapter is to replace the non-preemptive scheduling decisions

on a machine by a tight preemptive relaxation solved as a linear programming

(LP) problem in an extended variable space. This in turn allows us to propose a

preemptive relaxation for the original problems Rm-TWT and Rm-TWET, where

the preemptive relaxation is formulated as an MIP amenable to a solution ap-

proach that relies on Benders decomposition (Benders, 1962). The job-to-machine

assignment decisions are kept in the master problem, and the cost of these de-

cisions is approximated by Benders cuts, generated by solving a separate LP

problem for each machine. In this chapter, we prove that the same MIP is an

exact formulation for Rm-TWCT. This in essence requires that the single-machine

TWCT problem is solved to optimality as an LP problem – see Corollary 3.5.

Moreover, by exploiting the structure of the TWCT objective we demonstrate that

the Benders cuts are generated analytically without the need to invoke any LP

algorithm. These results collectively provide us with a scalable and very effective

exact algorithm for Rm-TWCT. To put it into perspective, we note that the best

performing heuristic for Rm-TWCT to date (Rodriguez et al., 2013) runs with a

time limit of n seconds, where n is the number of jobs, on instances with up

to 1000 jobs and 50 machines. None of the previous studies on heuristics, e.g.,

(Vredeveld and Hurkens, 2002), (Lin et al., 2011), (Rodriguez et al., 2012), report

results with more than 200 jobs. The computational results in Section 3.4 illustrate

that our exact method solves instances with up to 8 machines and 1000 jobs to

optimality within less than 12 seconds on average for any n and m combination in

the indicated range. Instances with 16 and 30 machines are more time consuming,

but we impose a time limit of 300 seconds, and instances not solved to optimality

within the allotted time almost always terminate with incumbents within 1% of

optimality.

In the next section, we review the related literature to position our work. In

50

Section 3.3, we give pointers to the existing monolithic mathematical program-

ming models for Rm-TWCT, and then present our own formulation for Rm-TWCT

and prove its correctness before introducing the solution algorithm based on Ben-

ders decomposition. The computational results in Section 3.4 attest to the efficacy

of our approach.

3.2 Review of Related Literature

The early focus of the parallel machine scheduling literature is on the makespan

and total (weighted) completion time objectives with an emphasis on the polyno-

mially solvable problems and approximation algorithms for the makespan (Cheng

and Sin, 1990). Pinedo (2008) provides an in-depth discussion of the polynomi-

ally solvable cases and the associated structural results of interest. More recent

surveys on parallel machine scheduling include (Mokotoff, 2001) and (Blazewicz

et al., 2007, Chapter 5). A detailed discussion of the parallel machine scheduling

literature on additive due date related performance measures is presented in Sec-

tion 2.2 of Chapter 2. Note that the performance figures presented in this section

are obtained by their respective authors on different computing platforms.

The literature on Rm-TWCT can be categorized into three streams: (meta-)heu-

ristics, approximation algorithms, and exact approaches. A good overview of

the (meta-)heuristics is provided in (Li and Yang, 2009, Rodriguez et al., 2013).

Approximation algorithms for Rm-TWCT rely on rounding the optimal solution

of a linear or convex quadratic programming relaxation of the problem. We refer

the interested reader to (Chekuri and Khanna, 2004), where the authors survey

the approximation algorithms for minimizing the total weighted completion time

in different machine environments, and to (Li and Yang, 2009). The literature on

exact methods for TWCT in the parallel machine environment creates the context

for our study, and we restrict our attention to these in the sequel. Interestingly,

all exact algorithms for TWCT in the parallel machine environment are limited

to identical machines up until 1999. These include the branch-and-bound (B&B)

algorithms of Elmaghraby and Park (1974), Barnes and Brennan (1977), Sarin

et al. (1988), Belouadah and Potts (1994), and the dynamic programming tech-

niques of Lawler and Moore (1969), Lee and Uzsoy (1992). Unsurprisingly, these

51

papers have very limited success in solving instances of any meaningful size –

clearly partly due to the lack of powerful computers back then. However, we

observe that even more recent and modern implementations of B&B algorithms

are hardly effective in practice for the total (weighted) completion time problems

in the same machine environment. The B&B method of Yalaoui and Chu (2006) for

Pm/r j/
∑

j C j, where Pm stands for the identical parallel machine environment and

r j in the second field indicates that jobs may have different ready times, handles

at most 45 jobs for 5 and 10 machines and 120 jobs for 2 machines only with a

30 minute time limit. Another B&B algorithm is devised by Nessah et al. (2008)

for Pm/r j/
∑

j w jC j and solves instances with up to 60 jobs and 5 machines in one

hour of CPU time. The first two B&B procedures for the non-identical parallel

machine environment are due to Azizoglu and Kirca (1999a) and Azizoglu and

Kirca (1999b). In their earlier work, the authors tackle the problems Pm//
∑

w jC j

and Qm//
∑

w jC j, where Qm denotes the presence of m uniform parallel machines.

In either case, their B&B algorithm does not scale beyond 3 machines and 25 jobs

in 10 and 15 minutes of CPU time for Pm//
∑

w jC j and Qm//
∑

w jC j, respectively.

The first exact solution procedure for our problem Rm-TWCT appears in (Azizoglu

and Kirca, 1999b). The B&B method of the authors incorporates structural dom-

inance properties to exclude unpromising nodes from consideration. The lower

bounding mechanism is based on solving an assignment problem and requires

calculating a lower bound on the completion time of each job at each position on

each machine. The computational results demonstrate that instances larger than

2 machines and 25 jobs or 3 machines and 20 jobs are beyond the approach with

a 15 minute time limit.

From the discussion above, it is evident that the scalability of B&B methods

for parallel machine (weighted) completion time problems is highly doubtful. It

turns out that compared to custom B&B procedures, exact solution methods that

rely on mathematical programming based decomposition techniques are far more

promising for parallel machine scheduling problems with additive objective func-

tions. This is true for both the total (weighted) completion time and the due date

related performance measures. The underlying reason for this phenomenon is

rooted in the tight lower bounds attained by good mathematical programming

formulations of parallel machine scheduling problems. Two prime examples are

52

presented by Chen and Powell (1999b) and van den Akker et al. (1999). In both

of these papers, a general parallel machine scheduling problem with an additive

objective function of the job completion times is formulated as a set partition-

ing problem with exponentially many variables. Each variable (column) in the

formulation corresponds to a feasible machine schedule. The branch-and-price

algorithms of both sets of authors apply column generation (CG) to the node

LP problems due to the huge number of feasible machine schedules, and they

mainly differ in their branching schemes. The root relaxation often yields an

integer optimal solution, and even if this property does not hold for a particular

instance, in a vast majority of cases only a few nodes of the search tree need to

be explored until the integer optimal solution is identified. Thus, both studies

attribute their relative computational success to the quality of the LP relaxation

of their set partitioning formulations. Another common trait of both branch-and-

price algorithms is that decreasing the number of machines for a fixed number of

jobs has a detrimental effect on the computational performance. Chen and Powell

(1999b) apply their solution method to Rm-TWCT among others and report results

with up to 100 jobs and 20 machines. Their average CPU time for instances with

100 jobs degrades from 363 seconds with 20 machines to 2051 seconds with 8

machines. van den Akker et al. (1999) report computational experience only with

Pm//
∑

j w jC j, and their results are similar. Aggregated over all three instance

classes the authors consider, the average solution time for instances with 100 jobs

and 10 machines is 1512 seconds. Finally, the best contender in the literature as an

exact solution method for Rm-TWCT turns out to be solving the convex quadratic

integer programming (CQIP) formulation of Skutella (2001) who propose this for-

mulation – presented in Section 3.3 – as a means of developing an approximation

algorithm for Rm-TWCT with a performance guarantee of 3/2. Later, Plateau and

Rios-Solis (2010) perform an experimental study on this formulation and find out

that it attains the best computational results for Rm-TWCT to date. We benchmark

the performance of our new MIP formulation solved by Benders decomposition

against that of this CQIP formulation in Section 3.4.

The review of the related literature reveals that developing a scalable exact

algorithm for Rm-TWCT is still an open research question – in particular if the ratio

of the number of jobs to the number of machines is not small. This observation

53

and the success of the mathematical programming based solution methods for

parallel machine scheduling problems detailed above motivates the work in this

chapter. In this sense we follow suit with Chen and Powell (1999b), van den Akker

et al. (1999) and apply a decomposition approach to a mathematical programming

formulation that is demonstrated to provide tight lower bounds for the TWT and

TWET objectives in the unrelated parallel machine environment in Section 2.5 of

Chapter 2.

3.3 Formulation and Solution Approach

In our problem Rm-TWCT, a set of n jobs are ready at time zero to be processed on

a bank of m unrelated parallel machines. Each job is required to receive service

from exactly one machine. All machines are available continuously from time

zero onward, and a machine can execute at most one job at a time. Without

loss of generality, any machine can process any job, and if job j is performed on

machine k, then it stays on the machine for an integer duration of p jk time units

without interruption – preemption is not allowed. As introduced in Section 3.1,

the objective is to minimize
∑

j w jC j, where w j and C j indicate the unit completion

time penalty and the completion time associated with job j, respectively.

An overview of the exact monolithic mathematical programming formulations

available for Rm-TWCT is provided in (Li and Yang, 2009) and (Unlu and Mason,

2010), and we can infer that the time-indexed formulation – initially introduced in

a seminal paper by Dyer and Wolsey (1990) in the single-machine context – stands

out amongst the MIP formulations. While time-indexed formulations give rise to

tight LP relaxations, their pseudo-polynomial size turns into a major drawback for

instances with long processing times. Unlu and Mason (2010) report that the time-

indexed formulation outperforms the other MIP formulations on P2//
∑

j w jC j and

P3//
∑

j w jC j instances with up to 100 jobs and a time limit of one hour, but does

not scale beyond – in particular if the maximum processing time is increased to

100 from 20. The findings of a recent study by Berghman et al. (2014) provide

further evidence in this direction. The authors consider general cost functions

and improve the original time-indexed formulation by preprocessing and new

valid inequalities. The results demonstrate no real benefit from the proposed

54

techniques, and many of the 200-job instances with 2 machines and a maximum

processing time of 20 remain unsolved in one hour. Similar observations on

linear formulations lead Rodriguez et al. (2013) to consider a quadratic integer

programming formulation for evaluating the quality of their heuristics, and we

follow suit with them in this sense. As mentioned at the end of Section 3.1,

the CQIP formulation proposed by Skutella (2001) and evaluated empirically by

Plateau and Rios-Solis (2010) exhibits the best computational performance on Rm-

TWCT to date and is stated below. We benchmark against this formulation in

Section 3.4.

(CQ) minimize
n

∑

j=1

m
∑

k=1

















1
2

w jp jk

(

y jk + y2
jk

)

+
∑

i≺k j

w jpikyiky jk

















(3.1)

subject to
m

∑

k=1

y jk = 1, j = 1, . . . ,n, (3.2)

y jk ∈ {0, 1}, j = 1, . . . ,n, k = 1, . . . ,m. (3.3)

In (CQ), setting the value of the binary variable y jk to one implies that job j is to

be processed on machine k. Each job is assigned to exactly one machine by the

job partitioning constraints (3.2). The notation i ≺k j implies that either wi

pik
>

w j

p jk
or

wi

pik
=

w j

p jk
and i < j following the WSPT order on machine k. (CQ) relies on the basic

observation C j =
∑m

k=1 y jk

(

p jk +
∑

i≺k j pikyik

)

and a convexification of the resulting

objective function.

The foundation of our exact formulation for Rm-TWCT resides in a class of tight

lower bounds initially developed for the single-machine weighted tardiness and

weighted earliness/tardiness scheduling problems by Sourd and Kedad-Sidhoum

(2003), Bülbül et al. (2007), Pan and Shi (2007), and Şen and Bülbül (2012). The

fundamental idea in this body of work is to allow jobs to be preempted at integer

points in time and to penalize the completion time of each unit-length job. The

problem of determining the best schedule with this preemptive scheme is then

formulated as an assignment or a transportation problem, in which a job j with

an integer processing time p j is allocated a total of p j unit-length intervals in the

planning horizon and the machine executes no more than a single unit-length job

at a time. The size of the formulation is pseudo-polynomial because the length of

55

the planning horizon is determined by the sum of the processing times and the

magnitude of the due dates. Still, the existence of very effective algorithms for

the assignment and transportation problems ensures the viability of this lower

bounding method. Later, Kedad-Sidhoum et al. (2008) extend this lower bounding

approach to the identical parallel machine environment by reducing m identical

parallel machines to a single-machine with a capacity of executing m unit-length

jobs simultaneously. However, the optimal solution of the preemptive relaxation

formulated as a transportation problem in the identical parallel machine envi-

ronment lacks a crucial piece of information. The unit-length jobs of a given job

cannot overlap in time, but they can be performed on different machines. The

absence of an explicit assignment of the jobs to the machines in this relaxation

is a major hurdle to the design of optimal or heuristic algorithms that would

rely on the job-to-machine assignments for branching decisions or constructing

non-preemptive individual machine schedules. Moreover, applying the machine

capacity aggregation technique of Kedad-Sidhoum et al. (2008) would require

further loss of information in the case of unrelated parallel machines – by setting

p j = mink p jk for job j –, and the issue of inferring correct job-to-machine assign-

ment decisions from the optimal solution of the preemptive relaxation would

only be exacerbated. Motivated by these observations, we propose the formula-

tion (TR −A) in Section 2.3 of Chapter 2 which mandates that all unit- length jobs

of a given job are executed on the same machine. This formulation is reintroduced

below for completeness.

(TR −A) minimize
n

∑

j=1

m
∑

k=1

H
∑

t=1

c jktx jkt (3.4)

subject to
H

∑

t=1

x jkt = p jky jk, j = 1, . . . ,n, k = 1, . . . ,m, (3.5)

n
∑

j=1

x jkt ≤ 1, k = 1, . . . ,m, t = 1, . . . ,H, (3.6)

m
∑

k=1

y jk = 1, j = 1, . . . ,n, (3.7)

x jkt ≥ 0, j = 1, . . . ,n, k = 1, . . . ,m, t = 1, . . . ,H, (3.8)

y jk ∈ {0, 1}, j = 1, . . . ,n, k = 1, . . . ,m. (3.9)

56

In the model (TR −A), the time period t represents the time interval (t − 1, t],

and the variable x jkt is set to one at a cost of c jkt if a unit-length job of job j

is performed on machine k in time period t. The machine capacity constraints

(3.6) prescribe that no more than one unit-length job is in process in period t

on machine k. The constraints (3.5) ensure that all unit-length jobs of job j are

carried out on the same machine because exactly one of the binary job-to-machine

assignment variables y jk, k = 1, . . .m, is set to one due to the job partitioning

constraints (3.7). The end of the planning horizon H =
⌈

∑n
j=1 maxk

(

p jk

)

/m
⌉

+ pmax

is valid because there exists an optimal solution of the non-preemptive problem

Rm-TWCT so that all jobs are brought to completion at or before H. See the

explanation below Equation (2.5) in Section 2.3 of Chapter 2 for the details of

determining the appropriate value of H. Note that pmax = max j,k

(

p jk

)

may be

omitted from the expression for H in the case of a single-machine.

The fundamental difference of (TR −A) compared to the earlier work in the

domain of preemptive relaxations discussed above lies in the constraints (3.5).

While these constraints remove the drawback of having the unit-length jobs of a

given job distributed over multiple machines, they also destroy the desirable poly-

hedral structure, and we no longer have a transportation problem on our hands.

It turns out that (TR −A) is an MIP formulation of pseudo-polynomial size, which

grows very quickly with increasing m, n, and long processing times. The key to

solving this formulation effectively is to recognize that (TR −A) decomposes into

into m independent transportation problems for any fixed assignment of the jobs

to the machines. This observation renders any integrality restrictions on the vari-

ables x jkt redundant – see (3.8) – and suggests a Benders decomposition algorithm

(Benders, 1962) for tackling (TR −A). The existence of powerful LP engines that

can solve very large transportation problem instances in very short times and a

fast custom procedure to strengthen the Benders cuts enables us to obtain tight

lower bounds for Rm-TWT and Rm-TWET in Chapter 2 by solving (TR −A) to

(near-)optimality. Our main contribution over Chapter 2 in this chapter is to

prove that (TR −A) with the objective coefficients to be discussed next yields an

exact formulation for TWCT. Moreover, we identify the analytic closed form of

the optimal solutions of the Benders subproblems and generate cuts without the

need of invoking an LP solver as was the case in Chapter 2. Coupling this with

57

further enhancements attained in the Benders cut strengthening procedure results

in a scalable and very fast optimal solution technique for Rm-TWCT.

One issue that deserves special attention is the choice of the objective co-

efficients in (TR −A). In the context of the preemptive relaxations developed

previously for earliness/tardiness scheduling problems, the cost coefficients must

satisfy the sufficient condition (3.10) below, where f j(t) is the cost incurred by job

j in the original non-preemptive problem for completing at time t.

t
∑

s=t−p jk+1

c jks ≤ f j(t) j = 1, . . . ,n, k = 1, . . . ,m, t = p jk, . . . ,H. (3.10)

This condition states that the total cost accumulated by all p jk unit-length jobs of job

j on machine k in a non-preemptive solution of the preemptive relaxation does not

exceed the cost that job j would incur in the original non-preemptive problem with

the same completion time. Thus, the optimal objective value of the preemptive

relaxation is guaranteed to be a lower bound on that of the corresponding non-

preemptive problem.

An infinite number of cost coefficient vectors satisfy (3.10). The particular

choice determines the strength of the lower bound and the empirical performance,

and the existing papers in the literature differ from each other in this respect.

For an in-depth discussion on this subject and the properties of alternate cost

coefficients, the reader is referred to (Pan and Shi, 2007) and Section 2.3 of Chapter

2. In this chapter, we directly employ the cost coefficients used in Chapter 2 for

Rm-TWT and Rm-TWET by setting all due dates equal to zero – both problems

reduce to Rm-TWCT with zero due dates:

c jkt =
w j

p jk

(

t +
p jk

2
−

1
2

)

, j = 1, . . . ,n, k = 1, . . . ,m, t = 1, . . . ,H. (3.11)

Consequently, Proposition 3.1 presented next follows as a direct corollary of Propo-

sition 2.1 given in Chapter 2.

Proposition 3.1. The optimal objective function value of (TR −A) with the cost coef-

ficients given in (3.11) is a lower bound on the optimal objective function value of the

original non-preemptive problem Rm-TWCT.

In the rest of the chapter, any reference to (TR −A) employs the set of cost

58

coefficients (3.11). Two further intermediate results proven next and Proposition

3.1 collectively yield our main result formalized in Theorem 3.4. In the sequel,

a non-preemptive feasible solution of (TR −A) refers to a feasible solution of

(TR −A) in which all unit-length jobs of any job are processed in consecutive

periods.

Lemma 3.2. The cost charged against any non-preemptive feasible solution of (TR −A)

is identical to the cost incurred by this schedule in the original non-preemptive problem

Rm-TWCT.

Proof. The proof follows from a more general argument in (Bülbül et al., 2007,

Theorem 2.2). The relationship below, where job j is assigned to p jk consecutive

time periods from C j− p jk + 1 to C j on machine k holds for all jobs. This completes

the proof.

C j
∑

t=C j−p jk+1

c jkt =
w j

p jk

C j
∑

t=C j−p jk+1

(

t +
p jk

2
−

1
2

)

=
w j

p jk

(

p jk(C j − p jk) +
p jk(p jk + 1)

2
+

p jk(p jk − 1)

2

)

= w jC j

�

Proposition 3.3. There exists a non-preemptive optimal solution of (TR −A). Further-

more, in this optimal solution the jobs assigned to each machine are sequenced in the

WSPT order.

Proof. For any given fixed job partition y, (TR −A) decomposes into m indepen-

dent single-machine transportation problems. Therefore, the key to this proof

is to show that the individual machine schedules constructed by (TR −A) are

non-preemptive and follow the WSPT order. To this end, it is sufficient to restrict

our attention to one arbitrary machine k. Without loss of generality, we assume

that a subset of jobs Jk with | Jk | = nk are assigned to machine k in an optimal

solution of (TR −A) and that these jobs are re-indexed in the WSPT order; that

is, w1
p1k
≥

w2
p2k
≥ . . . ≥

wnk

pnkk
. The total processing time on machine k is represented by

Pk =
∑

j∈Jk
p jk. In the following, we prove that in the optimal schedule of machine

k, the first p1k positions are occupied by the unit-length jobs of job 1, and these are

followed by p2k unit-length jobs of job 2, etc.

