
Digital Object Identifier (DOI) 10.1007/s10107990047a

Math. Program. 85: 541–572 (1999) Springer-Verlag 1999

J.M. van den Akker·C.P.M. van Hoesel·M.W.P. Savelsbergh

A polyhedral approach to single-machine scheduling
problems

Received March 24, 1994 / Revised version received February 13, 1997
Published online June 28, 1999

Abstract. We report new results for a time-indexed formulation of nonpreemptive single-machine scheduling
problems. We give complete characterizations of all facet inducing inequalities with integral coefficients and
right-hand side 1 or 2 for the convex hull of the set of feasible partial schedules, i.e., schedules in which not
all jobs have to be started. Furthermore, we identify conditions under which these facet inducing inequalities
are also facet inducing for the original polytope, which is the convex hull of the set of feasible complete
schedules, i.e., schedules in which all jobs have to be started. To obtain insight in the effectiveness of these
classes of facet-inducing inequalities, we develop a branch-and-cut algorithm based on them. We evaluate its
performance on the stronglyNP-hard single machine scheduling problem of minimizing the weighted sum
of the job completion times subject to release dates.

Key words. scheduling – polyhedral methods – facet inducing inequalities – separation – branch-and-cut

1. Introduction

Recently developed polyhedral methods have yielded substantial progress in solving
many importantNP-hard optimization problems. Some well-known examples are the
traveling salesman problem [19], 0-1 integer programming problems [7], mixed 0-1 inte-
ger programming problems [23]. We refer to Hoffman and Padberg [12] and Nemhauser
and Wolsey [18] for general descriptions of the approach.

In comparison, the investigation and development of polyhedral methods for ma-
chine scheduling problems is still in its early stages. The majority of the research has
focused on single-machine scheduling problems or problems that can be treated as
such. Balas [3] pioneered the study of scheduling polyhedra with his work on the facial
structure of the job shop scheduling problem. Queyranne [20] completely characterized
the polyhedron associated with the simple nonpreemptive single-machine scheduling
problem. Queyranne and Wang [22] generalized Queyranne’s results to include series-
parallel precedence constraints. Wolsey [28] compared different formulations for the
problem with precedence constraints. Dyer and Wolsey [8] examined several formu-
lations for the single-machine scheduling problem with release dates, and Nemhauser

J.M. van den Akker: Information and Communication Technology Division, National Aerospace Laboratory
NLR, P.O.Box 90502, 1006 BM Amsterdam, The Netherlands, e-mail:vdakker@nlr.nl . The research
was carried out and the first version of this paper was written while the author was at Eindhoven University
of Technology

C.P.M. van Hoesel: Department of Quantitative Economics, University of Limburg, P.O.Box 616, 6200 MD
Maastricht, The Netherlands, e-mail:s.vanhoesel@ke.unimaas.nl

M.W.P. Savelsbergh: School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,
GA 30332-0205, USA, e-mail:mwps@akula.isye.gatech.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6750609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

542 J.M. van den Akker et al.

and Savelsbergh [16] developed a cutting plane algorithm for this problem. Sousa and
Wolsey [26] investigated a time-indexed formulation for several variants of the non-
preemptive single-machine scheduling problem. Crama and Spieksma [5] studied the
same formulation for problems in which the jobs have equal processing times. Lasserre
and Queyranne [13] presented a mixed integer programming formulation motivated by
a control theoretic view of scheduling decisions. We refer to Queyranne and Schulz [21]
for a more comprehensive survey.

In this paper, we report new results for the time-indexed formulation of nonpre-
emptive single-machine scheduling problems studied by Sousa and Wolsey [26]. They
introduced three classes of inequalities. The first class consists of inequalities with right-
hand side 1, and the second and third classes consist of inequalities with right-hand side
k ∈ {2, . . . ,n}. Furthermore, they developed a cutting plane algorithm based on these
three classes of inequalities. They used exact separation algorithms to identify violated
inequalities in the first class and violated inequalities with right-hand side 2 in the second
class. They used a simple heuristic to identify violated inequalities in the third class.
Their computational experiments revealed that the bounds obtained are strong compared
to bounds obtained from other mixed integer programming formulations.

These promising computational results stimulated us to study the inequalities with
right-hand side 1 or 2 more thoroughly. To do so, we first study the convex hull of
the set of feasible partial schedules, i.e., schedules in which not all jobs have to be
started. We derive complete characterizations of all facet inducing inequalities with
integral coefficients and right-hand side 1 or 2 for this extended polytope. Then, we give
conditions under which the identified inequalities are also facet inducing for the original
polytope. Our analysis shows that only some of the classes of inequalities used in the
computational experiments by Sousa and Wolsey are facet inducing. To obtain insight in
the effectiveness of the classes of facet-inducing inequalities we have derived, we have
developed a branch-and-cut algorithm based on them. We evaluate its performance on
the stronglyNP-hard single-machine scheduling problem of minimizing the weighted
sum of the job completion times subject to release dates.

2. Problem formulation

The usual setting for nonpreemptive single-machine scheduling problems is as follows.
A set J of n jobs has to be scheduled on a single machine. Each jobj ∈ J requires
uninterrupted processing for a period of lengthpj , wherepj is some positive integer.
The machine can handle no more than one job at a time.