59

We first restate the problem of finding the optimal (possibly preemptive) sched-

ule of the set of jobs Jk on machine k as an assignment problem (AP) – a special

case of the transportation problem:

(AP) minimize
Pk
∑

i=1

Pk
∑

t=1

c
′

it δit (3.12)

Pk
∑

t=1

δit = 1, i = 1, . . . ,Pk, (3.13)

Pk
∑

i=1

δit = 1, t = 1, . . . ,Pk, (3.14)

δit ∈ {0, 1}, i = 1, . . . ,Pk, t = 1, . . . ,Pk. (3.15)

The formulation (AP) decouples the unit-length jobs of a given job and regards

them as independent tasks. The first p1k tasks belong to job 1, the next p2k tasks are

associated with job 2, and so on. The original job associated with task i is denoted

by j(i). The binary variable δit takes on the value one at a cost of c
′

it
= c j(i)kt – as

defined in (3.11) – if task i is processed in period t. The constraints (3.13)-(3.14)

mandate that each task is assigned to one period and vice versa, respectively.

The cost coefficient matrix C
′

=
(

c
′

it

)

of (AP) turns out to be a Monge matrix

– it fulfills a very special property known as the Monge property (Burkard et al.,

2009, Definition 5.5):

c
′

i1t1
+ c

′

i2t2
≤ c

′

i1t2
+ c

′

i2t1
, 1 ≤ i1 < i2 ≤ Pk, 1 ≤ t1 < t2 ≤ Pk. (3.16)

To recognize this, we note that c
′

it
= c j(i)kt =

w j(i)

p j(i)k

(

t +
p j(i)k

2 −
1
2

)

and verify (3.16) for

any i2 < i2 and t1 < t2:

w j(i1)

p j(i1)k

(

t1 +
p j(i1)k

2
−

1
2

)

+
w j(i2)

p j(i2)k

(

t2 +
p j(i2)k

2
−

1
2

)

≤
w j(i1)

p j(i1)k

(

t2 +
p j(i1)k

2
−

1
2

)

+
w j(i2)

p j(i2)k

(

t1 +
p j(i2)k

2
−

1
2

)

⇐⇒
w j(i1)

p j(i1)k
t1 +

w j(i2)

p j(i2)k
t2 ≤

w j(i1)

p j(i1)k
t2 +

w j(i2)

p j(i2)k
t1

⇐⇒

(

w j(i1)

p j(i1)k
−

w j(i2)

p j(i2)k

)

t1 ≤

(

w j(i1)

p j(i1)k
−

w j(i2)

p j(i2)k

)

t2. (3.17)

60

The final inequality (3.17) holds because t1 < t2 and i1 < i2 implies
w j(i1)

p j(i1)k
≥

w j(i2)

p j(i2)k
.

Assignment problems with Monge cost coefficient matrices exhibit a very

simple optimal solution: they are solved by the identical permutation (Burkard

et al., 2009, Proposition 5.7). Stated in the context of our problem, executing task

i in period i solves (AP) optimally. This optimal solution does clearly correspond

to a non-preemptive schedule on machine k, in which the jobs are sequenced in

the WSPT order and delivers the desired result for (TR −A). �

Theorem 3.4. (TR −A) is an exact formulation for Rm-TWCT.

Proof. By Proposition 3.3, we can identify a non-preemptive optimal solution S∗ of

(TR −A). The associated objective value is a lower bound on the optimal objective

value of Rm-TWCT based on Proposition 3.1. Moreover, S∗ is also feasible for Rm-

TWCT, and Lemma 3.2 assures that the cost it incurs with respect to Rm-TWCT

is identical to the optimal objective value of (TR −A). Therefore, S∗ must be an

optimal schedule for Rm-TWCT. �

(TR −A) is thus an exact extended formulation for Rm-TWCT obtained via

variable splitting because the completion time C j of job j can be expressed as

C j ≥ tx jkt, j = 1, . . . ,n, k = 1, . . . ,m, t = 1, . . . ,H.

The corollary below follows from Theorem 3.4 and suggests an LP-based

alternative for solving the non-preemptive single-machine TWCT problem.

Corollary 3.5. The non-preemptive single-machine total weighted completion time prob-

lem is equivalent to a transportation problem of pseudo-polynomial size.

Proof. Theorem 3.4 assures that we can solve the single-machine TWCT problem

to optimality by setting m = 1 in (TR −A). However, in this case, the formulation

is simplified by dropping the binary variables y jk from the formulation along

with the constraints (3.7). The resulting model is a transportation problem with

n source nodes and
∑

j p j1 sink nodes, where the objective coefficients are defined

by (3.11). The size of the transportation problem is pseudo-polynomial because

the number of sink nodes depends on the magnitude of the processing times. �

The primal solution of the transportation problem entails assigning the values

of the variables x j1t, j = 1, . . . ,n, t = 1, . . . ,H, as prescribed by the WSPT order of

61

the jobs, and the closed form of the dual solution is specified in the next section

as part of our Benders decomposition scheme – see (3.28). In either case, the

solution procedure is very fast in practice; however, there is no way of getting

around the theoretical pseudo-polynomial complexity because of the number of

value assignments required.

The result in Corollary 3.5 was actually discovered previously in the context

of the relaxations of the single-machine TWCT problem with release dates – the

problem 1/r j/
∑

j w jC j. Dyer and Wolsey (1990) explore and compare the strengths

of various relaxations of 1/r j/
∑

j w jC j. Their weaker time-indexed formulation

(D) (Dyer and Wolsey, 1990, Section 5) boils down to (TR −A) with m = 1 af-

ter some simple manipulation. The authors point out that the optimal objective

value of this preemptive time-indexed formulation can be computed in O(n log n)

time based on a lower bounding algorithm proposed in (Posner, 1985) for the

single-machine TWCT problem with deadlines. A discussion of the same trans-

portation problem as a relaxation for 1/r j/
∑

j w jC j is also presented by Goemans

et al. (2002) who design approximation algorithms for this problem. Thus, in a

sense Corollary 3.5 is a unifying result. It is obtained by studying a special case

of the preemptive time-indexed formulations of earliness/tardiness scheduling

problems and offers a new perspective on an already known result in different

contexts. However, from our point of view the primary significance of being able

to solve the single-machine TWCT problem as a transportation problem derives

from the valuable dual information extracted from the optimal LP solution. In de-

composition algorithms for complex scheduling problems with a single-machine

TWCT component, one may opt for solving the subproblems as an LP problem in

pseudo-polynomial time for the sake of this dual information – as is the case in

this chapter. We are not aware of any other paper in the literature which adopts

a similar approach.

3.3.1 Benders Decomposition

As alluded to several times up to this point, (TR −A) exhibits a decomposable

structure that lends itself to a fast solution algorithm based on Benders decompo-

sition. In this section, we formalize this discussion, and our presentation of the

62

Benders master and subproblems follows closely that in Section 2.4 of Chapter

2. Then, we prove that the optimal solutions of the Benders subproblems in this

chapter can be computed analytically in closed form – without having to resort

to a generic LP or transportation problem solver as was the case in Chapter 2.

Finally, we enhance the cut strengthening procedure given in Section 2.4.1 of

Chapter 2 by exploiting the special structure of the optimal solutions of the Ben-

ders subproblems. The ability to solve the subproblems very quickly combined

with the improved cut strengthening procedure gives our Benders decomposition

algorithm an additional edge and allows us to solve instances with up to 1000

jobs and 30 machines exactly in short computational times as demonstrated in the

next section.

(TR −A) decomposes into m independent transportation problems for any

fixed partition of the jobs to the machines as specified by the values of the binary

variables y jk, j = 1, . . . ,n, k = 1, . . . ,m. Thus, for any given fixed y satisfying (3.7),

(TR −A) is reformulated via the Benders decomposition principle by replacing

the right hand side of the set of constraints (3.5) by p jky jk and removing the set of

constraints (3.7) and (3.9) from the model. The resulting LP problem is referred to

as
(

TR −A(y)
)

, and the dual variables associated with the set of constraints (3.5)

and (3.6) are denoted by u jk, j = 1, . . . ,n, k = 1, . . . ,m, and vkt, k = 1, . . . ,m, t =

1, . . . ,H, respectively. The formulation below is then the dual of of
(

TR −A(y)
)

and exposes the decomposition into m independent transportation problems:

z(y) =
m

∑

k=1

zk(y), (3.18)

where

(

DSk − F
)

zk(y) = maximize
n

∑

j=1

p jky jku jk +

H
∑

t=1

vkt (3.19)

subject to u jk + vkt ≤ c jkt, j = 1, . . . ,n, t = 1, . . . ,H, (3.20)

vkt ≤ 0, t = 1, . . . ,H, (3.21)

is the dual of the transportation problem
(

TRk

)

for machine k. Adopting the

63

common terminology for Benders decomposition,
(

TRk

)

and
(

DSk − F
)

are also

referred to as the cut generation subproblem and the dual slave problem for machine

k, respectively, in the following discussion.

For each candidate y,
(

DSk − F
)

, k = 1, . . . ,m, provide a pair of dual vectors u, v

so that the sum of the optimal objective function values of
(

DSk − F
)

, k = 1, . . . ,m,

is equal to the cost of the best solution of (TR −A) that can be attained from the

job partition y. Consequently, a Benders optimality cut of the form

η ≥

m
∑

k=1

















n
∑

j=1

p jku jky jk +

H
∑

t=1

vkt

















(3.22)

removes y from further consideration, where η represents a lower bound on the

optimal objective value of (TR −A). Moreover, note that
(

TR −A(y)
)

is always

feasible and only optimality cuts need to be generated. In the resulting relaxed

Benders master problem (RMP) presented below, the cuts (3.22) appear in the

disaggregated form (3.25) because this so-called multi-cut version proved superior

in our preliminary computational experiments.

(RMP) minimize
m

∑

k=1

ηk (3.23)

subject to
m

∑

k=1

y jk = 1, j = 1, . . . ,n, (3.24)

ηk ≥

n
∑

j=1

p jku
c
jky jk +

H
∑

t=1

vc
kt, k = 1, . . . ,m, c = 1, . . . ,C, (3.25)

y jk ∈ {0, 1}, j = 1, . . . ,n, k = 1, . . . ,m. (3.26)

In (RMP), the number of times the dual slave problems
(

DSk − F
)

, k = 1, . . . ,m,

have been solved so far is designated by C, and the superscript c in uc
jk

and vc
kt

indicates that these optimal values of the dual variables are obtained in iteration c

of the cut generation. The auxiliary variable ηk approximates the total cost charged

against the jobs performed on machine k from below, and the objective function

value
∑m

k=1 ηk of (RMP) is therefore a lower bound on the optimal objective value

of (TR −A). We also remark that Rm-TWCT does always possess an optimal

solution that fulfills the load balancing constraints (3.27). Otherwise, the final job

64

on machine k may be transferred to another machine without increasing the total

cost (Azizoglu and Kirca, 1999b, Theorem 1). These m constraints are incorporated

into the initial (RMP).

n
∑

j=1

p jky jk ≤
1
m

















∑

j

max
l

{

p jl

}

+
∑

l6=k

max
j

{

p jl

}

















, k = 1, . . . ,m. (3.27)

The classical textbook application of Benders decomposition iterates between

generating Benders cuts based on the optimal solution of the current relaxed

master problem and re-optimizing the relaxed master problem with the additional

cuts starting from a brand-new search tree. Consequently, the same nodes may be

re-visited several times during the course of the Benders decomposition algorithm

resulting in an inefficient implementation. With the recent advances in solver

technology, a Benders type algorithm may be executed on a single search tree

by exploiting the lazy constraint feature (IBM ILOG CPLEX, 2012) that allows

generating a Benders cut for each candidate incumbent solution. Thus, no integer

solution is evaluated more than once, and this generally leads to very substantial

computational savings. In-depth discussions are offered in (Rubin, 2011) and at

the end of Section 2.4.1 of Chapter 2. The use of the lazy constraint callback routine

is also reflected in the pseudo-code of our optimal algorithm for (TR −A) stated

in Algorithm 3 at the end of this section.

Next, we turn our attention to the efficient generation of the Benders optimality

cuts (3.25) by providing a closed form optimal solution to
(

DSk − F
)

. Note that
(

DSk − F
)

is defined over the entire set of jobs and the full length of the planning

horizon H. However, a job j′ with y j′k = 0 is not performed on machine k and may

be excluded from consideration while optimizing
(

DSk − F
)

. Therefore, we define

Jk = { j | y jk = 1} as the set of jobs to be processed on machine k and Hk =
∑

j∈Jk
p jk

as the associated planning horizon, respectively, and solve a restricted version of
(

DSk − F
)

– referred to as
(

DSk − R
)

– over these jobs and time periods only. The

optimal solution of
(

DSk − R
)

is then trivially augmented to an optimal solution

of
(

DSk − F
)

by setting u jk = 0 for j 6∈ Jk and vkt = 0 for t = Hk + 1, . . . ,H. The

validity of this augmentation requires that the objective function coefficients of

(TR −A) are non-negative and non-decreasing over time, and that the optimal

solution of
(

DSk − R
)

satisfies maxt=1,...,Hk
vkt = 0 – see Section 2.4.1 of Chapter 2).

65

The earlier condition does clearly hold here, and the optimal solution of
(

DSk − R
)

specified in (3.28) fulfills the latter because vkt ≤ 0 for all t = 1, . . . ,Hk and vkHk
= 0.

In the presentation below, the jobs assigned to machine k are re-labeled in the

WSPT order; that is, i < j implies wi

pik
≥

w j

p jk
for two jobs i, j ∈ Jk. Then,

u jk =
w j

p jk

(

∑

i≤ j pik +
p jk

2 −
1
2

)

+
∑

i> j wi, j ∈ Jk,

vkt =
wl(t)

pl(t)k

(

t −
∑

i≤l(t) pik

)

−
∑

i>l(t) wi, t = 1, . . . ,Hk,
(3.28)

is an optimal solution for
(

DSk − R
)

, where l(t) is defined such that
∑

i<l(t) pik <

t ≤
∑

i≤l(t) pik, as we prove next.

Proposition 3.6. (uk,vk) specified in (3.28) is an optimal solution for
(

DSk − R
)

with

the cost coefficients given in (3.11).

Proof. The proof consists of two main steps. First, we show that (uk,vk) is a feasible

solution for
(

DSk − R
)

, i.e., vkt ≤ 0 for all t = 1, . . . ,Hk and u jk + vkt ≤ c jkt for all

j ∈ Jk and t = 1, . . . ,Hk. Then, we demonstrate that the objective function value

associated with this feasible solution of the dual slave problem is equal to that

of the optimal solution of the corresponding primal problem. Our focus in this

proof is entirely on
(

DSk − R
)

for a given machine k, and therefore, every specific

job or set of jobs referred to in the following belongs to Jk.

The non-positivity of vkt for all t = 1, . . . ,Hk follows from

vkt =
wl(t)

pl(t)k















t −
∑

i≤l(t)

pik















−
∑

i>l(t)

wi = −r(t)
wl(t)

pl(t)k
−

∑

i>l(t)

wi ≤ 0,

where

0 ≤ r(t) =
∑

i≤l(t)

pik − t ≤ pl(t)k − 1, (3.29)

and the weights and the processing times are strictly positive.

To show that u jk + vkt ≤ c jkt is satisfied for all j ∈ Jk and t = 1, . . . ,Hk, we

substitute the values of u jk and vkt from (3.28) and c jkt from (3.11). The constraint

66

u jk + vkt ≤ c jkt then reduces to

w j

p jk

















∑

i≤ j

pik +
p jk

2
−

1
2

















+
∑

i> j

wi +
wl(t)

pl(t)k















t −
∑

i≤l(t)

pik















−
∑

i>l(t)

wi ≤
w j

p jk

(

t +
p jk

2
−

1
2

)

⇐⇒
w j

p jk

















∑

i≤ j

pik +
p jk

2
−

1
2

















+
∑

i> j

wi −
wl(t)

pl(t)k
r(t) −

∑

i>l(t)

wi

≤
w j

p jk















∑

i≤l(t)

pik − r(t) +
p jk

2
−

1
2















(3.30)

by replacing t−
∑

i≤l(t) pik by−r(t) and t by
∑

i≤l(t) pik−r(t) based on (3.29). In order to

establish the validity of (3.30), we consider the cases j ≤ l(t) and j > l(t) separately.

If j ≤ l(t), (3.30) simplifies to

w j

p jk

















−
∑

j<i≤l(t)

pik

















+
∑

j<i≤l(t)

wi ≤ r(t)

(

wl(t)

pl(t)k
−

w j

p jk

)

. (3.31)

Note that j ≤ l(t) implies
w j

p jk
≥

wl(t)

pl(t)k
and leads to

(

pl(t)k − 1
)

(

wl(t)

pl(t)k
−

w j

p jk

)

≤ r(t)
(

wl(t)

pl(t)k
−

w j

p jk

)

based on (3.29). Therefore, (3.31) holds if

−
∑

j<i≤l(t)

pik

w j

p jk
+

∑

j<i≤l(t)

pik
wi

pik
≤

(

pl(t)k − 1
)

(

wl(t)

pl(t)k
−

w j

p jk

)

(3.32)

⇐⇒
∑

j<i<l(t)

pik

(

wi

pik
−

w j

p jk

)

≤
w j

p jk
−

wl(t)

pl(t)k
(3.33)

is satisfied, where the transition from (3.32) to (3.33) requires adding pl(t)k
w j

p jk
−wl(t)

to both sides of (3.32). The inequality (3.33) is clearly correct since
(

wi

pik
−

w j

p jk

)

≤ 0

for i ≥ j and
(

w j

p jk
−

wl(t)

pl(t)k

)

≥ 0, and this completes the argument for the first case with

j ≤ l(t).

If j > l(t), re-arranging the terms of (3.30) leads to

w j

p jk

















∑

l(t)<i≤ j

pik

















−
∑

l(t)<i≤ j

wi ≤ r(t)

(

wl(t)

pl(t)k
−

w j

p jk

)

. (3.34)

The inequality
w j

p jk
≤

wl(t)

pl(t)k
follows from j > l(t), and we conclude that the right hand

side of (3.34) is non-negative. Therefore, in order to prove that (3.34) is satisfied it

67

is sufficient to demonstrate the correctness of this relation:

∑

l(t)<i≤ j

pik

w j

p jk
−

∑

l(t)<i≤ j

pik
wi

pik
=

∑

l(t)<i≤ j

pik

(

w j

p jk
−

wi

pik

)

≤ 0. (3.35)

The validity of inequality (3.35) derives from
(

w j

p jk
−

wi

pik

)

≤ 0 for i ≤ j. This yields

the correctness of (3.30) for the second case with j > l(t), and (uk,vk) is certified as

a feasible solution of
(

DSk − R
)

.

The primal problem associated with
(

DSk − R
)

is the restricted cut generation

subproblem
(

TRk − R
)

solved over the set of jobs Jk and the planning horizon t =

1, . . . ,Hk. Based on Corollary 3.5,
(

TRk − R
)

is equivalent to the non-preemptive

single-machine TWCT problem solved over the jobs in Jk. Therefore, its optimal

objective function value is calculated as
∑

j∈Jk
w j

(

∑

i≤ j pik

)

, where the completion

time of job j in the non-preemptive WSPT schedule is equal to the sum of the

processing times of the jobs placed earlier in the WSPT sequence. Thus, in order

to complete the proof, we must argue that the objective function value associated

with (uk,vk) in
(

DSk − R
)

is equal to
∑

j∈Jk
w j

(

∑

i≤ j pik

)

.

∑

j∈Jk

p jku jk +

Hk
∑

t=1

vkt

=
∑

j∈Jk

p jk

















w j

p jk

















∑

i≤ j

pik +
p jk

2
−

1
2

















+
∑

i> j

wi

















+

Hk
∑

t=1















wl(t)

pl(t)k















t −
∑

i≤l(t)

pik















−
∑

i>l(t)

wi















(3.36)

=
∑

j∈Jk

p jk

















w j

p jk

















∑

i≤ j

pik +
p jk

2
−

1
2

















+
∑

i> j

wi

















+
∑

j∈Jk

















w j

p jk

















−

p jk−1
∑

i=0

i

















− p jk

∑

i> j

wi

















(3.37)

=
∑

j∈Jk

p jk

















w j

p jk

















∑

i≤ j

pik +
p jk

2
−

1
2

















+
∑

i> j

wi

















−
∑

j∈Jk

p jk

















w j

p jk

(p jk − 1)

2
+

∑

i> j

wi

















=
∑

j∈Jk

p jk

















w j

p jk

















∑

i≤ j

pik +
p jk

2
−

1
2
−

p jk − 1

2

































=
∑

j∈Jk

w j

















∑

i≤ j

pik

















.

For the transition from (3.36) to (3.37), observe that each job j ∈ Jk becomes

the job l(t) for p jk consecutive time periods, and the difference
(

t −
∑

i≤l(t) pik

)

runs from −(p jk − 1) to zero during these time periods. Therefore, we have
∑Hk

t=1
wl(t)

pl(t)k

(

t −
∑

i≤l(t) pik

)

=
∑

j∈Jk

w j

p jk

(

−
∑p jk−1

i=0 i
)

. A similar argument yields

−
∑Hk

t=1

∑

i>l(t) wi = −
∑

j∈Jk
p jk

∑

i> j wi. �

68

The general consensus of the literature (Fischetti et al., 2010, Magnanti and

Wong, 1981) is that algorithms based on Benders decomposition rarely deliver

good computational performance unless the Benders cuts are strengthened. The

essence of the matter is to choose a “good” optimal solution of the dual slave

problem to generate cuts if primal degeneracy is present in the cut generation

subproblem. In the context of this study, the transportation problem is renowned

for it is primal degeneracy and an optimal solution of
(

DSk − F
)

obtained by

extending the optimal solution (uk,vk) of
(

DSk − R
)

given in (3.28) by setting

u jk = 0 for j 6∈ Jk and vkt = 0 for t = Hk + 1, . . . ,H, results in weak cuts and

uncompetitive computational performance. To alleviate this issue, we apply

the cut strengthening procedure of Chapter 2 which yields an alternate optimal

solution (u′
k
,v′

k
) of

(

DSk − F
)

– see Proposition 2.3 of Chapter 2:

u′
jk
= u jk, j ∈ Jk, u′

jk
= mint=1,...,Hk

(c jkt − vkt), j 6∈ Jk,

v′
kt
= vkt, t = 1, . . . ,Hk, v′

kt
= 0, t = Hk+1, . . . ,H.

(3.38)

The benefit is that y jk, j 6∈ Jk, are now added to the right hand side of (3.25)

with strictly positive coefficients p jku
′
jk
, j 6∈ Jk. Note that u′

jk
> 0 for all j 6∈ Jk

because c jkt > 0 in the entire planning horizon for all jobs and maxt=1,...,Hk
vkt = 0

as discussed just above the presentation of the optimal solution of
(

DSk − R
)

in (3.28). The naive calculation of u′
jk

for all j 6∈ Jk requires O(nH) operations;

however, by investigating and exploiting the structure of (uk,vk) we can carry

out this calculation in O(n) time based on Lemma 3.7 and the ensuing discussion.

Consequently, the pseudo-polynomial complexity O(mnH) for strengthening all

m cuts in one iteration of the Benders decomposition algorithm in Chapter 2 is

reduced to the polynomial complexity O(mn) for Rm-TWCT in this chapter. This

enhancement stems from the following result:

Lemma 3.7. For a given job j 6∈ Jk, the function f jk(t) = c jkt−vkt defined over t = 1, . . . ,Hk

is discrete convex.

Proof. Similar to the convention in the proof of Proposition 3.6, assume that the

jobs in Jk are re-labeled in the WSPT order and define l(t) such that
∑

i<l(t) pik <

t ≤
∑

i≤l(t) pik. Obviously, l(t) is the job processed on machine k in period t in

the optimal solution of
(

TRk − R
)

which schedules all unit jobs of a given job

69

contiguously by following the WSPT order. Note that
(

t −
∑

i≤l(t) pik

)

= −(phk−1) in

the first period t assigned to a job h, and this difference is increased by one in each

following period job h is processed until it becomes zero upon the completion of

job h. Consequently, for two consecutive periods t, t+1 assigned to job h such that

l(t+1) = l(t) = h, we have vk,t+1−vkt =
wh

phk
. Otherwise, if job h completes processing

in period t and job h + 1 is started in period t + 1, then l(t) = h, l(t + 1) = h + 1

and we obtain vk,t+1 − vkt =
(

−
wh+1
ph+1,k

(

ph+1,k − 1
)

−
∑

i>h+1 wi

)

− (−
∑

i>h wi) =
wh+1
ph+1,k

. We

conclude that

vk,t+1 − vkt =
wl(t+1)

pl(t+1)k
> 0, t = 1, . . . ,Hk − 1.

Re-arranging the terms, f jk(t) =
(

w j

2 −
w j

2p jk

)

+

(

w j

p jk
t − vkt

)

, and the difference

∆ jk(t) = f jk(t + 1) − f jk(t) =

(

w j

p jk
(t + 1) − vk,t+1

)

−

(

w j

p jk
t − vkt

)

=
w j

p jk
− (vk,t+1 − vkt) =

w j

p jk
−

wl(t+1)

pl(t+1)k

(3.39)

is non-decreasing over the interval 1, . . . ,Hk − 1 because
w j

p jk
is a constant and

wl(t+1)

pl(t+1)k

is non-increasing over the interval 1, . . . ,Hk − 1 based on the WSPT ordering of

the jobs in Jk. This completes the proof because a function f : Z+ 7→ R is discrete

convex if and only if the differences t 7→ f (t + 1) − f (t) are non-decreasing. �

The discrete convexity of f jk(t) for j 6∈ Jk implies that u′
jk
= mint=1,...,Hk

(c jkt−vkt) =

c jkt∗
jk
− vkt∗

jk
, where t∗

jk
= min

{

t = 1, . . . ,Hk | ∆ jk(t) ≥ 0
}

with the understanding that

∆ jk(Hk) ≥ 0. A further key observation allows us to conduct the search for t∗
jk

over the set of jobs in Jk instead of the set of time periods 1, . . . ,Hk. Recall that

the optimal solution of
(

TRk − R
)

is non-preemptive, and l(t) = h from period
∑

i<h pik + 1 until period
∑

i≤h pik. Consequently, (3.39) assures that ∆ jk(t) =
w j

p jk
−

wh

phk

from period Ch−1 =
∑

i<h pik until period Ch−1+ph−1, and the period in which ∆ jk(t)

changes sign must coincide with the completion time of a job in Jk – except when
w j

p jk
≥ maxi∈Jk

wi

pik
and t∗

jk
= 1. Moreover, from (3.39) we can also infer that t∗

j1k
≤ t∗

j2k

is satisfied for two jobs j1, j2 6∈ Jk so that
w j1
p j1k
≥

w j2
p j2k

. Putting these ideas together,

all u′
jk
, j 6∈ Jk, can be computed in O(n) time by traversing both these jobs and the

70

jobs in Jk in the WSPT order – see Algorithm 5.

The pseudo-code of our complete Benders decomposition scheme with the

cut strengthening feature for solving (TR −A) is stated in Algorithms 3-5. The

finiteness of the algorithm is argued through the finite number of job partitions.

Algorithm 3: Solving (TR −A) by Benders decomposition and lazy constraint
generation.

1 Create (RMP) with (2.19), (2.20), (2.22), and the load balancing constraints (2.14);
// Initialization.

2 Invoke CPLEX on (RMP); // Main loop.

3 repeat
4 Identify a new incumbent candidate y with an objective value of

∑m
k=1 ηk;

5 accept_candidate = true;
6 [cuts, z1(y), . . . , zm(y)] = generate_cuts(y) ; // cuts is a collection of m

cuts.

7 for k = 1 to m do
8 if ηk < zk(y) then // y violates a missing Benders cut.
9 Add cutsk to (RMP) as a lazy constraint, accept_candidate = false;

10 until CPLEX determines that the relative optimality gap of the current incumbent is less
than some threshold;

11 The best available job partition y∗ for (TR −A) is retrieved from CPLEX. The
optimal solution for Rm-TWCT is obtained by applying the WSPT rule
independently to the set of jobs on each machine;

Algorithm 4: Procedure generate_cuts.
input : A feasible partition y of the jobs to the machines.
output :Returns zk(y) and a strengthened Benders cut for all machines k = 1, . . . ,m.

1 for k = 1 to m do
2 Compute the optimal solution (uk,vk) of

(

DSk − R
)

as given in (3.28) and

calculate zk(y);
3 Retrieve the job completion times C j, j ∈ Jk, in the associated optimal solution

of
(

TRk − R
)

;

4 [(u′
k
,v′

k
)] = strengthen_cut(Jk, (C j, j ∈ Jk), (uk,vk)) is an optimal solution of

(

DSk − F
)

;

5 Generate a strengthened Benders cut of the form (2.21) from (u′
k
,v′

k
) and add to

cuts;

71

Algorithm 5: Procedure strengthen_cut.
input : Jk – Jobs assigned to machine k, re-labeled in WSPT order,

C j, j ∈ Jk – Job completion times in the optimal solution of
(

TRk − R
)

,

(uk,vk) – Optimal solution of
(

DSk − R
)

as specified in (3.28).
output : (u′

k
,v′

k
).

1 v′
kt
= vkt, t = 1, . . . ,Hk, v

′
kt
= 0, t = Hk+1, . . . ,H,u

′
jk
= u jk, j ∈ Jk; // no need in

actual implementation.

2 i∗ = 0, q = maxi∈Jk

wi

pik
=

w1
p1k

; // Job 1 refers to the first job in Jk.

3 for j 6∈ Jk do // Traverse in WSPT order. The entire loop runs in O(n)
time.

4 if q >
w j

p jk
then i∗ = max

{

i ∈ Jk | i ≥ i∗, wi

pik
>

w j

p jk

}

;

// The search condition i ≥ i∗ is justified by t∗
j1k
≤ t∗

j2k
for j1, j2 6∈ Jk

with
w j1
p j1k
≥

w j2
p j2k
� see (3.39).

5 if i∗ = 0 then t∗ = 1 else t∗ = Ci∗ ;
6 u′

jk
= c jkt∗ − vkt∗ ;

3.4 Computational Results

The overall goal of our computational study is to demonstrate that the proposed

Benders decomposition algorithm – referred to as (TR −A)-BDS in the rest of the

chapter – has a great computational performance both in absolute and relative

terms. We solve instances across a broad range of (n,m) combinations with

both short and long processing times and investigate the effectiveness of our

algorithm in order to establish its absolute performance. It turns out that (TR −A)-

BDS scales very well as instances with up to 1000 jobs and 30 machines are

either solved to optimality with a time limit of five minutes or very high-quality

incumbents are obtained at termination. For m ≤ 8, the optimal solution is

attained within 10 seconds for a great majority of the instances for any n, and we

conclude that (TR −A)-BDS is even fast enough to be employed as a subroutine

in decomposition algorithms designed for the more general flexible flow- and job

shop scheduling problems. Furthermore, to argue that (TR −A)-BDS is the best

exact algorithm for Rm-TWCT developed to date, we benchmark it against the

CQIP formulation (CQ) presented in Section 3.3 and solved by an off-the-shelf

engine. This approach is referred to as (CQ) -CPLEX in the sequel. As pointed out

in Sections 3.1-3.3, (CQ) -CPLEX represents the current state-of-the-art for the exact

methods designed for Rm-TWCT. The results reveal that compared to (CQ) -CPLEX,

72

(TR −A)-BDS either determines the optimal solution in considerably shorter time

or it identifies an incumbent of substantially higher quality at the time limit. The

details of our analyses are presented in the following.

To facilitate a direct comparison, our instance generation follows suit with

that of Plateau and Rios-Solis (2010) who evaluated (CQ) empirically. For each

job j ∈ {1, . . . ,n}, the processing time p jk on machine k ∈ {1, . . . ,m} and the unit

completion time penalty w j are drawn from the discrete uniform distribution

U [1, 20]. We create 10 instances for each combination of n ∈ {30, 100, 400, 1000}

and m ∈ {2, 4, 6, 8, 16, 30}, except for n = 30 and m = 16, 30, where the average

number of jobs per machine is too few. In this setup, the ratio n
m

varies between

3.33 and 500 which allows us to explore the sensitivity of (TR −A)-BDS to this

parameter. Note that the branch-and-price algorithms of Chen and Powell (1999b)

and van den Akker et al. (1999) mentioned in Section 3.1 run into trouble for
n
m
> 10. Furthermore, recall that the size of (TR −A) is pseudo-polynomial and

depends on the length of the processing times. Therefore, in an effort to verify the

robustness of (TR −A)-BDS with respect to the range of the processing times, we

repeat the same generation scheme except that the processing times are drawn

from the discrete uniform distribution U [1, 100] – i.e., pmax = 100 – which brings

the total number of instances solved in this study to 440.

The computational results are obtained on a personal computer with a 2.33

GHz Intel R© CoreTM2 Quad processor Q8200 and 8 GB of memory running on Win-

dows 7. (TR −A)-BDS is implemented in C++ using the Concert Technology

component library of IBM R© ILOG R© CPLEX R© 12.5. Under the default parameter

settings, the implementation of a control callback – such as the lazy constraint call-

back – leads CPLEX to turn off its dynamic search feature and apply a traditional

branch-and-cut strategy with a single thread (IBM ILOG CPLEX, 2012). Therefore,

to exploit parallelism and promote simultaneous cut generation, CPLEX is allowed

to use up to four parallel threads – as specified by the Threads parameter – with

the ParallelMode switch set to Opportunistic. Moreover, based on the posi-

tive previous experience in Chapter 2 the MIPEmphasis switch, which “controls

the trade-offs between speed, feasibility, optimality, and moving bounds in MIP,”

takes on the value four in order to emphasize finding high-quality hidden feasible

solutions. (CQ) -CPLEX calls CPLEX to solve (CQ) with the default parameter set-

73

tings, except that Threads=4, ParallelMode=Opportunistic, and MIPEmphasis=4

for a fair comparison with (TR −A)-BDS. In both methods, CPLEX terminates the

optimization if the relative optimality gap drops below EpGap=10−3=0.1%, or the

working memory exceeds WorkMem=5120=5 GB, or the time expended reaches

TiLim=300 seconds. More details on these parameters are available in (IBM ILOG

CPLEX, 2012).

Table 3.1 consists of 22 rows, one for each possible combination of n and m

listed in the first two columns. Each figure in the table represents a statistic

over 10 instances. The number of instances solved to optimality within the time

limit appears in the columns labeled with “#”, and the columns under “%Gap”

and “Time” present the average optimality gaps retrieved from CPLEX at termi-

nation and the average solution times, respectively. Note that CPLEX uses the

formula |best_bound−best_integer|

10−10+|best_integer|
for computing the optimality gap of an instance (IBM

ILOG CPLEX, 2012), where best_bound is the largest available lower bound and

best_integer is the objective value of the incumbent at termination. A color for-

matting scheme is applied separately to each of the three performance measures

“%Gap”, “Time”, and “#,” so that the values ranging from better to worse are

indicated with colors changing from green towards red. The results for instances

with relatively short processing times are reported in the left half of the table in

Columns 3-8 under the heading “pmax = 20.” The remaining columns depict the

performance measures for the corresponding instances with pmax = 100.

The results in Table 3.1 underline that (TR −A)-BDS provides provably op-

timal solutions for the majority of the instances well within the time limit of

300 seconds. More specifically, (TR −A)-BDS solves 343 out of a total of 440

instances to optimality in 3.73 seconds on average with a maximum solution time

of 162.48 seconds. In contrast, (CQ) -CPLEX attains only 270 optimal solutions

in 13.95 seconds on average with a maximum of 241.51 seconds. The average

and maximum gaps of (TR −A)-BDS for those 97 instances that could not be

solved to optimality within the specified time limit are just 0.96% and 5.51%, re-

spectively. The corresponding figures for (CQ) -CPLEX are 5.21% and 75.45% over

150 instances. (CQ) -CPLEX chokes on the remaining 20 largest instances with

n = 1000, m = 30 and terminates due to an out-of-memory error. The differences

between (TR −A)-BDS and (CQ) -CPLEX become more apparent if we separate

74

Table 3.1 Average optimality gap and solution time results for Rm-TWCT.

pmax = 20 pmax = 100

(TR −A)-BDS (CQ) -CPLEX (TR −A)-BDS (CQ) -CPLEX

n m %Gap Time # %Gap Time # %Gap Time # %Gap Time #

30

2 0.07 0.06 10 0.03 0.05 10 0.04 0.06 10 0.04 0.04 10
4 0.03 0.11 10 0.04 0.15 10 0.02 0.14 10 0.02 0.14 10
6 0.01 0.22 10 0.05 0.54 10 0.01 0.30 10 0.07 0.71 10
8 0.06 0.60 10 0.09 3.91 10 0.05 0.67 10 0.06 1.06 10

100

2 0.08 0.13 10 0.08 0.14 10 0.07 0.13 10 0.05 0.11 10
4 0.08 1.00 10 0.09 1.60 10 0.08 1.07 10 0.10 1.78 10
6 0.09 1.62 10 0.26 70.08 8 0.08 1.61 10 0.40 123.54 6
8 0.10 15.21 10 0.71 153.28 5 0.09 9.15 10 1.13 219.34 3
16 0.67 273.19 1 5.91 182.04 4 0.84 260.67 2 7.30 300.01 0
30 2.12 300.01 0 16.13 300.02 0 3.80 300.01 0 30.49 300.02 0

400

2 0.06 0.05 10 0.03 1.16 10 0.05 0.05 10 0.01 1.47 10
4 0.05 0.56 10 0.07 3.28 10 0.06 0.41 10 0.07 5.79 10
6 0.07 0.82 10 0.22 240.67 2 0.07 0.70 10 0.16 191.02 4
8 0.09 1.03 10 0.30 151.50 5 0.09 1.72 10 0.28 239.19 3
16 0.13 300.02 0 1.86 248.95 3 0.22 300.01 0 1.86 300.09 0
30 0.39 300.03 0 3.75 300.17 0 0.66 300.02 0 6.00 300.15 0

1000

2 0.05 0.10 10 0.01 13.22 10 0.05 0.10 10 0.00 19.21 10
4 0.04 0.87 10 0.03 27.43 10 0.06 0.79 10 0.02 34.66 10
6 0.04 1.72 10 0.09 109.50 8 0.04 1.46 10 0.04 49.49 10
8 0.05 2.67 10 0.14 247.60 2 0.04 1.97 10 0.11 203.59 4
16 0.09 51.00 10 0.83 257.90 2 0.09 5.93 10 0.63 281.08 1
30 0.30 300.11 0 - - - 0.17 300.17 0 - - -

out the groups of instances solved to optimality by both methods and those not

solved to optimality by either method within the time limit. On 198 of the 263

instances in the earlier group, (TR −A)-BDS outpaces (CQ) -CPLEX by an average

(& maximum) factor of 32.48 (& 228.63) computed from the ratios of the solution

times of (CQ) -CPLEX to those of (TR −A)-BDS. On six instances the solution times

are identical, and on the remaining 59 instances (CQ) -CPLEX is on average 2.44

times faster, where the corresponding maximum is 10.90. In the second group of

70 instances, (TR −A)-BDS attains a smaller optimality gap at termination for 67

instances. The difference in the optimality gaps is on average 9.37% and reaches

a maximum of 70.93%. (CQ) -CPLEX yields a smaller terminal gap on just three

instances and the difference does not exceed 1.81%. In addition, note that there are

only 7 instances for which (TR −A)-BDS is only able to provide an incumbent at

the time limit while (CQ) -CPLEX solves these instances optimally. In comparison,

75

(TR −A)-BDS supplies optimal solutions for 80 instances that remain unsolved

at the time limit by (CQ) -CPLEX and obtains incumbents very close to optimality

with an average gap of 0.24% for the 20 instances with n = 1000, m = 30, while

these instances are completely beyond the reach of (CQ) -CPLEX due to insufficient

memory. To conclude, we stress that (TR −A)-BDS is clearly the exact algorithm

of choice for Rm-TWCT because it either delivers an optimal solution substan-

tially faster or provides an incumbent with a much smaller optimality gap at

termination.

Table 3.1 attests to the solid performance of (TR −A)-BDS regardless of the

range of the processing times. The performance indicators related to (TR −A)-

BDS for both pmax = 20 and pmax = 100 are similar. We reckon that two fac-

tors are at play here. First, the magnitude of the processing times has no effect

on the size of (RMP) and the number of job-to-machine assignments, and the

pseudo-polynomial size of (TR −A) is therefore completely relegated to the dual

slave problems. Second, the analytic solution of
(

DSk − F
)

offsets the pseudo-

polynomial size issue in practice.

Next, we investigate how (TR −A)-BDS and (CQ) -CPLEX scale with the num-

ber of jobs and machines. For a fixed n, the solution times of (TR −A)-BDS and

(CQ) -CPLEX increase with m. That is, both methods favor larger n
m

ratios. This

may be regarded as a significant advantage over the branch-and-price algorithms

of Chen and Powell (1999b) and van den Akker et al. (1999) which perform better

for n
m
≤ 10. Clearly, the more likely practical scenario is that n is significantly

larger than m. Furthermore, observe that the solution times of (TR −A)-BDS do

not necessarily degrade with increasing n for a fixed m. Loosely speaking, the

computational performance of (TR −A)-BDS is determined by the number of

machines. In contrast, the performance of (CQ) -CPLEX suffers from both higher n

and m values.

Figures 3.1-3.2 further substantiate the robustness and scalability of (TR −A)-

BDS as an exact approach for Rm-TWCT. The empirical distributions of the solu-

tion times and the optimality gaps associated with both methods are depicted in

these figures, where each curve is based on 20 instances. The horizontal axes are

in logarithmic scale to increase the readability of the graph. The median solution

times and optimality gaps are associated with the 50% mark on the vertical axis,

76

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−2 10−1 100 101 102
0

10

20

30

40

50

60

70

80

90

100

m= 2
m= 4
m= 6
Avg. C

u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−3 10−2 10−1 100
0

10

20

30

40

50

60

70

80

90

100
m= 2
m= 4
m= 6
Avg.

(a) n = 100

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−2 10−1 100 101 102
0

10

20

30

40

50

60

70

80

90

100

m= 2
m= 4
m= 6
Avg. C

u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−3 10−2 10−1 100
0

10

20

30

40

50

60

70

80

90

100
m= 2
m= 4
m= 6
Avg.

(b) n = 400

Solution Time (s)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−2 10−1 100 101 102
0

10

20

30

40

50

60

70

80

90

100

m= 2
m= 4
m= 6
Avg.

Percentage Gap (%)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−3 10−2 10−1 100
0

10

20

30

40

50

60

70

80

90

100

m= 2
m= 4
m= 6
Avg.

(c) n = 1000

Figure 3.1 The empirical distributions of the solution times and the optimality
gaps of (TR −A)-BDS (—) and (CQ) -CPLEX (– –) for Rm-TWCT instances with 2,
4, and 6 machines.

77

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

100 101 102
0

10

20

30

40

50

60

70

80

90

100

m= 8
m= 16
m= 30
Avg.

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−2 10−1 100 101
0

10

20

30

40

50

60

70

80

90

100

m= 8
m= 16
m= 30
Avg.

(a) n = 100

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

100 101 102
0

10

20

30

40

50

60

70

80

90

100

m= 8
m= 16
m= 30
Avg.

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−2 10−1 100 101
0

10

20

30

40

50

60

70

80

90

100

m= 8
m= 16
m= 30
Avg.

(b) n = 400

Solution Time (s)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

100 101 102
0

10

20

30

40

50

60

70

80

90

100

m= 8
m= 16
m= 30
Avg.

Percentage Gap (%)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−2 10−1 100 101
0

10

20

30

40

50

60

70

80

90

100

m= 8
m= 16
m= 30
Avg.

(c) n = 1000

Figure 3.2 The empirical distributions of the solution times and the optimality
gaps of (TR −A)-BDS (—) and (CQ) -CPLEX (– –) for Rm-TWCT instances with 8,
16, and 30 machines.

78

and the average gaps are explicitly indicated. Note that the shape of the optimal-

ity gap curves to the left of the 10−1% mark do not bear any meaning because

the relative optimality gap parameter of CPLEX is set to EpGap = 10−3 = 10−1%.

The relative insensitivity of (TR −A)-BDS to n for a fixed m is also evident from

Figure 3.1, where the curves for a fixed m are stacked on top of each other from

Figure 3.1a toward Figure 3.1c. As stated previously, the number of machines

is the main determinant of the solution time of (TR −A)-BDS; the curves for a

fixed n shift from left to right as m increases. Furthermore, we can also claim that

(TR −A)-BDS demonstrates a very consistent performance for these instances

because the solution time curve for a given (n,m) combination rises sharply and

exhibits little variability across instances. Figure 3.1 confirms that the solution

time performance of (TR −A)-BDS is superior to that of (CQ) -CPLEX because

the curves for (TR −A)-BDS generally lie to the left of the corresponding curves

for (CQ) -CPLEX. Figure 3.2 is less informative with respect to the solution times

because both methods often hit the time limit for these instances. However, the

optimality gap curves of (TR −A)-BDS clearly dominate those of (CQ) -CPLEX.

Overall, we may draw the conclusion that (TR −A)-BDS is a scalable exact al-

gorithm for Rm-TWCT and does either find the optimal solution faster than the

current state-of-the-art in the literature or it identifies better incumbents at termi-

nation.

79

CHAPTER 4

LOGIC-BASED BENDERS

DECOMPOSITION FOR COMMON

DUE DATE TOTAL WEIGHTED

EARLINESS/TARDINESS

In this study, we develop a computationally effective logic-based Benders de-

composition (LBBD) algorithm for the unrelated parallel machine unrestrictive

common due date total weighted earliness/tardiness (UCDD) scheduling prob-

lem. The key contributions of this chapter are twofold. On the one hand, we offer

a viable solution approach for solving this stronglyNP-hard scheduling problem.

The computational results indicate that the proposed solution approach is clearly

the exact algorithm of choice for this problem because it either delivers an opti-

mal solution substantially faster than the state-of-the-art algorithm or provides

an incumbent with a much smaller optimality gap at termination. Furthermore,

the proposed algorithm thrives on the instances with large number of jobs as in-

stances with 1000 jobs and up to 6 machines are solved to optimality within just 17

seconds. On the other hand, we demonstrate that by studying the combinatorial

structure of the problem, it is possible to devise a scalable LBBD algorithm for

a scheduling problem with an irregular minsum objective function – i.e., UCDD.

This aspect is missing in the existing LBBD literature as mainly scheduling prob-

lems with regular performance measures are tackled and the results for problems

80

with minsum objectives are not on a par with those for minmax objectives.

4.1 Introduction

In this chapter, we address a fundamental scheduling problem of minimizing the

total weighted earliness/tardiness with respect to an unrestrictive common due

date in the unrelated parallel machine environment. The performance measure

of the problem has been the subject of many studies within the last three decades,

as it captures the scheduling aspect of the just-in-time philosophy. That is, a

job should be completed only when it is required. This ensures that the costs

associated with the jobs that are completed before the due date – e.g., insurance,

storage and perishing costs – and the costs due to the contractual liabilities and

the loss of customer goodwill are both minimized simultaneously. Formally, we

characterize the problem we consider as Rm/d j = dl/
∑

j ǫ jE j + π jT j (Rm-UCDD)

following the three field notation of Graham et al. (1979) in classifying scheduling

problems. The notation Rm in the first field stands for a bank of m unrelated

machines where d j = dl stands for an unrestrictively large common due date.

The earliness and tardiness of job j are represented by E j and T j, respectively,

and ǫ j and π j are the associated unit weights. Rm-UCDD is strongly NP-hard

because of the strongly NP-hard identical parallel machine scheduling problem

Pm/d j = dl/
∑

j w j(T j + E j) (Webster, 1997).

The review of the related parallel machine scheduling literature in Section

4.2.1 reveals the absence of a scalable algorithm for Rm-UCDD. More specifically,

to the best of our knowledge, the only solution approach for Rm-UCDD is to

solve a monolithic convex quadratic integer programming (CQIP) formulation

and this method is effective only for small instances (Plateau and Rios-Solis,

2010). We benchmark the performance of our LBBD algorithm against that of

this formulation in Section 4.4.

Motivated by the considerations outlined above and in Chapter 1, our main

goal in this chapter is to develop an efficient and effective exact solution approach

for solving Rm-UCDD. To this end, we make use of the LBBD framework of Hooker

and Ottosson (2003) which is proven to be useful solving planing and scheduling

problems with regular performance measures. One of the main contributions of

81

this chapter is to offer a computationally effective LBBD algorithm for a scheduling

problem with a non-regular minsum objective function. Note that even though

LBBD algorithms have been successfully utilized for regular objective functions,

it is known that irregular performance measures lead to new methodological

issues in the design of solution approaches (Baker and Scudder, 1990, Kanet and

Sridharan, 2000). Moreover, the review in Section 4.2.2 shows that existing LBBD

algorithms work significantly better for minmax scheduling objectives such as

makespan and for other basic objectives such as finding a feasible solution and

minimizing job-to-machine assignment costs. However, when the objective is

a minsum objective such as minimizing total tardiness, the performance of the

algorithms quickly deteriorates due to the fact that it is difficult to compute strong

lower bounds for additive scheduling objective functions.

Another contribution of this chapter is that our algorithm is by far the best

performing exact algorithm up to date for solving Rm-UCDD. The computational

results in Section 4.4 illustrate that our exact method solves all instances with

2 machines and up to 1000 jobs to optimality within 3.4 seconds. Even though

the instances with 4 and 6 machines are more time consuming, all except one

and almost half of the instances with 4 and 6 machines are solved to optimality

with average solution times of 123 and 393 seconds, respectively. Furthermore,

the optimality gaps of the instances with 4 and 6 machines that are not solved

within the time limit of 1 hour are almost always less than 3% with a maximum

(& average) of 5.66% (& 1.47%).

The remainder of the chapter consists of four sections. In the next section, we

review the related literature to position our work. In Section 4.3, we first sum-

marize the theory of logic-based Benders decomposition and present our LBBD

algorithm for Rm-UCDD. This is followed in Section 4.4 by the computational

experiments which demonstrate the efficacy of our approach.

4.2 Review of Related Literature

This review is constructed in two sections such that we position our work with

respect to the literature on unrelated parallel machine scheduling and LBBD

separately. This enables us to underline the contributions of this work in both

82

research areas. Note that the performance figures presented in this section are

obtained by their respective authors on different computing platforms.

4.2.1 Parallel Machine Scheduling

The common due date scheduling problem was first introduced more than 3

decades ago (Kanet, 1981) and it has been studied from different angles; however,

there are only a handful studies on the unrelated parallel machine environment.

Comprehensive reviews of the early work on the common due date scheduling

problems are given by Baker and Scudder (1990) and the reader is referred to the

survey paper by Lauff and Werner (2004) and the literature review in (Rios-Solis

and Sourd, 2008) for further information and additional references on the common

due date problems. A detailed discussion of the parallel machine scheduling

literature on additive due date related performance measures is presented in

Section 2.2 of Chapter 2. In this review, we restrict our attention to the literature

related to the parallel machine common due date earliness/tardiness scheduling

problems since this part of the literature creates the context for our study and

provide a few important pointers otherwise.

The computational results presented in Section 2.5 of Chapter 2 and in Section

3.4 of Chapter 3 clearly demonstrate the effectiveness of the mathematical pro-

gramming based decomposition approaches for the unrelated parallel machine

scheduling problems. Other examples include (Chen and Powell, 1999a), in which

the authors consider a special case of Rm-UCDD, in which all machines are iden-

tical and obtain a set partitioning model of the problem through Dantzig-Wolfe

reformulation. The linear programming (LP) relaxation of the set partitioning

reformulation yields tight lower bounds, and instances with up to 60 jobs and 6

machines are solved to optimality. In a related study, Chen and Lee (2002) extend

this approach by incorporating a common due date window and instances with

up to 40 jobs and any number of machines are solved to optimality within reason-

able times. Rios-Solis and Sourd (2008) consider the same problem as Chen and

Powell (1999a), except that they allow for the common due date to be restrictively

small. The main contribution of this work is a pseudo-polynomial time dynamic

programming algorithm that can identify the best schedule in an exponential-size

83

neighborhood of the current solution. Soukhal and Toung (2012) study the spe-

cial cases of several single- and uniform parallel machine (un-)restricted common

due date total (un-)weighted earliness/tardiness scheduling problems in which all

processing times are equal. They present dominance properties and polynomial

and exponential time algorithms for these problems.

Finally, Plateau and Rios-Solis (2010) is the first study available on common

due date problems in the unrelated parallel machine environment that designs

an optimal algorithm. Inspired by the CQIP formulation of Skutella (2001) – who

proposes this formulation as a means of developing an approximation algorithm

for total weighted completion time (TWCT) with a performance guarantee of

3/2 – the authors first perform an experimental study on this formulation. Then,

based on the success of the results, they develop CQIP reformulations to solve

both Rm-UCDD and Rm/d j = dr/
∑

j ǫ jE j + π jT j (Rm-RCDD) where d j = dr stands

for a restrictive common due date. For the first problem, the authors apply the

Diagonal Perturbation Method (DPM) for convexification and instances with up

to 4 machines and 50 jobs are solved optimally within one hour. We present this

formulation in Section 4.3 and benchmark the performance of our LBBD algorithm

against it in Section 4.4.

For Rm-RCDD, the DPM procedure, however, cannot be adapted and the au-

thors have to resort to a different procedure: the QCR method developed by

Billionnet et al. (2009). This method perturbs all the elements of the Hessian ma-

trix by solving a semidefinite relaxation of the problem to convexify the objective

function and obtain a tighter continuous lower bound. The results are not satis-

factory because the method is too time consuming and instances with 30 jobs and

2 machines are not solved within the time limit of 2 hours. Later, Beyranvand

et al. (2012) show that the formulation of Plateau and Rios-Solis (2010) does not

describe the true feasible region of Rm-RCDD. By adding some constraints, they

slightly change the feasible region while ensuring that the results of Plateau and

Rios-Solis (2010) remain correct for this modified model. They also describe the

incorrect use of the QCR method by Plateau and Rios-Solis (2010) and specialize

it for the new model. They do not report CPU times and they are only able to

solve instances with up to 10 jobs and 2 machines.

84

4.2.2 LBBD in Scheduling

The general theory of logic-based Benders decomposition is presented in (Hooker

and Ottosson, 2003). The core idea of LBBD is the same as that of Benders

decomposition which is “to learn from mistakes”, but LBBD extends this notion

to a larger class of problems. The key difference of LBBD from the classical Benders

decomposition approaches is that it does not derive the Benders cuts from the LP

dual of the subproblem (Benders, 1962), but makes use of the inference duality

instead. The inference dual of a problem is the problem of inferring the tightest

bound from the constraints of the primal problem and a solution to this dual

problem takes the form of a logical deduction. This logical deduction provides a

valid bound for the subproblem and yields a Benders cut. Therefore, in theory,

logic-based Benders cuts can be obtained from any form of subproblem; however,

they must be tailored for each class of problems individually. This, in turn, paves

the way for exploiting the problem structure and combining mixed integer linear

programming (MIP) and constraint programming (CP) (Hooker, 2007a). Noting

that CP methods are well suited for solving scheduling problems, Hooker (2000)

suggests this framework for solving planning and scheduling problems.

The first work which makes use of this scheme for solving a machine sched-

uling problem is due to Jain and Grossmann (2001). Motivated by the work of

Bockmayr and Kasper (1998), the authors develop algorithms, which use two in-

complete models – i.e., a relaxed MIP model and a CP feasibility model – that are

mutually complementary, to solve a class of unrelated parallel machine schedul-

ing problems in which only a subset of binary variables have non-zero coefficients

in the objective function. That is, only the problems with a fixed assignment cost

based objective are within the scope of their method. They demonstrate the ef-

fectiveness of their MIP/CP method on an unrelated parallel machine scheduling

problem in which there is a cost of processing a job on a machine. They report

two to three orders of magnitude speed improvement over the standalone MIP

and CP models.

Later, Thorsteinsson (2001) proposes an approach which closely resembles the

LP/CP based branch-and-bound method outlined in (Jain and Grossmann, 2001)

and solves the same problem with the MIP/CP based decomposition method pro-

85

posed in (Jain and Grossmann, 2001), except that the author does not solve the

master problem to optimality in each iteration and achieves substantial compu-

tational savings. Moreover, Thorsteinsson notes that the success of this method

is due to the additional valid inequalities included in the master problem and

without them the solution time increases substantially.

Bockmayr and Pisaruk (2003) and Sadykov and Wolsey (2006) present sev-

eral versions of this hybrid approach for the same unrelated parallel machine

scheduling problem. The former tests several heuristics to generate extra Benders

cuts within their hybrid MIP/CP branch-and-cut algorithm. Sadykov and Wolsey

(2006) strengthen the master problem with valid inequalities and test a total of

seven different hybrid and pure MIP, MIP/CP, and column generation (CG) algo-

rithms. They find that the performances of two hybrid algorithms, MIP+/CP and

CG-MIP+/CP, dominate the other approaches. They also note that the tightness of

the MIP formulation plays an important role in the convergence of the algorithms.

Similar hybrid strategies have been used in decomposition approaches for solv-

ing various planning and scheduling problems in different fields. These include

steel production scheduling (Harjunkoski and Grossmann, 2001), multistage batch

scheduling (Harjunkoski and Grossmann, 2002), production planning in a chemi-

cal plant (Maravelias and Grossmann, 2004, Timpe, 2002), multi-processor sched-

uling (Cambazard et al., 2004), allocation and scheduling of multi- processor

systems-on-chips (Benini et al., 2005), double round robin tournament schedul-

ing (Rasmussen and Trick, 2007), integrated shift-selection and task-sequencing

(Barlatt et al., 2010), and multiple resource cumulative scheduling (Ciré et al.,

2015).

The common denominator of all these applications is that the objective is ei-

ther just finding a feasible solution or it is a function of only the master problem

variables. That is, the subproblems do not take part in the optimization and they

are only for ensuring the feasibility. This considerably simplifies the process of

creating valid Benders cuts. Nevertheless, there exists several LBBD applications

which explicitly use optimality cuts – i.e., the subproblem is not only a feasibility

problem, but its objective function value contributes to that of the original prob-

lem. Hooker (2004, 2005a,b, 2006, 2007b) uses LBBD for solving several planning

and scheduling problems, in which the objectives are minimizing makespan, the

86

number of late jobs, or the total tardiness. The author notes that the performance

of the algorithm for minimizing makespan is on par with that when the subprob-

lem is just a feasibility problem. However, the performance quickly deteriorates

when the objective is of minsum type, instead of minmax. Coban and Hooker

(2013) adapt LBBD to a segmented single-machine scheduling problem in which

each job must be completely processed within one segment of the time horizon.

The problem naturally decomposes by the segments, and the actual scheduling of

the jobs are handled by the subproblems. The authors consider three objectives

– i.e., finding a feasible solution, minimizing makespan, and minimizing total

tardiness –, and note that the proposed method scales up much more effectively

on the instances of the feasibility and makespan problems.

Even though logic-based Benders cuts have been developed for optimization

subproblems, the objective function is always a regular performance measure in

all of these applications. Note that it is well established that designing a solu-

tion approach for a non-regular performance measures has its own peculiarities

(Baker and Scudder, 1990, Kanet and Sridharan, 2000). Furthermore, the existing

algorithms do not perform as well for minsum objective functions as they do for

minmax objectives. The reason is the lack of strong lower bounds for additive

scheduling objectives which translates into weak optimality cuts (Şen and Bülbül,

2015b). Nevertheless, in this work, we demonstrate that very effective Benders

cuts can be created for a problem with a non- regular minsum objective function

by studying the combinatorial structure of the problem.

4.3 Solution Approach

In the Rm-UCDD problem, there are n jobs and m unrelated parallel machines,

which are all ready at time zero. A machine can execute at most one job at a time

and each job is required to receive a non-preemptive service from exactly one of

the machines, where the processing of job j on machine k takes an integer duration

of p jk time units. An unrestrictive common due date d – also assumed to be integral

– is associated with each job j. If job j completes processing before (or after) d,

a penalty ǫ j (or π j) per unit time is incurred. Thus, as introduced in Section 4.1,

the total weighted earliness/tardiness over all jobs is determined as
∑

j ǫ jE j +π jT j

87

where the earliness and tardiness of job j are calculated as E j = max(0, d−C j) and

T j = max(0,C j − d),respectively, and C j denotes the completion time of job j.

As mentioned in Sections 4.1 and 4.2.1, the CQIP formulation presented in

(Plateau and Rios-Solis, 2010) exhibits the best computational performance on

Rm-UCDD to date and is stated below. We benchmark against this formulation in

Section 4.4.

(CQ −U)

minimize
n

∑

j=1

m
∑

k=1



















1
2
ǫ jp jk

(

(

yE
kj

)2
− yE

kj

)

+
∑

i≺E
k

j

ǫ jpikyE
kiy

E
kj



















+

n
∑

j=1

m
∑

k=1



















1
2
π jp jk

(

(

yT
kj

)2
+ yT

kj

)

+
∑

i≺T
k

j

π jpikyT
kiy

T
kj



















(4.1)

subject to
m

∑

k=1

yE
kj + yT

kj = 1, j = 1, . . . ,n, (4.2)

yE
kj, y

T
kj ∈ {0, 1}, j = 1, . . . ,n, k = 1, . . . ,m. (4.3)

In (CQ −U), the binary variable yE
kj

(& yT
kj

) takes the value 1 if job j = 1, . . . ,n, is

assigned to the early (& tardy) side of machine k = 1, . . . ,m, and is zero otherwise.

The notation i ≺E
k

j indicates that either ǫi
pik
>

ǫ j

p jk
or ǫi

pik
=

ǫ j

p jk
and i < j – i.e.,

the completion time of job i should be closer to the common due date d than

that of job j, if both jobs are scheduled early on machine k. Similarly, i ≺T
k

j

implies that either πi

pik
>
π j

p jk
or πi

pik
=
π j

p jk
and i < j. (CQ −U) relies on the basic

observation that the completion time of job j is either d −
∑m

k=1 yE
kj

(

∑

i≺E
k

j pikyE
ki

)

or

d+
∑m

k=1 yT
kj

(

p jk +
∑

i≺T
k

j pikyT
ki

)

, and on the convexification of the resulting objective.

4.3.1 Overview of LBBD

The logic-based Benders decomposition is a generalization of the classical Benders

decomposition. As it is the case for Benders decomposition, LBBD uses a strategy

of learning from mistakes (Hooker and Ottosson, 2003); however, the key difference

is how the consequences of these “mistakes” are extracted and employed in the

solution process.

Similar to the Benders decomposition, LBBD partitions the variables of a prob-

lem into two vectors x and y, and by fixing y-variables at some trial values y,

it obtains a subproblem which contains only x-variables. If the solution to the

88

subproblem asserts that y is unacceptable then this solution is used to create a

no-good constraint which eliminates y – and possibly other values of y – from the

search space. Then, this constraint is included in the master problem which obtains

the next set of values for y. This process continues iteratively until the master

problem identifies a vector y which is not rejected by the subproblem. In case

the x-variables appear in the objective function, the master problem contains a

variable η which represents a lower bound on the objective function value of the

original problem. The no-good constraint takes the form η ≥ βy(y), where βy(y)

is a lower bound on the optimal objective function value of the subproblem for

any value of y. The subscript y denotes the fixed value of y which resulted in this

bounding function.

Unlike the classical Benders, in which the subproblems are always continuous

and cuts are created by LP or Lagrangian duality, LBBD is based on the inference

duality concept and the subproblems may be arbitrary optimization problems. The

inference dual is to deduce the tightest bound from the constraints of the problem.

However, there is no standard way of obtaining the logic-based Benders cuts

and they must be tailored to each problem type. Nevertheless, a valid bounding

function βy(y) must satisfy the following two properties:

Property 4.1. f (x,y) ≥ βy(y) for any feasible (x,y), where f (x,y) is the objective function

of the problem.

Property 4.2. βy(y) = β, where β is the optimal objective function value of the subproblem

obtained by fixing y to y.

The following result is due to Hooker (2000).

Theorem 4.3. If the bounding function βy(y) satisfies Properties 4.1 and 4.2 in each

iteration of the Benders algorithm, and the domain of y is finite, then the Benders algorithm

converges to the optimal value of the problem after finitely many steps.

In this regard, one of the main contribution of this chapter is to find the

exact form of the bounding function for a scheduling problem with a non-regular

minsum performance measure – i.e., Rm-UCDD.

89

4.3.2 LBBD for Rm-UCDD

As already noted couple of times up to this point, we need to develop custom

logic-based Benders cuts for our problem. To this end, we start out with two

simple, yet powerful observations that (i) once the job-to-machine assignments

are fixed, the problem decomposes into single-machine scheduling problems and

(ii) even though the resulting problems are stillNP-hard, they all have a V-shaped

schedule without a straddling job (Hall and Posner, 1991).

The second observation suggests us to separate the machine assignment deci-

sions into two parts so that jobs are directly assigned to the early or tardy side of

a machine. That way, we obtain two subproblems for each machine. Moreover,

the solutions of the resulting subproblems may be calculated in polynomial time

because the V-shaped property prescribes that the jobs assigned to the early and

tardy sides of each machine are sequenced according to the weighted longest

processing time (WLPT) and weighted shortest processing time (WSPT) rules of

Smith (1956), respectively. The idea of separating the assignments to the early and

tardy sides of the machines is recently used by Plateau and Rios-Solis (2010) for

the same problem as ours and by Alvarez-Valdes et al. (2012) for a single-machine

UCDD problem while formulating their problems as CQIPs.

Motivated by these observations, we use the same binary variables yE
kj

and

yT
kj

introduced at the beginning of this section and define additional auxiliary

variables ηE
k

and ηT
k

which represent the lower bounds on the total costs charged

against the jobs performed on the early and tardy sides of machine k, respectively.

Therefore, Rm-UCDD may be formulated in the LBBD framework as follows:

(LBF) minimize
m

∑

k=1

ηE
k + η

T
k (4.4)

subject to
m

∑

k=1

yE
kj + yT

kj = 1, j = 1, . . . ,n, (4.5)

ηE
k ≥ β

Ek

yE
k

(

yE
k

)

, yE
k ∈ {0, 1}

n , k = 1, . . . ,m, (4.6)

ηT
k ≥ β

Tk

yT
k

(

yT
k

)

, yT
k ∈ {0, 1}

n , k = 1, . . . ,m, (4.7)

ηE
k ≥ 0, ηT

k ≥ 0 k = 1, . . . ,m, (4.8)

yE
kj ∈ {0, 1} , yT

kj ∈ {0, 1} j = 1, . . . ,n, k = 1, . . . ,m, (4.9)

90

where βEk

yE
k

(

yE
k

)

and βTk

yT
k

(

yT
k

)

are the bounding functions on the total weighted

earliness and tardiness of the jobs assigned to machine k, respectively. The sub-

scripts yE
k and yT

k denote possible fixed values of yE
k =

{

yE
kj
| j = 1, . . . ,n

}

and

yT
k =

{

yT
kj
| j = 1, . . . ,n

}

which give rise to βEk

yE
k

(

yE
k

)

and βTk

yT
k

(

yT
k

)

, respectively. Note

that in (4.6) and (4.7), a Benders cut for each side of every machine is generated for

every possible job to machine assignment – i.e., yE
k ∈ {0, 1}

n and yT
k ∈ {0, 1}

n, respec-

tively. Thus, as long as the bounding functions are valid, the sets of constraints

(4.6) and (4.7) collectively ensure that the cost of every possible assignment is

calculated correctly. The job partitioning constraints (4.5) mandate that each job

is assigned to exactly one side of a machine. Thus, (LBF) is an exact formulation

for Rm-UCDD in the LBBD framework. However, due to the sheer number of con-

straints present in the model, solving the monolithic formulation of (LBF) is not

a viable option. To be specific, there are 2n+1m + n constraints in the formulation

and even for a modest size instance with 75 jobs and 5 machines, the number of

constraints is 3.8 × 1023 – which is in the order of the number of stars in the observ-

able universe. Therefore, a delayed constraint generation scheme is proposed to

solve (LBF) and the pseudo-code of the LBBD algorithm is stated in Algorithm 6

at the end of this section.

We next turn our attention to the identification of the bounding functions. First,

we focus on the bounding function of the tardy side and develop a strengthened

logic-based Benders cut. Then, the bounding function of the early side follows

by a similar argument and it is presented at the end of this section. Let yT be a

fixed job to tardy side assignment and yT
k represent its kth column – i.e., only those

related to machine k – and J
(

yT
k

)

=
{

j | y
T
kj = 1

}

be the set of jobs assigned to this

side of machine k. Then, the minimum total weighted tardiness on machine k is

equal to

zT
k

(

yT
k

)

=
∑

j∈J(yT
k)
π jT j

(

yT
k

)

, where T j

(

yT
k

)

= p jk +
∑

i∈J(yT
k), i≺T

k
j

pik. (4.10)

The most obvious bounding function would be of the form:

βTk

yT
k

(

yT
k

)

= zT
k

(

yT
k

) (

1 − IT
k

)

, where IT
k =

∣

∣

∣

∣

J
(

yT
k

)

∣

∣

∣

∣

−
∑

j∈J(yT
k)
yT

kj. (4.11)

91

This bounding function trivially satisfies Properties 4.1 and 4.2; however, it is

unnecessarily weak due to the fact that it eliminates only the solution that give

rise to the bound and any change to the assignment of the jobs in J
(

yT
k

)

renders

the bound redundant. A prevalent method used in the literature to strengthen

the bounding functions is to find a smaller set of jobs that results in the same

solution to the scheduling subproblem. In such studies (Ciré et al., 2015, Coban

and Hooker, 2013, Hooker, 2004, 2005a,b, 2006, 2007b, Hooker and Ottosson, 2003),

either the subproblem is only a feasibility problem and the authors can determine

a subset of jobs that still leads to the infeasibility, or they make use of the fact

that there are non-zero release dates in the problem and some of the jobs can be

removed without decreasing the objective function value. Unfortunately, this is

not possible in our case because the subproblem is an optimization problem which

is always feasible and all jobs are ready at time zero; and thus, removing any job

would decrease the objective function value of the subproblem. Nevertheless, the

bounding functions developed in the remainder of this section are very strong

and the results of the computational study, presented in the next section, attest to

the quality of the proposed logic-based Benders cuts created with these bounding

functions.

4.3.3 Strengthened Bounding Functions

A stronger bounding function βTk

yT
k

(

yT
k

)

can be obtained by taking into account the

actual contributions made to the objective function value by the individual jobs.

This yields the bounding function

βTk

yT
k

(

yT
k

)

= zT
k

(

yT
k

)

−
∑

j∈J(yT
k)

(

π jT j

(

yT
k

)

+ p jk

∑

i∈J(yT
k), j≺T

k
i

πi

)

(

1 − yT
kj

)

, (4.12)

which is based on the fact that if job j ∈ J
(

yT
k

)

were to be removed from machine

k then the total tardiness of the jobs that are scheduled after job j would decrease

by at most p jk

∑

i∈J(yT
k), j≺T

k
i πi units. Thus, this function also satisfies both properties

as well.

Another venue of improvement arises by studying the potential contribution

of the jobs that are currently not assigned to this side of machine k. That is, if job

92

l /∈ J
(

yT
k

)

were to be assigned to the tardy side of machine k, then this job would

incur a cost of πl(plk +
∑

i∈J(yT
k),i≺T

k
l pik) and the total tardiness of the jobs that need

to be scheduled after job l would increase by plk

∑

i∈J(yT
k),l≺T

k
i πi units. It is a simple

matter to show that as long as the set of jobs J
(

yT
k

)

stays on the tardy side of

machine k, these cost calculations are valid. This observation yields the following

bounding function

βTk

yT
k

(

yT
k

)

= zT
k

(

yT
k

) (

1 + IT
k

)

+
∑

l/∈J(yT
k)

(

πlTl

(

yT
k

)

+ plk

∑

i∈J(yT
k), l≺T

k
i

πi

)

(

yT
kl − IT

k

)

, (4.13)

where Tl

(

yT
k

)

is given in (4.10). Unfortunately, this bounding function has the

same drawback as that of (4.11) – i.e., it is unnecessarily weak and setting even

one yT
kj

, j ∈ J
(

yT
k

)

to zero renders the bound redundant.

Note that we cannot strengthen (4.12) by using the same reasoning we have

used to obtain (4.13) from (4.11). First, the resulting bounding function would still

suffer from the same phenomenon that changing the assignment of a single job

in J
(

yT
k

)

renders the additional term useless. Secondly and more importantly, the

additional term would weaken the bounding function when there is more than one

assignment change in the set J
(

yT
k

)

. Nevertheless, it is still possible to incorporate

the tardiness costs of the jobs that are not in the set J
(

yT
k

)

. The reasoning is similar

to that which led us to (4.12). That is, we need to consider the contribution of

each additional job individually; however, this is not very straightforward due to

the cost difference resulting from the interaction between the jobs that are added

to and removed from this side of the machine. By analyzing the structure of the

subproblem solutions, we determine the terms that need to be subtracted from

the coefficients of (1 − yT
kj

) and yT
kl

, for j ∈ J
(

yT
k

)

and l /∈ J
(

yT
k

)

in order to obtain a

valid bounding function of the following form:

(4.14)

βTk

yT
k

(

yT
k

)

= zT
k

(

yT
k

)

−
∑

j∈J(yT
k)

(

π j

(

T j

(

yT
k

)

+
p jk

2

)

+ p jk

∑

i∈J(yT
k), j≺T

k
i

πi

)

(

1 − yT
kj

)

+
∑

l/∈J(yT
k)

(

πl

(

Tl

(

yT
k

)

−
plk

2

)

+ plk

∑

i∈J(yT
k), l≺T

k
i

πi

)

yT
kl,

where zT
k

(

yT
k

)

, T j

(

yT
k

)

are defined in (4.10). Note that Property 4.2 holds trivially

for (4.14); however, we need to show that Property 4.1 is satisfied as well. To this

93

end, we first need the following somewhat more general result.

Lemma 4.4. Let a j and b j, j ∈ D be nonnegative real numbers where D is an arbitrary

index set. Let A and R be two disjoint subsets of D such that A ∪ R = D and let S j and

Sc
j

denote the sets which includes index j ∈ D and its complement, respectively. That

is, S j =
{

S ∈ {A,R} | j ∈ S
}

and Sc
j
=

{

S ∈ {A,R} | j /∈ S
}

. Finally, the notation i ≺ j

indicates that either ai

bi
>

a j

b j
or ai

bi
=

a j

b j
and i < j where i, j ∈ D, and the notation [l] ∈ D,

l = 1, . . . , |D| , denotes the lth index based on the ≺ ordering of the indices in D. Then,
∑

j ∈D

a j

(

b j + 2
∑

i∈S j, i≺ j

bi − 2
∑

i∈Sc
j
, i≺ j

bi

)

≥
a[l]

b[l]

(

b[l] +
∑

i∈S[l], i≺[l]

bi −
∑

i∈Sc
[l], i≺[l]

bi

)2

+
∑

j∈D, [l]≺ j

a j

(

b j + 2
∑

i∈S j, i≺ j

bi − 2
∑

i∈Sc
j
, i≺ j

bi

)

(4.15)

holds for l = 1, . . . , |D| .

Proof. We first rearrange the terms of (4.15) and obtain the following:
∑

j∈D, j≺[l]

a j

(

b j + 2
∑

i∈S j, i≺ j

bi − 2
∑

i∈Sc
j
, i≺ j

bi

)

+ a[l]

(

b[l] + 2
∑

i∈S j, i≺[l]

bi − 2
∑

i∈Sc
j
, i≺[l]

bi

)

≥
a[l]

b[l]

(

b[l] +
∑

i∈S[l], i≺[l]

bi −
∑

i∈Sc
[l], i≺[l]

bi

)2

.

(4.16)

The rest of the proof is then by induction and proceeds as follows.

Base case: When l = 1, both sides of (4.16) equal to a[1]b[1] since
{

j ∈ D | j ≺ [1]
}

= ∅.

Thus, (4.15) is true for l = 1.

Induction step: Let u ∈ {1, . . . , |D| − 1} be given and suppose (4.15) – thus, (4.16)

– holds for l = u. Then, for l = u + 1

(4.17a)
∑

j∈D
j≺[u+1]

a j

(

b j + 2
∑

i∈S j

i≺ j

bi − 2
∑

i∈Sc
j

i≺ j

bi

)

+ a[u+1]

(

b[u+1] + 2
∑

i∈S[u+1]
i≺[u+1]

bi − 2
∑

i∈Sc
[u+1]

i≺[u+1]

bi

)

(4.17b)

=
∑

j∈D, j≺[u]

a j

(

b j + 2
∑

i∈S j, i≺ j

bi − 2
∑

i∈Sc
j
, i≺ j

bi

)

+ a[u]

(

b[u] + 2
∑

i∈S[u], i≺[u]

bi − 2
∑

i∈Sc
[u], i≺[u]

bi

)

+
a[u+1]

b[u+1]

(

(

b[u+1]
)2
+ 2b[u+1]

(
∑

i∈S[u+1]
i≺[u+1]

bi −
∑

i∈Sc
[u+1]

i≺[u+1]

bi

)

)

(4.17c)≥
a[u]

b[u]

(

b[u] +
∑

i∈S[u]
i≺[u]

bi −
∑

i∈Sc
[u]

i≺[u]

bi

)2

+
a[u+1]

b[u+1]

(

(

b[u+1]
)2
+ 2b[u+1]

(
∑

i∈S[u+1]
i≺[u+1]

bi −
∑

i∈Sc
[u+1]

i≺[u+1]

bi

)

)

(4.17d)≥
a[u+1]

b[u+1]

(

∑

i∈S[u+1]
i≺[u+1]

bi −
∑

i∈Sc
[u+1]

i≺[u+1]

bi

)2

+
a[u+1]

b[u+1]

(

(

b[u+1]
)2
+ 2b[u+1]

(
∑

i∈S[u+1]
i≺[u+1]

bi −
∑

i∈Sc
[u+1]

i≺[u+1]

bi

)

)

(4.17e)=
a[u+1]

b[u+1]

(

b[u+1] +
∑

i∈S[u+1]
i≺[u+1]

bi −
∑

i∈Sc
[u+1]

i≺[u+1]

bi

)2

.

94

Transition from (4.17b) to (4.17c) is due to the induction hypothesis, and that from

(4.17c) to (4.17d) is due to the fact that a[u]

b[u]
≥

a[u+1]

b[u+1]
. The remaining steps are due

to rearrangements and basic transformations. Therefore, (4.17) establishes the

correctness of (4.16) for l = u + 1, and by the principle of induction, (4.16) – thus,

(4.15) – holds for all l ∈ {1, . . . , |D| }. �

Before proving the validity of the proposed bounding function we need one

more result. To this end, let yT
k and yT

k
′ be two different job partitions on the

tardy side of machine k with total costs zT
k

(

yT
k

)

and zT
k

(

yT
k
′
)

, respectively. Using

the same notation as in Lemma 4.4, let A and R denote the sets of jobs that

need to be added to and removed from J
(

yT
k

)

to obtain J
(

yT
k
′
)

, respectively. That

is, A = J
(

yT
k
′
)

\ J
(

yT
k

)

and R = J
(

yT
k

)

\ J
(

yT
k
′
)

. Furthermore, let D denote the

symmetric difference between sets J
(

yT
k

)

and J
(

yT
k
′
)

– i.e., D = J
(

yT
k

)

△J
(

yT
k
′
)

.

Note that the index sets A and R are disjoint by definition and D = A∪R. Finally,

let a j = π j and b j = p jk for j ∈ D, and let ≺T
k

be the associated precedence relation

and [l] ∈ D, l = 1, . . . , |D| , denote the lth job based on the ≺T
k

ordering of the jobs

in D. Then, a direct corollary of Lemma 4.4 is as follows:

Corollary 4.5. The following inequality holds for l = 1, . . . , |D| :

(4.18)

∑

j ∈D

π j

(

p jk + 2
∑

i∈S j, i≺T
k

j

pik − 2
∑

i∈Sc
j
, i≺T

k
j

pik

)

≥
π[l]

p[l]k

(

p[l]k +
∑

i∈S[l], i≺T
k

[l]

pik −
∑

i∈Sc
[l], i≺T

k
[l]

pik

)2

+
∑

j∈D, [l]≺T
k

j

π j

(

p jk + 2
∑

i∈S j, i≺T
k

j

pik − 2
∑

i∈Sc
j
, i≺T

k
j

pik

)

.

We now prove the validity of the proposed bounding function.

Proposition 4.6. The bounding function βTk

yT
k

(

yT
k

)

given in (4.14) satisfies Property 4.1.

Proof. As alluded to earlier, we need to show that the bounding function provides

a lower bound for the actual total tardiness on machine k. More specifically, we

need to show that the following inequality holds for all combinations of fixed job

assignments on the tardy side of machine k – i.e., yT
k and yT

k
′:

0 ≤ zT
k

(

yT
k
′
)

− βTk

yT
k

(

yT
k
′
)

. (4.19)

95

Note that βTk

yT
k

(

yT
k
′
)

is calculated with the bounding function obtained for yT
k .

Whereas, zT
k

(

yT
k
′
)

denotes the actual objective function value for yT
k
′. For ease

of perusal, each term is expanded individually and merged back together.

Using the same notation as in Corollary 4.5, βTk

yT
k

(

yT
k
′
)

expands as follows:

βTk

yT
k

(

yT
k
′
)

= zT
k

(

yT
k

)

−
∑

j∈R

(

π j

(

T j

(

yT
k

)

+
p jk

2

)

+ p jk

∑

i∈J(yT
k), j≺T

k
i

πi

)

+
∑

l∈A

(

πl

(

Tl

(

yT
k

)

−
plk

2

)

+ plk

∑

i∈J(yT
k), l≺T

k
i

πi

)

=
∑

j∈J(yT
k)
π jT j

(

yT
k

)

−
∑

j∈R

p jk

∑

i∈J(yT
k), j≺T

k
i

πi +
∑

l∈A

plk

∑

i∈J(yT
k), l≺T

k
i

πi −
∑

j∈R

π j

(

T j

(

yT
k

)

+
p jk

2

)

+
∑

l∈A

πl

(

Tl

(

yT
k

)

−
plk

2

)

(4.20)

=
∑

j∈J(yT
k)
π j

(

T j

(

yT
k

)

−
∑

i∈R, i≺T
k

j

pik +
∑

i∈A, i≺T
k

j

pik

)

−
∑

j∈R

π j

(

T j

(

yT
k

)

+
p jk

2

)

+
∑

l∈A

πl

(

Tl

(

yT
k

)

−
plk

2

)

.

Similarly, the objective function value associated with the tardy side of machine

k for the fixed job to machine assignment yT
k
′ is

zT
k

(

yT
k
′
)

=
∑

j∈J(yT
k
′)
π jT j

(

yT
k
′
)

=
∑

j∈J(yT
k)
π jT j

(

yT
k
′
)

−
∑

j∈R

π jT j

(

yT
k
′
)

+
∑

l∈A

πlTl

(

yT
k
′
)

=
∑

j∈J(yT
k)
π j

(

T j

(

yT
k

)

−
∑

i∈R, i≺T
k

j

pik +
∑

i∈A, i≺T
k

j

pik

)

−
∑

j∈R

π j

(

T j

(

yT
k

)

−
∑

i∈R, i≺T
k

j

pik +
∑

i∈A, i≺T
k

j

pik

)

+
∑

l∈A

πl

(

Tl

(

yT
k

)

−
∑

i∈R, i≺T
k

l

pik +
∑

i∈A, i≺T
k

l

pik

)

. (4.21)

Substituting βTk

yT
k

(

yT
k
′
)

with (4.20) and zT
k

(

yT
k
′
)

with (4.21) in (4.19) and rearrang-

ing the terms yields

zT
k

(

yT
k
′
)

− βTk

yT
k

(

yT
k
′
)

=
∑

l∈A

πl

(plk

2
+

∑

i∈A, i≺T
k

l

pik −
∑

i∈R, i≺T
k

l

pik

)

+
∑

j∈R

π j

(p jk

2
+

∑

i∈R, i≺T
k

j

pik −
∑

i∈A, i≺T
k

j

pik

)

=
∑

j∈D

π j

(p jk

2
+

∑

i∈S j, i≺T
k

j

pik −
∑

i∈Sc
j
, i≺T

k
j

pik

)

=
1
2

∑

j∈D

π j

(

p jk + 2
∑

i∈S j, i≺T
k

j

pik − 2
∑

i∈Sc
j
, i≺T

k
j

pik

)

(4.22)

96

≥
1
2
π[|D|]

p[|D|]k

(

p[|D|]k +
∑

i∈S[|D|]

i≺T
k

[|D|]

pik −
∑

i∈Sc
[|D|]

i≺T
k

[|D|]

pik

)2

≥ 0. (4.23)

Transition from (4.22) to (4.23) is due to Corollary 4.5, and the non-negativity of

(4.23) follows from the fact that x2 ≥ 0 for all x ∈ R and that π j, p jk ∈ R>0 for

all j = 1, . . . ,n, k = 1, . . . ,m. This completes the proof since (4.19) is valid for all

combinations of fixed yT
k and yT

k
′. �

Therefore, we can produce a valid logic-based Benders cut of the form

ηT
k ≥ β

Tk

yT
k

(

yT
k

)

(4.24)

for the tardy side of machine k from a fixed job to machine assignment yT
k , where

the bounding function βTk

yT
k

(

yT
k

)

is given in (4.14).

A similar reasoning yields the following bounding function βEk

yE
k

(

yE
k

)

for the

early side of machine k from a fixed job to machine assignment yE
k:

(4.25)

βEk

yE
k

(

yE
k

)

= zE
k

(

yE
k

)

−
∑

j∈J(yE
k)

(

ǫ j

(

E j

(

yE
k

)

+
p jk

2

)

+ p jk

∑

i∈J(yE
k), j≺E

k
i

ǫi

)

(

1 − yE
kj

)

+
∑

l/∈J(yE
k)

(

ǫl

(

El

(

yE
k

)

−
plk

2

)

+ plk

∑

i∈J(yE
k), l≺E

k
i

ǫi

)

yE
kl

with

zE
k

(

yE
k

)

=
∑

j∈J(yE
k)
ǫ jE j

(

yE
k

)

, where E j

(

yE
k

)

=
∑

i∈J(yE
k), i≺E

k
j

pik, (4.26)

and J
(

yE
k

)

=
{

j | y
E
kj = 1

}

. Property 4.2 is trivially satisfied since for yE
k = yE

k,

βEk

yE
k

(

yE
k

)

= zE
k

(

yE
k

)

= zE
k

(

yE
k

)

. However, to prove the validity of the proposed

bounding function we again need to derive a result similar to Corollary 4.7.

To this end, let yE
k and yE

k
′ be two different job partitions on the early side of

machine k with total costs zE
k

(

yE
k

)

and zE
k

(

yE
k
′
)

, respectively. Using the notation

of Lemma 4.4, let A and R denote the sets of jobs that need to be added to and

removed from J
(

yE
k

)

to obtain J
(

yE
k
′
)

, respectively. That is, A = J
(

yE
k
′
)

\ J
(

yE
k

)

and

R = J
(

yE
k

)

\ J
(

yE
k
′
)

. Furthermore, let D denote the symmetric difference between

sets J
(

yE
k

)

and J
(

yE
k
′
)

– i.e., D = J
(

yE
k

)

△J
(

yE
k
′
)

. Note that the index sets A and R are

97

disjoint by definition and D = A ∪ R. Finally, let a j = ǫ j and b j = p jk for j ∈ D, and

let ≺E
k

be the associated precedence notation and [l] ∈ D, l = 1, . . . , |D| , denote the

lth job based on ≺E
k

ordering of the jobs in D. Then, a direct corollary of Lemma

4.4 is as follows:

Corollary 4.7. The following inequality holds for l = 1, . . . , |D| :

(4.27)

∑

j ∈D

ǫ j

(

p jk + 2
∑

i∈S j, i≺E
k

j

pik − 2
∑

i∈Sc
j
, i≺E

k
j

pik

)

≥
ǫ[l]

p[l]k

(

p[l]k +
∑

i∈S[l], i≺E
k

[l]

pik −
∑

i∈Sc
[l], i≺E

k
[l]

pik

)2

+
∑

j∈D, [l]≺E
k

j

ǫ j

(

p jk + 2
∑

i∈S j, i≺E
k

j

pik − 2
∑

i∈Sc
j
, i≺E

k
j

pik

)

.

We now prove the validity of the proposed bounding function.

Proposition 4.8. The bounding function βEk

yE
k

(

yE
k

)

given in (4.25) satisfies Property 4.1.

Proof. The proof follows very closely that of Proposition 4.6 and we show that

the bounding function provides a lower bound for the actual total earliness on

machine k. More specifically, we need to show that the following inequality holds

for all combinations of fixed job assignments on the early side of machine k – i.e.,

yE
k and yE

k
′:

0 ≤ zE
k

(

yE
k
′
)

− βEk

yE
k

(

yE
k
′
)

. (4.28)

Note that βTk

yT
k

(

yE
k
′
)

is calculated with the bounding function obtained for yE
k.

Whereas, zT
k

(

yE
k
′
)

denotes the actual objective function value for yE
k
′. For ease

of perusal, each term is expanded individually and merged back together.

Using the same notation as in Corollary 4.5, βEk

yE
k

(

yE
k
′
)

expands as follows:

βEk

yE
k

(

yE
k
′
)

= zE
k

(

yE
k

)

−
∑

j∈R

(

ǫ j

(

T j

(

yT
k

)

+
p jk

2

)

+p jk

∑

i∈J(yE
k), j≺E

k
i

ǫi

)

+
∑

l∈A

(

ǫl

(

Tl

(

yT
k

)

−
plk

2

)

+plk

∑

i∈J(yE
k), l≺E

k
i

ǫi

)

=
∑

j∈J(yE
k)
ǫ jT j

(

yT
k

)

−
∑

j∈R

p jk

∑

i∈J(yE
k), j≺E

k
i

ǫi +
∑

l∈A

plk

∑

i∈J(yE
k), l≺E

k
i

ǫi −
∑

j∈R

ǫ j

(

T j

(

yT
k

)

+
p jk

2

)

+
∑

l∈A

ǫl

(

Tl

(

yT
k

)

−
plk

2

)

(4.29)

=
∑

j∈J(yE
k)
ǫ j

(

T j

(

yT
k

)

−
∑

i∈R, i≺E
k

j

pik +
∑

i∈A, i≺E
k

j

pik

)

−
∑

j∈R

ǫ j

(

T j

(

yT
k

)

+
p jk

2

)

+
∑

l∈A

ǫl

(

Tl

(

yT
k

)

−
plk

2

)

.

98

Similarly, the objective function value associated with the early side of machine

k for the fixed job to machine assignment yE
k
′ is

zE
k

(

yE
k
′
)

=
∑

j∈J(yE
k
′)
ǫ jT j

(

yE
k
′
)

=
∑

j∈J(yE
k)
ǫ jT j

(

yE
k
′
)

−
∑

j∈R

ǫ jT j

(

yE
k
′
)

+
∑

l∈A

ǫlTl

(

yE
k
′
)

=
∑

j∈J(yE
k)
ǫ j

(

T j

(

yT
k

)

−
∑

i∈R, i≺E
k

j

pik +
∑

i∈A, i≺E
k

j

pik

)

−
∑

j∈R

ǫ j

(

T j

(

yT
k

)

−
∑

i∈R, i≺E
k

j

pik +
∑

i∈A, i≺E
k

j

pik

)

+
∑

l∈A

ǫl

(

Tl

(

yT
k

)

−
∑

i∈R, i≺E
k

l

pik +
∑

i∈A, i≺E
k

l

pik

)

. (4.30)

Substituting βEk

yE
k

(

yE
k
′
)

with (4.29) and zE
k

(

yE
k
′
)

with (4.30) in (4.28) and rearrang-

ing the terms yields

zE
k

(

yE
k
′
)

− βEk

yE
k

(

yE
k
′
)

=
∑

l∈A

ǫl

(plk

2
+

∑

i∈A, i≺E
k

l

pik −
∑

i∈R, i≺E
k

l

pik

)

+
∑

j∈R

ǫ j

(p jk

2
+

∑

i∈R, i≺E
k

j

pik −
∑

i∈A, i≺E
k

j

pik

)

=
∑

j∈D

ǫ j

(p jk

2
+

∑

i∈S j, i≺E
k

j

pik −
∑

i∈Sc
j
, i≺E

k
j

pik

)

=
1
2

∑

j∈D

ǫ j

(

p jk + 2
∑

i∈S j, i≺E
k

j

pik − 2
∑

i∈Sc
j
, i≺E

k
j

pik

)

(4.31)

≥
1
2
ǫ[|D|]

p[|D|]k

(

p[|D|]k +
∑

i∈S[|D|]

i≺E
k

[|D|]

pik −
∑

i∈Sc
[|D|]

i≺E
k

[|D|]

pik

)2

≥ 0. (4.32)

Transition from (4.31) to (4.32) is due to Corollary 4.5, and the non-negativity of

(4.32) follows from the fact that x2 ≥ 0 for all x ∈ R and that ǫ j, p jk ∈ R>0 for

all j = 1, . . . ,n, k = 1, . . . ,m. This completes the proof since (4.28) is valid for all

combinations of fixed yE
k and yE

k
′. �

Consequently, we may generate the following cut from a fixed job assignment

on the early side of machine k – i.e., yE
k – using the bounding function βEk

yE
k

(

yE
k

)

given in (4.25):

ηE
k ≥ β

Ek

yE
k

(

yE
k

)

. (4.33)

The pseudo-code of our LBBD algorithm for solving (LBF) is stated in Al-

gorithm 6. The correctness of the algorithm is argued through Theorem 4.3,

Propositions 4.6 and 4.8, and the finiteness of the feasible assignments.

99

In classical Benders decomposition applications, the master problem is solved

to (near-)optimality, then cuts are generated based on the master problem solution,

and then the master problem re-optimized with the additional cuts. This proce-

dure is repeated in a loop until some stopping conditions are satisfied. However,

note that this may lead to an unsatisfactory computational performance because

a new search tree is constructed in each iteration and the same nodes are explored

from scratch again and again. For further information on this matter, the reader

is referred to the discussions offered in (Rubin, 2011) and Section 2.4.1 of Chapter

2. Instead, we refrain from the classical textbook application approach and exe-

cute our decomposition algorithm on a single search tree using the lazy constraint

callback feature of IBM ILOG CPLEX (2013). The pseudo-code of our algorithm

reflects the use of the lazy constraint technology.

Algorithm 6: Solving (LBF) by logic-based Benders decomposition and lazy
constraint generation.

1 Create the relaxed master problem (RMP) with (4.4), (4.5), (4.8), and (4.9) ;
// Initialization.

2 Invoke CPLEX on (RMP); // Main loop.

3 repeat
4 Identify a new candidate incumbent solution

(

yE,yT
)

with an objective

function value of
∑m

k=1

(

ηE
k + η

T
k

)

;

5 for k = 1 to m do
6 Compute the optimal objective values zE

k

(

yE
k

)

and zT
k

(

yT
k

)

of the jobs

assigned to the early and tardy sides of machine k, respectively;

7 if ηE
k < zE

k

(

yE
k

)

then // yE
k violates a missing Benders cut.

8 Generate a logic-based Benders cut of the form (4.33) from yE
k;

9 Add the cut to (RMP) as a lazy constraint;

10 if ηT
k < zT

k

(

yT
k

)

then // yT
k violates a missing Benders cut.

11 Generate a logic-based Benders cut of the form (4.24) from yT
k ;

12 Add the cut to (RMP) as a lazy constraint;
13 until CPLEX determines that the relative optimality gap of the current incumbent is less

than some threshold;

14 The best available job partition
(

yE,yT
)∗

for (LBF) is retrieved from CPLEX. The
optimal solution for Rm-UCDD is obtained by applying the WLPT and WSPT rules
independently to the sets of jobs on the early and tardy sides of each machine,
respectively;

100

4.4 Computational Results

The main goal of our computational study is to demonstrate that the proposed

Benders decomposition algorithm – referred to as BDS in the rest – has a great com-

putational performance both in absolute and relative terms. We solve instances

across a broad range of (n,m) combinations with both short and long processing

times and investigate the effectiveness of our algorithm in order to establish its

absolute performance. Very large instances of both problems are within the reach

of our algorithm. It turns out that BDS scales very well as instances with up to

1000 jobs and 6 machines are either solved to optimality within the time limit of

one hour or very high-quality feasible solutions are obtained at termination. For

n = 1000, the optimal solution is attained within 15.2 seconds for all instances for

any m. Furthermore, to argue that BDS is the best exact algorithm for Rm-UCDD

developed to date, we benchmark it against CPX, where the monolithic CQIP for-

mulation (CQ −U), presented in Section 4.3, is solved directly by invoking CPLEX.

As pointed out in Sections 4.2.1 and 4.3, CPX represents the current state-of-the-art

for the exact methods designed for Rm-UCDD. The results reveal that compared

to CPX, BDS either determines the optimal solution in considerably shorter time

or it identifies an incumbent of substantially higher quality at the time limit. The

details of our analyses are presented next.

Our instance generation follows suit with that of Plateau and Rios-Solis (2010)

who evaluated (CQ −U) empirically. For each job j ∈ {1, . . . ,n}, the processing

time p jk on machine k ∈ {1, . . . ,m} and the unit earliness and tardiness penal-

ties, ǫ j and π j, are drawn from the discrete uniform distribution U [1, 20]. The

unrestrictive common due date is set to
⌈

∑

j maxk(p jk)/m
⌉

+ max j,k(p jk). We cre-

ate 10 instances for each combination of n ∈ {10, 30, 50, 60, 80, 100, 400, 1000} and

m ∈ {2, 4, 6}. In this setup, the ratio n
m

varies between 1.66 and 500 which allows

us to explore the sensitivity of BDS to this parameter. In an effort to verify the

robustness of BDS with respect to the range of the processing times, we repeat

the same generation scheme except that the processing times are drawn from the

discrete uniform distribution U [1, 100] – i.e., pmax = 100 – which brings the total

number of instances solved in this study to 480.

The computational results are obtained on a workstation with two 2.30GHz

101

Intel Xeon E5-2630 processors with Hyper-Threading enabled and 64 GB of mem-

ory running on Windows 8.1. BDS is implemented in C++ using the Concert

Technology component library of IBM ILOG CPLEX 12.6. Note that in the pres-

ence of a control callback – such as the lazy constraint callback used in BDS – CPLEX

switches off dynamic search feature, operates under deterministic parallel search

mode, and apply a traditional branch-and-cut strategy with a single thread (IBM

ILOG CPLEX, 2013). Therefore, to exploit parallelism and promote simultaneous

cut generation, we set the ParallelMode switch to “opportunistic” parallel search

mode and allowed CPLEX to use all available threads – i.e., the Threads parameter

is set to 24. Furthermore, based on the positive previous experience of the au-

thors in Chapters 2 and 3 the MIPEmphasis switch, which “controls the trade-offs

between speed, feasibility, optimality, and moving bounds in MIP,” takes on the

value four in order to urge CPLEX to find high-quality hidden feasible solutions.

CPX calls CPLEX to solve (CQ −U) with the default parameter settings, except

that Threads=24, ParallelMode=Opportunistic, and MIPEmphasis=4 for a fair

comparison with BDS. In both methods, CPLEX terminates the optimization if the

relative optimality gap drops below EpGap=10−3=0.1%, or the working memory

exceeds WorkMem=5120=5 GB, or the time expended reaches TiLim=3600 seconds.

More details on these parameters are available in (IBM ILOG CPLEX, 2013).

Table 4.1 consists of 24 rows, one for each possible combination of m and n

listed in the first two columns. Each figure under the heading “Time” represents

the average solution time statistic over 10 instances. The columns under “%Gap”

present the average optimality gaps retrieved from CPLEX for the instances that

are not solved to optimality within the time limit. The number of such instances is

given next to the corresponding optimality gap result inside the parentheses. Note

that CPLEX uses the formula |best_bound−best_integer|

10−10+|best_integer|
for computing the optimality gap

of an instance (IBM ILOG CPLEX, 2013), where best_bound is the largest available

lower bound and best_integer is the objective value of the incumbent at termination.

A color formatting scheme is applied separately to both performance measures,

“%Gap” and “Time”, so that the values of a performance indicator ranging from

better to worse are indicated with shades of red changing from light to dark. The

results for instances with relatively short processing times are reported in the left

half of the table in Columns 3–6 under the heading “pmax = 20.” The remaining

102

columns depict the performance measures for the corresponding instances with

pmax = 100.

Table 4.1 Average optimality gap and solution time results for Rm-UCDD

pmax = 20 pmax = 100

Time %Gap† Time %Gap†

m n BDS CPX BDS CPX BDS CPX BDS CPX

2

10 0.23 0.20 0.24 0.26
30 0.35 2.55 0.40 2.76
50 0.50 3.42 0.70 6.79
60 0.67 11.06 0.67 4.68
80 0.78 9.62 0.97 8.73
100 0.96 40.92 0.83 62.38
400 0.94 3.61 0.97 5.41
1000 2.06 19.42 2.23 21.68

4

10 0.57 0.51 0.58 0.53
30 7.12 487 1.95 (1) 7.01 197
50 20.49 2560 2.49 (7) 58.82 3166 2.01 (8)
60 59.01 2296 2.24 (6) 157 2542 2.24 (7)
80 178 2889 1.69 (8) 327 2596 3.27 (6)
100 363 2717 1.67 (7) 1114 2897 0.23 (1) 1.33 (8)
400 4.93 2529 0.65 (7) 7.30 3452 0.38 (9)
1000 5.37 2957 0.15 (8) 5.55 2174 0.15 (6)

6

10 5.09 7.42 2.60 12.74
30 623 3244 43.18 (9) 1483 3600 3.58 (2) 38.89 (10)
50 2874 3600 1.56 (7) 16.22 (10) 3054 3600 2.36 (7) 16.49 (10)
60 3600 2923 1.42 (10) 13.59 (8) 3512 3600 2.69 (9) 12.89 (10)
80 3600 3600 1.26 (10) 10.96 (10) 3601 3548 1.92 (10) 12.72 (9)
100 3600 3250 0.98 (10) 8.14 (9) 3601 3600 1.40 (10) 8.93 (10)
400 1335 2262 0.13 (3) 2.24 (6) 3609 3304 0.14 (10) 1.19 (9)
1000 11.85 2535 0.49 (7) 13.94 3528 0.42 (9)

†: The number of instances that are not solved to optimality within the time limit is
given in parentheses and the percentage gap figures represent the averages over such
instances.

The results in Table 4.1 underline that BDS provides provably optimal solu-

tions for the majority of the instances well within the time limit of one hour. More

specifically, BDS solves 391 out of a total of 480 instances to optimality in 122.8

seconds on average with a maximum solution time of 3445 seconds. Furthermore,

the median solution time is 2.2 seconds and the solution time is less than 300

seconds for 91% of such instances (356 out of 391). In contrast, CPX attains only

266 optimal solutions in 106.2 seconds on average with a maximum of 3080 sec-

103

onds. Moreover, even though CPX is also able to obtain the optimal solutions for

94% of these instances (249 out of 266) within 300 seconds, the median time is

5.0 seconds. The average and maximum gaps of BDS for those 89 instances that

could not be solved to optimality within the specified time limit are just 1.5% and

5.7%, respectively. The corresponding figures for CPX are 8.8% and 74.4% over

214 instances. Moreover, BDS reports less than 3% optimality gap for 91% of such

instances (81 out of 89). Whereas, the corresponding number for CPX is just 53%

(113 out of 214).

The differences between BDS and CPX become more apparent if we separate

out the groups of instances solved to optimality by both methods and those not

solved to optimality by either method within the time limit. On 207 of the 259

instances in the earlier group, BDS outpaces CPX by an average, median, and

maximum factor of 18.5, 7.4, and 535, respectively, computed from the ratios of

the solution times of CPX to those of BDS. On one instance the solution times

are identical, and on the remaining 51 instances CPX is on average 4.2 times

faster, where the corresponding median and maximum are 1.9 and 36, respectively.

In the second group of 82 instances, BDS attains a smaller optimality gap at

termination for 81 instances. The difference in the optimality gaps is on average

11.2 percentage points and reaches a maximum of 63.6. Whereas, CPX yields

a smaller terminal gap on just one instance and the difference is 1.4 percentage

points. In addition, note that there are only 7 instances for which BDS is only

able to provide an incumbent at the time limit while CPX solves these instances

optimally. The average and maximum gaps of BDS for those 7 instances are

0.8% and 2.1%, respectively. In comparison, BDS supplies optimal solutions for

132 instances that remain unsolved at the time limit by CPX with an average (&

maximum) optimality gap of 6.5% (& 74.4%). To conclude, we stress that BDS

is clearly the exact algorithm of choice for Rm-UCDD because it either delivers

an optimal solution substantially faster or provides an incumbent with a much

smaller optimality gap at termination.

Table 4.1 attests to the solid performance of BDS regardless of the range of the

processing times. The performance indicators related to BDS for both pmax = 20

and pmax = 100 are very similar. We reckon that two factors are at play here.

First, the magnitude of the processing times has no effect on the size of the master

104

problem and the number of assignments variables. Second, the logic-based cuts

are analytically generated.

Next, we investigate how BDS and CPX scale with the number of jobs and

machines. Contrary to the observation of Ciré et al. (2015) who state that the

performance of LBBD algorithms deteriorate if the average number of jobs as-

signed to each resource increases, for a fixed n, the solution times of BDS and

CPX increase with m. That is, both methods favor larger n
m

ratios. This may be

regarded as a significant advantage since the more likely practical scenario is that

n is significantly larger than m. Furthermore, observe that the solution times of

BDS do not necessarily degrade with increasing n for a fixed m. Loosely speaking,

the computational performance of BDS is determined by the number of machines.

In contrast, the performance of CPX suffers from both higher n and m values.

Figures 4.1-4.2 further substantiate the robustness and scalability of BDS as an

exact approach for Rm-UCDD. The empirical distributions of the solution times

and the optimality gaps associated with both methods are depicted in these figures,

where each curve is based on 20 instances – i.e., 10 instances with each possible

pmax values. The horizontal axes are in logarithmic scale to increase the readability

of the graph. The median solution times and optimality gaps are associated with

the 50% mark on the vertical axis, and the average gaps are explicitly indicated.

Note that the shape of the optimality gap curves to the left of the 10−1% mark do

not bear any meaning because the relative optimality gap parameter of CPLEX is

set to EpGap = 10−3 = 10−1%.

The relative insensitivity of BDS to n for a fixed m is also evident from Figure

4.1, where the curves for a fixed m are stacked on top of each other from Figure

4.1a toward Figure 4.1c. The same phenomenon is still observable for m = 2 on

Figure 4.2. As stated previously, the number of machines is the main determinant

of the solution time of BDS; the curves for a fixed n shift from left to right as

m increases. Furthermore, we can also claim that BDS demonstrates a more

consistent performance for these instances because the solution time curve for

a given (n,m) combination rises relatively sharply and exhibits less variability

across instances. Figure 4.1 confirms that the solution time performance of BDS

is superior to that of CPX because the curves for BDS almost always lie to the

left of the corresponding curves for CPX. A similar argument with respect to the

105

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−1 100 101 102 103
0

10

20

30

40

50

60

70

80

90

100

m= 2
m= 4
m= 6
Avg.

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−2 10−1 100 101
0

10

20

30

40

50

60

70

80

90

100

m= 2
m= 4
m= 6
Avg.

(a) n = 50

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−1 100 101 102 103
0

10

20

30

40

50

60

70

80

90

100
m= 2
m= 4
m= 6
Avg.

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−2 10−1 100 101
0

10

20

30

40

50

60

70

80

90

100

m= 2
m= 4
m= 6
Avg.

(b) n = 60

Solution Time (s)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−1 100 101 102 103
0

10

20

30

40

50

60

70

80

90

100
m= 2
m= 4
m= 6
Avg.

Percentage Gap (%)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−2 10−1 100 101
0

10

20

30

40

50

60

70

80

90

100

m= 2
m= 4
m= 6
Avg.

(c) n = 80

Figure 4.1 The empirical distributions of the solution times and the optimality
gaps of BDS (—) and CPX (– –) for Rm-UCDD instances with 50, 60, and 80 jobs.

106

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−1 100 101 102 103
0

10

20

30

40

50

60

70

80

90

100

m= 2
m= 4
m= 6
Avg.

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−2 10−1 100 101
0

10

20

30

40

50

60

70

80

90

100

m= 2
m= 4
m= 6
Avg.

(a) n = 100

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−1 100 101 102 103
0

10

20

30

40

50

60

70

80

90

100
m= 2
m= 4
m= 6
Avg.

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−2 10−1 100
0

10

20

30

40

50

60

70

80

90

100

m= 2
m= 4
m= 6
Avg.

(b) n = 400

Solution Time (s)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−1 100 101 102 103
0

10

20

30

40

50

60

70

80

90

100
m= 2
m= 4
m= 6
Avg.

Percentage Gap (%)

C
u
m
u
la
ti
v
e
P
er
ce
n
ta
g
e
o
f
th
e
In
st
a
n
ce
s
(%

)

10−2 10−1 100
0

10

20

30

40

50

60

70

80

90

100

m= 2
m= 4
m= 6
Avg.

(c) n = 1000

Figure 4.2 The empirical distributions of the solution times and the optimality
gaps of BDS (—) and CPX (– –) for Rm-UCDD instances with 100, 400, and 1000
jobs.

107

solution times may be drawn from Figure 4.2 as well. The optimality gap curves

of BDS clearly dominate those of CPX.

Finally, we note that the solution times of BDS are strongly correlated with

both the number of Benders cuts generated and the number of nodes processed

in the branch-and-cut search, as expected. Nevertheless, the duration of the

cut generation procedure amounts to a small fraction of the total solution time

and most of the cuts generated are in use at the end of the optimization. More

specifically, the average share of the cut generation time within the total solution

time is 0.5% with a corresponding median of 0.04%. The median and average

percentages of the active Benders cuts for the final node problem in the search tree

are both 88%. Overall, we may draw the conclusion that BDS is a scalable exact

algorithm for Rm-UCDD and does either find the optimal solution considerably

faster than the current state-of-the-art algorithm or it identifies considerably better

incumbents at termination.

108

CHAPTER 5

CONCLUSION AND FUTURE

RESEARCH

In Chapter 2, we developed a new preemptive relaxation for unrelated paral-

lel machine scheduling problems with weighted tardiness and weighted earli-

ness/tardiness objectives. The key property of this relaxation is that it provides

us with a tight lower bound and a set of high-quality job partitions that forms the

basis for the near-optimal non-preemptive solutions for the original problem. The

relaxation itself is formulated as a difficult MIP problem, and a computationally

effective Benders decomposition algorithm that can handle very large instances of

this formulation is a primary contribution of this chapter. Our implementation em-

ploys state-of-the-art computational features, such as the lazy constraint callback of

IBM ILOG CPLEX (2011) and a parallelization of the Benders subproblems via the

Boost 1.51 library. Ultimately, we characterize our approach as a simple, non-

parametric, and easy to implement mathematical programming based heuristic

with a further distinguishing property that it can handle both a regular and a

non-regular scheduling objective successfully with no additional customization.

The results for Rm-TWT are outstanding. While those for Rm-TWET are not on a

par, we reckon that they are of high quality.

In Chapter 3, we tackled the fundamental parallel machine scheduling problem

Rm-TWCT which has been attacked by a variety of methodologies since the early

1970s. In a field dominated by custom B&B methods, approximation algorithms,

and (meta-)heuristics, our approach makes elegant use of generic mathematical

programming techniques. We refrain from a traditional and compact modeling

109

approach based on the job completion time variables and provide a new exact for-

mulation of pseudo-polynomial size. Our formulation for Rm-TWCT is amenable

to Benders decomposition, and we devise a computationally very effective al-

gorithm that incorporates analytic solutions for the dual slave problems and a

speedy cut strengthening procedure. The end product is a fast and scalable exact

algorithm for Rm-TWCT which may even be employed as a subroutine in iterative

decomposition-based algorithms developed for more complex shop scheduling

problems.

In Chapter 4, we devised an LBBD algorithm for unrelated parallel machine

just-in-time scheduling with an unrestricted common due date. By extending the

space of variables and analyzing the combinatorial structure of the subproblems,

we demonstrated that it is possible to obtain a very strong bounding function for

a scheduling problem with an irregular and additive performance measure. At

the end of the day, the proposed exact algorithm is by far the best performing

algorithm up to date for solving Rm-UCDD since it either solves the problem to

optimality up to three orders of magnitude faster than the preceding state-of-the-

art algorithm, or provides an incumbent with up to 75% smaller optimality gap

at termination.

Initially, we also experimented with the identical parallel machine scheduling

problems Pm//
∑

j π jT j and Pm//
∑

j π jT j + ǫ jE j. However, the symmetry inherent

in these problems results in many similar cuts and causes (TR −A)-BDS to choke.

One of the items in our future research agenda is exploring ways of enhancing

our algorithm to be able to handle the identical parallel machine environment.

A further goal is to embed (TR −A)-BDS into an optimal algorithm for Rm-

TWT and Rm-TWET. Note that the proposed preemptive relaxation can naturally

handle branching decisions on the job to machine assignments.

Furthermore, the third and fourth chapters of this study demonstrate that mov-

ing away from the natural space of variables to an extended variable space may

help attain better formulations and algorithms for machine scheduling problems.

A research question worth investigating in the future is to explore scheduling

problems in other domains that may benefit from similar techniques.

110

Bibliography

Alvarez-Valdes, R., Crespo, E., Tamarit, J., and Villa, F. (2012). Minimizing

weighted earliness-tardiness on a single machine with a common due date

using quadratic models. TOP, 20:754–767. (Cited on page 90.)

Armentano, V. A. and Yamashita, D. S. (2000). Tabu search for scheduling on

identical parallel machines to minimize mean tardiness. J Intell Manuf, 11(5):453–

460. (Cited on pages 11, 12, and 15.)

Azizoglu, M. and Kirca, O. (1998). Tardiness minimization on parallel machines.

Int J Prod Econ, 55(2):163–168. (Cited on pages 8, 9, and 15.)

Azizoglu, M. and Kirca, O. (1999a). On the minimization of total weighted flow

time with identical and uniform parallel machines. Eur J Oper Res, 113(1):91–100.

(Cited on pages 8 and 52.)

Azizoglu, M. and Kirca, O. (1999b). Scheduling jobs on unrelated parallel ma-

chines to minimize regular total cost functions. IIE Trans, 31(2):153–159. (Cited

on pages 8, 9, 22, 52, and 65.)

Baker, K. R. and Scudder, G. D. (1990). Sequencing with earliness and tardiness

penalties: A review. Oper Res, 38(1):22–36. (Cited on pages 6, 16, 82, 83, and 87.)

Barlatt, A. Y., Cohn, A. M., and Gusikhin, O. (2010). A hybridization of math-

ematical programming and dominance-driven enumeration for solving shift-

selection and task-sequencing problems. Comput Oper Res, 37(7):1298–1307.

(Cited on page 86.)

Barnes, J. W. and Brennan, J. (1977). An improved algorithm for scheduling jobs

on identical machines. AIIE Transactions, 9(1):25–31. (Cited on page 51.)

111

Belouadah, H. and Potts, C. N. (1994). Scheduling identical parallel machines to

minimize total weighted completion time. Discrete Appl Math, 48(3):201–218.

(Cited on page 51.)

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables pro-

gramming problems. Numer Math, 4(1):238–252. (Cited on pages 22, 26, 50, 57,

and 85.)

Benini, L., Bertozzi, D., Guerri, A., and Milano, M. (2005). Allocation and sched-

uling for MPSoCs via decomposition and no-good generation. In van Beek, P.,

editor, Principles and Practice of Constraint Programming - CP 2005, volume 3709

of Lecture Notes in Computer Science, pages 107–121. Springer Berlin Heidelberg.

(Cited on page 86.)

Berghman, L., Spieksma, F., and T’Kindt, V. (2014). Solving a time-indexed for-

mulation by preprocessing and cutting planes. Available at SSRN: http://dx.

doi.org/10.2139/ssrn.2437371. (Cited on page 54.)

Beyranvand, M., Peyghami, M., and Ghatee, M. (2012). On the quadratic model

for unrelated parallel machine scheduling problem with restrictive common

due date. Optim Lett, 6(8):1897–1911. (Cited on page 84.)

Billionnet, A., Elloumi, S., and Plateau, M.-C. (2009). Improving the performance

of standard solvers for quadratic 0-1 programs by a tight convex reformulation:

The QCR method. Discrete Appl Math, 157(6):1185 – 1197. (Cited on page 84.)

Biskup, D., Herrmann, J., and Gupta, J. N. (2008). Scheduling identical parallel

machines to minimize total tardiness. Int J Prod Econ, 115(1):134–142. (Cited on

pages 1, 11, and 15.)

Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., and Weglarz, J. (2007). Handbook

on scheduling: from theory to applications. Springer. (Cited on page 51.)

Bockmayr, A. and Kasper, T. (1998). Branch and infer: A unifying framework

for integer and finite domain constraint programming. INFORMS J Comput,

10(3):287–300. (Cited on page 85.)

112

http://dx.doi.org/10.2139/ssrn.2437371
http://dx.doi.org/10.2139/ssrn.2437371

Bockmayr, A. and Pisaruk, N. (2003). Detecting infeasibility and generating cuts

for MIP using CP. In 5th International Workshop on Integration of AI and OR

Techniques in Constraint Programming for Combinatorial Optimization Problems

- CPAIOR’03, Montréal, Canada. https://hal.inria.fr/inria-00107699.

(Cited on page 86.)

Bruno, J., Coffman Jr, E. G., and Sethi, R. (1974). Scheduling independent tasks to

reduce mean finishing time. Communications of the ACM, 17(7):382–387. (Cited

on page 49.)

Bülbül, K., Kaminsky, P., and Yano, C. (2007). Preemption in single machine

earliness/tardiness scheduling. J Sched, 10(4-5):271–292. (Cited on pages 7, 17,

19, 21, 55, and 59.)

Bülbül, K. and Şen, H. (2015). An exact extended formulation for the unre-

lated parallel machine total weighted completion time problem. Submitted for

publication. http://www.optimization-online.org/DB_HTML/2014/08/4519.

html. (Cited on page 4.)

Burkard, R., Dell’Amico, M., and Martello, S. (2009). Assignment Problems. Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA. (Cited on

pages 60 and 61.)

Cambazard, H., Hladik, P.-E., Déplanche, A.-M., Jussien, N., and Trinquet, Y.

(2004). Decomposition and learning for a hard real time task allocation problem.

In Wallace, M., editor, Principles and Practice of Constraint Programming – CP 2004,

volume 3258 of Lecture Notes in Computer Science, pages 153–167. Springer Berlin

Heidelberg. (Cited on page 86.)

Chekuri, C. and Khanna, S. (2004). Approximation algorithms for minimizing

average weighted completion time. In Leung, J. Y., editor, Handbook of scheduling:

algorithms, models, and performance analysis. CRC Press, Boca Raton, FL, USA,

2004. (Cited on page 51.)

Chen, Z.-L. and Lee, C.-Y. (2002). Parallel machine scheduling with a common

due window. Eur J Oper Res, 136(3):512–527. (Cited on pages 10, 15, and 83.)

113

https://hal.inria.fr/inria-00107699
http://www.optimization-online.org/DB_HTML/2014/08/4519.html
http://www.optimization-online.org/DB_HTML/2014/08/4519.html

Chen, Z.-L. and Powell, W. B. (1999a). A column generation based decomposition

algorithm for a parallel machine just-in-time scheduling problem. Eur J Oper

Res, 116(1):220–232. (Cited on pages 10, 15, and 83.)

Chen, Z.-L. and Powell, W. B. (1999b). Solving parallel machine scheduling prob-

lems by column generation. INFORMS J Comput, 11(1):78–94. (Cited on pages 8,

53, 54, 73, and 76.)

Cheng, T. and Sin, C. (1990). A state-of-the-art review of parallel-machine sched-

uling research. Eur J Oper Res, 47(3):271–292. (Cited on pages 8, 16, and 51.)

Ciré, A. A., Çoban, E., and Hooker, J. N. (2015). Logic-based benders decompo-

sition for planning and scheduling: A computational analysis. In Proceedings

of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling

Problems (COPLAS-15), pages 21–29. http://www.cs.bgu.ac.il/~icaps15/

workshops/ProceedingsCOPLAS2015.pdf. (Cited on pages 86, 92, and 105.)

Coban, E. and Hooker, J. N. (2013). Single-facility scheduling by logic-based

benders decomposition. Ann Oper Res, 210(1):245–272. (Cited on pages 87

and 92.)

Detienne, B., Dauzère-Pérès, S., and Yugma, C. (2011). Scheduling jobs on parallel

machines to minimize a regular step total cost function. J Sched, 14:523–538.

(Cited on page 1.)

Dyer, M. and Wolsey, L. (1990). Formulating the single machine sequencing

problem with release dates as a mixed integer program. Discrete Appl Math,

26(2–3):255–270. (Cited on pages 54 and 62.)

Elmaghraby, S. E. and Park, S. H. (1974). Scheduling jobs on a number of identical

machines. AIIE transactions, 6(1):1–13. (Cited on page 51.)

Fischetti, M., Salvagnin, D., and Zanette, A. (2010). A note on the selection of

Benders’ cuts. Math Program, 124(1-2):175–182. (Cited on pages 27 and 69.)

Goemans, M. X., Queyranne, M., Schulz, A. S., Skutella, M., and Wang, Y. (2002).

Single machine scheduling with release dates. SIAM J Discrete Math, 15(2):165–

192. (Cited on page 62.)

114

http://www.cs.bgu.ac.il/~icaps15/workshops/Proceedings COPLAS 2015.pdf
http://www.cs.bgu.ac.il/~icaps15/workshops/Proceedings COPLAS 2015.pdf

Graham, R., Lawler, E., Lenstra, J., and Rinnooy Kan, A. (1979). Optimization

and approximation in deterministic sequencing and scheduling: a survey. In

P.L. Hammer, E. J. and Korte, B., editors, Discrete Optimization II, volume 5 of

Ann Discrete Math, pages 287–326. Elsevier. (Cited on pages 6, 49, and 81.)

Hall, N. G. and Posner, M. E. (1991). Earliness-tardiness scheduling problems, i:

Weighted deviation of completion times about a common due date. Oper Res,

39(5):836–846. (Cited on page 90.)

Harjunkoski, I. and Grossmann, I. E. (2001). A decomposition approach for the

scheduling of a steel plant production. Comput Chem Eng, 25(11):1647–1660.

(Cited on page 86.)

Harjunkoski, I. and Grossmann, I. E. (2002). Decomposition techniques for mul-

tistage scheduling problems using mixed-integer and constraint programming

methods. Comput Chem Eng, 26(11):1533–1552. (Cited on page 86.)

Hooker, J. N. (2000). Logic-Based Methods for Optimization: Combining Optimization

and Constraint Satisfaction. John Wiley & Sons, Inc., New York. (Cited on pages 85

and 89.)

Hooker, J. N. (2004). A hybrid method for planning and scheduling. In Wallace, M.,

editor, Principles and Practice of Constraint Programming – CP 2004, volume 3258

of Lecture Notes in Computer Science, pages 305–316. Springer Berlin Heidelberg.

(Cited on pages 86 and 92.)

Hooker, J. N. (2005a). A hybrid method for the planning and scheduling. Con-

straints, 10(4):385–401. (Cited on pages 86 and 92.)

Hooker, J. N. (2005b). Planning and scheduling to minimize tardiness. In van Beek,

P., editor, Principles and Practice of Constraint Programming - CP 2005, volume 3709

of Lecture Notes in Computer Science, pages 314–327. Springer Berlin Heidelberg.

(Cited on pages 86 and 92.)

Hooker, J. N. (2006). An integrated method for planning and scheduling to

minimize tardiness. Constraints, 11(2-3):139–157. (Cited on pages 86 and 92.)

115

Hooker, J. N. (2007a). Integrated Methods for Optimization. International series in

operations research & management science. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA. (Cited on page 85.)

Hooker, J. N. (2007b). Planning and scheduling by logic-based benders decompo-

sition. Oper Res, 55(3):588–602. (Cited on pages 86 and 92.)

Hooker, J. N. and Ottosson, G. (2003). Logic-based benders decomposition. Math-

ematical Programming, 96(1):33–60. (Cited on pages 81, 85, 88, and 92.)

IBM ILOG CPLEX (2011). IBM ILOG CPLEX Optimization Studio 12.4 Information

Center. http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r4/index.jsp.

Last viewed on 04/24/2013. (Cited on pages 7, 31, 34, and 109.)

IBM ILOG CPLEX (2012). IBM ILOG CPLEX Optimization Studio 12.5 Information

Center. http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp.

Last viewed on 08/04/2014. (Cited on pages 65, 73, and 74.)

IBM ILOG CPLEX (2013). IBM ILOG CPLEX Optimization Studio 12.6 Information

Center. http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r6/index.jsp.

Last viewed on 06/12/2015. (Cited on pages 100 and 102.)

Jain, V. and Grossmann, I. E. (2001). Algorithms for hybrid MILP/CP models for

a class of optimization problems. INFORMS J Comput, 13(4):258–276. (Cited on

pages 85 and 86.)

Jouglet, A. and Savourey, D. (2011). Dominance rules for the parallel machine

total weighted tardiness scheduling problem with release dates. Comput Oper

Res, 38(9):1259–1266. (Cited on pages 10 and 15.)

Kanet, J. J. (1981). Minimizing the average deviation of job completion times about

a common due date. Nav Res Log Quarterly, 28(4):643–651. (Cited on page 83.)

Kanet, J. J. and Sridharan, V. (2000). Scheduling with inserted idle time: Problem

taxonomy and literature review. Oper Res, 48(1):99–110. (Cited on pages 6, 16,

82, and 87.)

116

http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r4/index.jsp
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r5/index.jsp
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r6/index.jsp

Kedad-Sidhoum, S., Solis, Y. R., and Sourd, F. (2008). Lower bounds for the

earliness–tardiness scheduling problem on parallel machines with distinct due

dates. Eur J Oper Res, 189(3):1305–1316. (Cited on pages 12, 13, 14, 15, 18, 21, 33,

35, and 56.)

Koulamas, C. (1997). Decomposition and hybrid simulated annealing heuristics

for the parallel-machine total tardiness problem. Nav Res Log, 44(1):109–125.

(Cited on pages 9, 11, and 15.)

Lauff, V. and Werner, F. (2004). Scheduling with common due date, earliness and

tardiness penalties for multimachine problems: A survey. Math Comput Model,

40(5):637–655. (Cited on pages 16 and 83.)

Lawler, E. L. and Moore, J. M. (1969). A functional equation and its application to

resource allocation and sequencing problems. Manage Sci, 16(1):77–84. (Cited

on page 51.)

Lee, C.-Y. and Uzsoy, R. (1992). A new dynamic programming algorithm for

the parallel machines total weighted completion time problem. Oper Res Lett,

11(2):73–75. (Cited on page 51.)

Lenstra, J., Rinnooy Kan, A., and Brucker, P. (1977). Complexity of machine

scheduling problems. Ann Discrete Math, 1:343–362. (Cited on page 6.)

Li, K. and Yang, S.-l. (2009). Non-identical parallel-machine scheduling research

with minimizing total weighted completion times: Models, relaxations and

algorithms. Applied mathematical modelling, 33(4):2145–2158. (Cited on pages 51

and 54.)

Liaw, C.-F., Lin, Y.-K., Cheng, C.-Y., and Chen, M. (2003). Scheduling unre-

lated parallel machines to minimize total weighted tardiness. Comput Oper Res,

30(12):1777–1789. (Cited on pages 9, 15, and 33.)

Lin, Y., Pfund, M., and Fowler, J. (2011). Heuristics for minimizing regular perfor-

mance measures in unrelated parallel machine scheduling problems. Comput

Oper Res, 38(6):901–916. (Cited on pages 12, 15, 33, and 50.)

117

Luh, P. B., Hoitomt, D. J., Max, E., and Pattipati, K. R. (1990). Schedule generation

and reconfiguration for parallel machines. IEEE T Robotic Autom, 6(6):687–696.

(Cited on pages 11, 12, and 15.)

Magnanti, T. L. and Wong, R. T. (1981). Accelerating Benders decomposition:

Algorithmic enhancement and model selection criteria. Oper Res, 29(3):464–484.

(Cited on pages 27 and 69.)

Maravelias, C. T. and Grossmann, I. E. (2004). A hybrid MILP/CP decomposition

approach for the continuous time scheduling of multipurpose batch plants.

Comput Chem Eng, 28(10):1921–1949. (Cited on page 86.)

Mason, S. J., Jin, S., and Jampani, J. (2009). A moving block heuristic to minimise

earliness and tardiness costs on parallel machines. Int J Prod Res, 47(19):5377–

5390. (Cited on pages 12, 13, and 16.)

M’Hallah, R. and Al-Khamis, T. (2012). Minimising total weighted earliness

and tardiness on parallel machines using a hybrid heuristic. Int J Prod Res,

50(10):2639–2664. (Cited on pages 12, 13, and 16.)

Mokotoff, E. (2001). Parallel machine scheduling problems: a survey. Asia Pacific

Journal of Operational Research, 18(2):193–242. (Cited on page 51.)

Mönch, L. (2008). Heuristics to minimize total weighted tardiness of jobs on

unrelated parallel machines. In 2008 IEEE Inter Conf on Automation Science and

Engineering, pages 572–577. IEEE. (Cited on pages 12 and 15.)

Nessah, R., Yalaoui, F., and Chu, C. (2008). A branch-and-bound algorithm to

minimize total weighted completion time on identical parallel machines with

job release dates. Computers & Operations Research, 35(4):1176–1190. (Cited on

page 52.)

Pan, Y. and Shi, L. (2007). On the equivalence of the max-min transportation

lower bound and the time-indexed lower bound for single-machine scheduling

problems. Math Program, 110(3):543–559. (Cited on pages 7, 19, 21, 55, and 58.)

118

Pessoa, A., Uchoa, E., Aragão, M. P., and Rodrigues, R. (2010). Exact algorithm

over an arc-time-indexed formulation for parallel machine scheduling problems.

Math Program Comput, 2(3-4):259–290. (Cited on pages 10 and 15.)

Pinedo, M. (2008). Scheduling: Theory, Algorithms, and Systems. Springer, 3rd

edition. (Cited on pages 1, 8, and 51.)

Plateau, M.-C. and Rios-Solis, Y. A. (2010). Optimal solutions for unrelated parallel

machines scheduling problems using convex quadratic reformulations. Eur J

Oper Res, 201(3):729–736. (Cited on pages 15, 53, 55, 73, 81, 84, 88, 90, and 101.)

Posner, M. E. (1985). Minimizing weighted completion times with deadlines.

Operations Research, 33(3):562–574. (Cited on page 62.)

Potts, C. and van Wassenhove, L. (1982). A decomposition algorithm for the single

machine total tardiness problem. Oper Res Lett, 1(5):177–181. (Cited on page 33.)

Rasmussen, R. V. and Trick, M. A. (2007). A benders approach for the constrained

minimum break problem. Eur J Oper Res, 177(1):198–213. (Cited on page 86.)

Rios-Solis, Y. A. and Sourd, F. (2008). Exponential neighborhood search for a

parallel machine scheduling problem. Comput Oper Res, 35(5):1697–1712. (Cited

on pages 15 and 83.)

Rodriguez, F., Blum, C., García-Martínez, C., and Lozano, M. (2012). GRASP with

path-relinking for the non-identical parallel machine scheduling problem with

minimising total weighted completion times. Ann Oper Res, 201(1):383–401.

(Cited on page 50.)

Rodriguez, F. J., Lozano, M., Blum, C., and García-Martínez, C. (2013). An iterated

greedy algorithm for the large-scale unrelated parallel machines scheduling

problem. Comput Oper Res, 40(7):1829–1841. (Cited on pages 50, 51, and 55.)

Rubin, P. (2011). Benders decomposition then and now. http://orinanobworld.

blogspot.com/2011/10/benders-decomposition-then-and-now.html. Last

viewed on 04/24/2013. (Cited on pages 31, 65, and 100.)

119

http://orinanobworld.blogspot.com/2011/10/benders-decomposition-then-and-now.html
http://orinanobworld.blogspot.com/2011/10/benders-decomposition-then-and-now.html

Sadykov, R. and Wolsey, L. A. (2006). Integer programming and constraint pro-

gramming in solving a multimachine assignment scheduling problem with

deadlines and release dates. INFORMS J Comput, 18(2):209–217. (Cited on

page 86.)

Sarin, S. C., Ahn, S., and Bishop, A. B. (1988). An improved branching scheme for

the branch and bound procedure of scheduling n jobs on m parallel machines

to minimize total weighted flowtime. International Journal of Production Research,

26(7):1183–1191. (Cited on page 51.)

Şen, H. and Bülbül, K. (2012). A simple, fast, and effective heuristic for the

single-machine total weighted tardiness problem. In Demeulemeester, E. and

Herroelen, W., editors, Proceedings of the 13th Inter. Conf. on Project Management

and Scheduling (PMS 2012), pages 282–286, Leuven, Belgium. (Cited on pages 7,

17, 19, and 55.)

Şen, H. and Bülbül, K. (2015a). Logic based benders decomposition for unre-

lated parallel machine weighted earliness/tardiness scheduling. Manuscript in

preparation. (Cited on page 4.)

Şen, H. and Bülbül, K. (2015b). A strong preemptive relaxation for weighted

tardiness and earliness/tardiness problems on unrelated parallel machines. IN-

FORMS J Comput, 27(1):135–150. (Cited on pages 4 and 87.)

Sen, T., Sulek, J. M., and Dileepan, P. (2003). Static scheduling research to minimize

weighted and unweighted tardiness: A state-of-the-art survey. Int J Prod Econ,

83(1):1 – 12. (Cited on pages 10 and 16.)

Shim, S.-O. and Kim, Y.-D. (2007a). Minimizing total tardiness in an unrelated

parallel-machine scheduling problem. J Oper Res Soc, 58(3):346–354. (Cited on

pages 1, 2, 6, 9, 15, and 33.)

Shim, S.-O. and Kim, Y.-D. (2007b). Scheduling on parallel identical machines

to minimize total tardiness. Eur J Oper Res, 177(1):135–146. (Cited on pages 9

and 15.)

Skutella, M. (2001). Convex quadratic and semidefinite programming relaxations

in scheduling. J ACM, 48(2):206–242. (Cited on pages 53, 55, and 84.)

120

Smith, W. E. (1956). Various optimizers for single-stage production. Nav Res Log,

3(1-2):59–66. (Cited on pages 49 and 90.)

Souayah, N., Kacem, I., Haouari, M., and Chu, C. (2009). Scheduling on parallel

identical machines to minimise the total weighted tardiness. Inter J Adv Oper

Manage, 1(1):30–69. (Cited on pages 9, 10, and 15.)

Soukhal, A. and Toung, N. (2012). Just-in-time scheduling with equal-size jobs.

In Ríos-Mercado, R. Z. and Ríos-Solís, Y. A., editors, Just-in-Time Systems, vol-

ume 60 of Springer Optimization and Its Applications, pages 107–145. Springer

New York. (Cited on page 84.)

Sourd, F. and Kedad-Sidhoum, S. (2003). The one-machine problem with earliness

and tardiness penalties. J Sched, 6(6):533–549. (Cited on pages 7, 17, 19, 21,

and 55.)

Tanaka, S. and Araki, M. (2008). A branch-and-bound algorithm with Lagrangian

relaxation to minimize total tardiness on identical parallel machines. Int J Prod

Econ, 113(1):446–458. (Cited on pages 10, 11, 12, 13, and 15.)

Tanaka, S. and Fujikuma, S. (2012). A dynamic-programming-based exact algo-

rithm for general single-machine scheduling with machine idle time. J Sched,

15:347–361. (Cited on pages 7, 22, 34, and 40.)

Tanaka, S., Fujikuma, S., and Araki, M. (2009). An exact algorithm for single-

machine scheduling without machine idle time. J Sched, 12:575–593. (Cited on

pages 7, 22, 34, and 40.)

Thorsteinsson, E. (2001). Branch-and-check: A hybrid framework integrating

mixed integer programming and constraint logic programming. In Walsh, T.,

editor, Principles and Practice of Constraint Programming - CP 2001, volume 2239

of Lecture Notes in Computer Science, pages 16–30. Springer Berlin Heidelberg.

(Cited on pages 85 and 86.)

Timpe, C. (2002). Solving planning and scheduling problems with combined

integer and constraint programming. OR Spectrum, 24(4):431–448. (Cited on

page 86.)

121

Unlu, Y. and Mason, S. J. (2010). Evaluation of mixed integer programming for-

mulations for non-preemptive parallel machine scheduling problems. Comput

Ind Eng, 58(4):785–800. (Cited on page 54.)

Üster, H. and Agrahari, H. (2011). A Benders decomposition approach for a distri-

bution network design problem with consolidation and capacity considerations.

Oper Res Lett, 39(2):138–143. (Cited on page 27.)

van den Akker, J. M., Hoogeveen, J. A., and van de Velde, S. L. (1999). Parallel

Machine Scheduling by Column Generation. Oper Res, 47(6):862–872. (Cited on

pages 7, 8, 50, 53, 54, 73, and 76.)

Van Roy, T. J. (1986). A cross decomposition algorithm for capacitated facility

location. Oper Res, 34(1):145–163. (Cited on page 27.)

Vredeveld, T. and Hurkens, C. (2002). Experimental comparison of approximation

algorithms for scheduling unrelated parallel machines. INFORMS Journal on

Computing, 14(2):175–189. (Cited on page 50.)

Webster, S. (1997). The complexity of scheduling job families about a common

due date. Oper Res Lett, 20(2):65–74. (Cited on page 81.)

Wentges, P. (1996). Accelerating Benders’ decomposition for the capacitated facil-

ity location problem. Math Method Oper Res, 44(2):267–290. (Cited on page 27.)

Yalaoui, F. and Chu, C. (2002). Parallel machine scheduling to minimize total

tardiness. Int J Prod Econ, 76(3):265–279. (Cited on pages 9, 11, and 15.)

Yalaoui, F. and Chu, C. (2006). New exact method to solve the Pm/r j/
∑

j C j

schedule problem. International Journal of Production Economics, 100(1):168–179.

(Cited on page 52.)

Zhou, H., Li, Z., and Wu, X. (2007). Scheduling Unrelated Parallel Machine to

Minimize Total Weighted Tardiness Using Ant Colony Optimization. In 2007

IEEE Inter Conf on Automation and Logistics, pages 132–136, Jinan. IEEE. (Cited

on pages 12 and 15.)

122

Curriculum Vitae

Halil Şen

halilsen@sabanciuniv.eduB

myweb.sabanciuniv.edu/halilsen m

Education

Sabanci University İstanbul, TR

Ph.D., Industrial Engineering 08/2015

• Dissertation: Cut Generation Based Algorithms for Unrelated Parallel Machine Scheduling

Problems Advisor: Kerem Bülbül

Sabanci University İstanbul, TR

M.Sc., Industrial Engineering 08/2010

• Thesis: A Simple, Fast, and Effective Heuristic for the Single-Machine Total Weighted

Tardiness Problem Advisor: Kerem Bülbül

Yildiz Technical University İstanbul, TR

B.Sc., Industrial Engineering 06/2008

Academic Experience

Research and Teaching Assistant 09/2008–08/2015

Sabancı University İstanbul, TR

Collaboration 02/2013–06/2015

Pierre and Marie Curie University, LIP6, Safia Kedad-Sidhoum Paris, FR

• Research: Single-Machine Earliness-Tardiness Scheduling with Periods of Machine

Unavailability

Visiting Researcher 02–06/2014

The Ohio State University, ISE, Simge Küçükyavuz Columbus, OH

• Research: Chance-Constrained Two-Stage Mean-Risk Stochastic Programming

123

myweb.sabanciuniv.edu/halilsen

Fellowship & Awards

• Third prize, Best Student Paper Competition, (PMS 2012), Leuven, BE 2012

• TÜBİTAK M.Sc. and Ph.D. Scholarships 2008–present

• Sabancı University M.Sc. and Ph.D. Fellowships 2008–present

• Graduated from Yıldız Technical University as a student with honors 2008

• Turkish Prime Ministry Scholarship 2004–2008

Published/Submitted Journal Papers

Şen, Halil and Bülbül, K. (2015). A Strong Preemptive Relaxation for Weighted Tardiness

and Earliness/Tardiness Problems on Unrelated Parallel Machines. INFORMS Journal on

Computing, 27(1), 135–150. http://dx.doi.org/10.1287/ijoc.2014.0615

Bülbül, Kerem and Şen, H. (2014). An Exact Extended Formulation for the Unrelated

Parallel Machine Total Weighted Completion Time Problem. Manuscript submitted for

publication.

www.optimization-online.org/DB_HTML/2014/08/4519.html

Proceedings

Şen, Halil and Bülbül, K. (2012). A Simple, Fast, and Effective Heuristic for the Single

Machine Total Weighted Tardiness Problem. In Demeulemeester, E. and Herroelen, W.

(Eds.), Proceedings of the 13th Inter. Conf. on Project Management and Scheduling, 282–286.

www.econ.kuleuven.be/eng/tew/academic/prodbel/PMS2012/proceedings.pdf

Manuscripts in Preparation

• Chance-Constrained Two-Stage Mean-Risk Stochastic Programming. Joint work with K.

Bülbül, S. Küçükyavuz, and N. Noyan.

• Single-Machine Earliness-Tardiness Scheduling with Periods of Machine Unavailability.

Joint work with K. Bülbül and S. Kedad-Sidhoum.

• Logic-Based Benders Decomposition for Unrelated Parallel Machine Weighted

Earliness/Tardiness Scheduling. Joint work with K. Bülbül.

124

http://dx.doi.org/10.1287/ijoc.2014.0615
www.optimization-online.org/DB_HTML/2014/08/4519.html
www.econ.kuleuven.be/eng/tew/academic/prodbel/PMS2012/proceedings.pdf

Conference Presentations, Invited Talks †: Presented by K. Bülbül

A Strong Preemptive Relaxation for Minsum Scheduling Problems on Unrelated Parallel Machines

Joint work with K. Bülbül.

- University of Bordeaux, Seminar Series of ReAlOpt, Bordeaux, FR, 2015

- The Université Catholique de Louvain, CORE Seminar Series, Louvain-la-Neuve, BE, 2015

- Sabancı University, IE-OPIM Joint Graduate Seminar Series, İstanbul, TR, 2014 †

- University of Southern California, Los Angeles, CA, 2014 †

Single-Machine Earliness-Tardiness Scheduling with Periods of Machine Unavailability

Joint work with K. Bülbül and S. Kedad-Sidhoum.

- 20th Conference of the International Federation of OR Societies (IFORS 2014), Barcelona, ES,
2014 (presented by S. Kedad-Sidhoum)

A Strong Preemptive Relaxation for Weighted Tardiness and Earliness/Tardiness Problems on

Unrelated Parallel Machines Joint work with K. Bülbül.

- OR/IE Doctoral Students Colloquium, Middle East Technical University, Ankara, TR, 2014

- The Ohio State University, ISE Seminar Series, Columbus, OH, 2014 †

- 33rd National Conference on OR and Industrial Engineering (YAEM) – joint with the
International IIE Conference, İstanbul, TR, 2013

- XXVI EURO – INFORMS Joint International Conference, Rome, IT, 2013 †

- Joint 2nd Workshop of the Turkish and Israeli OR Societies (WITOR2), Tel Aviv, IL, 2013 †

A Preemption-Based Heuristic for the Single-Machine Generalized Total Weighted Tardiness

Joint work with K. Bülbül.

- 13th Inter. Conf. on Project Management and Scheduling (PMS 2012), Leuven, BE, 2012

- 32nd National Conference on OR and Industrial Engineering (YAEM), İstanbul, TR, 2012

A Simple, Fast, and Effective Heuristic for the Single-Machine Total Weighted Tardiness

- Turkish Naval Academy, İstanbul, TR, 2012

- 24th European Conference on Operational Research (EURO XXIV), Lisbon, PT, 2010

- 30th National Conference on OR and Industrial Engineering (YAEM), İstanbul, TR, 2010

125

	Cover
	Approval
	Copyright
	Abstract
	Özet
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations

	1 INTRODUCTION
	1.1 Outline

	2 A STRONG PREEMPTIVE RELAXATION FOR TOTAL WEIGHTED TARDINESS AND EARLINESS/TARDINESS
	2.1 Introduction
	2.2 Review of Related Literature
	2.3 Problem Statement and Preemptive Relaxation
	2.4 Benders Decomposition
	2.4.1 Validity and Strengthening of the Benders Cuts

	2.5 Computational Results
	Data Generation
	2.5.1 Results for Rm-TWT
	2.5.2 Results for Rm-TWET

	3 AN EXACT EXTENDED FORMULATION FOR TOTAL WEIGHTED COMPLETION TIME
	3.1 Introduction
	3.2 Review of Related Literature
	3.3 Formulation and Solution Approach
	3.3.1 Benders Decomposition

	3.4 Computational Results

	4 LOGIC-BASED BENDERS DECOMPOSITION FOR COMMON DUE DATE TOTAL WEIGHTED EARLINESS/TARDINESS
	4.1 Introduction
	4.2 Review of Related Literature
	4.2.1 Parallel Machine Scheduling
	4.2.2 LBBD in Scheduling

	4.3 Solution Approach
	4.3.1 Overview of LBBD
	4.3.2 LBBD for Rm-UCDD
	4.3.3 Strengthened Bounding Functions

	4.4 Computational Results

	5 CONCLUSION AND FUTURE RESEARCH
	Bibliography
	Curriculum Vitae
	Education
	Academic Experience
	Fellowship & Awards
	Published/Submitted Journal Papers
	Proceedings
	Manuscripts in Preparation
	Conference Presentations, Invited Talks