The time-indexed formulation studied by Sousa and Wolsey [26] is based on time-
discretization, i.e., time is divided into periods, where periodt starts at timet − 1 and
ends at timet. The planning horizon is denoted byT, which means that all jobs have to
be completed by timeT. We assume thatT ≥ ∑n

j=1 pj . Let cjt be the cost if jobj is
started in periodt. The formulation is as follows:

minimize
n∑

j=1

T−pj+1∑
t=1

cjt x jt

A polyhedral approach to single-machine scheduling problems 543

subject to

T−pj+1∑
t=1

xjt = 1 (j = 1, ...,n), (1)

n∑
j=1

t∑
s=t−pj+1

xjs ≤ 1 (t = 1, ..., T), (2)

xjt ∈ {0,1} (j = 1, ...,n; t = 1, ..., T − pj + 1),

wherexjt = 1 if job j is started in periodt, i.e., at the beginning of periodt, and 0
otherwise. This formulation can be used to model several single-machine scheduling
problems by an appropriate choice of the objective coefficients and possibly a restriction
of the set of variables. For instance, if the objective is to minimize the weighted sum
of the start times, we take coefficientscjt = w j (t − 1), wherew j denotes the weight
of job j ; if there are release datesr j , i.e., job j becomes available at timer j , then we
discard the variablesxjt for t = 1, . . . , r j . In the sequel, we denote the set of feasible
schedules byS.

Many of the single-machine scheduling problems that can be modeled by the time-
indexed formulation given above are stronglyNP-hard. Crama and Spieksma [5] prove
that when we takepj = 2 for all j andcjt ∈ {0,1} the scheduling problem is strongly
NP-hard.

In the above formulation, the convex hullPS of S, the set of feasible schedules, is
not full-dimensional. Sousa and Wolsey [26] showed that, ifT ≥∑n

j=1 pj + pmax, then
dim(PS) = nT−∑n

j=1 pj , wherepmax= max{pj | j ∈ {1, . . . ,n}}. As it is often easier
to study full-dimensional polyhedra, we study the convex hullPS∗ of S∗, whereS∗ is
the set of all feasible partial schedules, i.e., the set of feasible schedules in which not all
jobs have to be started. A description ofS∗ can be obtained by relaxing the equations
(1) into inequalities with sense less-than-or-equal, i.e., the setS∗ is described by:

T−pj+1∑
t=1

xjt ≤ 1 (j = 1, ...,n), (3)

n∑
j=1

t∑
s=t−pj+1

xjs ≤ 1 (t = 1, ..., T), (4)

xjt ∈ {0,1} (j = 1, ...,n; t = 1, . . .T − pj + 1)

It is not hard to show thatPS∗ is full-dimensional. In the sequel, we consider the polytope
PS∗ unless we state otherwise. When we say that an inequality is valid, we mean that it
is valid for PS∗ ; sincePS∗ containsPS, such an inequality is valid forPS too. Moreover,
when we speak about a schedule, we mean a schedule that can be partial, i.e., it does not

544 J.M. van den Akker et al.

have to contain all jobs. When the schedule has to contain all jobs we call it acomplete
schedule.

Note that the collection of facet inducing inequalities for the polytopePS∗ associated
with the set of partial schedules includes all facet inducing inequalities for the polytope
PS associated with the set of complete schedules.

A set V ⊆ {0,1}n is calleddown-monotoneif for all x, y ∈ {0,1}n we have that
x ≤ y and y ∈ V implies thatx ∈ V. Down-monotone 0-1 polytopes are polytopes
that are the convex hull of a down-monotone subset of{0,1}n. Hammer, Johnson, and
Peled [11] studied down-monotone polytopes and proved the following lemma.

Lemma 1. (Hammer, Johnson, and Peled, [11])
Let P be a down-monotone 0-1 polytope. A facet inducing inequalityax≤ b for P with
integral coefficientsaj and integral right-hand sideb has eitherb > 0 and coefficients
aj in {0,1, . . . ,b} or it is a positive scalar multiple of−x j ≤ 0 for somej .

ut
SincePS∗ is a down-monotone 0-1 polytope, the result holds forPS∗ too. The above
lemma implies that all facet inducing inequalities with right-hand side 0 forPS∗ have
the formxjs ≥ 0. It can be shown that each inequalityx js ≥ 0 is facet inducing for
PS∗ by observing that all other unit vectors together with the all-zero vector are affinely
independent. Extending the proof of Crama and Spieksma [5], we can show that these
inequalities are also facet inducing forPS, if T ≥∑n

j=1 pj + pmax.
Before we present our analysis of the structure of facet inducing inequalities with

right-hand side 1 or 2, we introduce some notation and definitions.
The index-set of variables with nonzero coefficients in an inequality is denoted

by V. The set of variables with nonzero coefficients in an inequality associated with
job j defines a set of time periodsVj = {s|(j, s) ∈ V}. If job j is started in period
s ∈ Vj , then we say that jobj is started inV. With each setVj we associate two values

l j = min{s|s− pj + 1 ∈ Vj }
and

u j = max{s|s ∈ Vj }.
For convenience, letl j = ∞ andu j = −∞ if Vj = ∅. Note that ifVj 6= ∅, thenl j is
the first period in which jobj can be finished if it is started inV, and thatu j is the last
period in which job j can be started inV. Furthermore, letl = min{l j | j ∈ {1, ...,n}}
andu = max{u j | j ∈ {1, ...,n}}.

We define an interval[t1, t2] as the set of periods{t1 + 1, t1 + 2, . . . , t2}, i.e., the
set of periods between timet1 and timet2. If t1 ≥ t2, then[t1, t2] = ∅.

For presentational convenience, we usex(S) to denote
∑
(j,s)∈Sxjs. Recall thatPS∗

is a down-monotone 0-1 polytope. As a consequence of Lemma 1, valid inequalities
with right-hand side 1 will be denoted byx(V) ≤ 1 and valid inequalities with right-hand
side 2 will be denoted byx(V1)+ 2x(V2) ≤ 2, whereV = V1 ∪ V2 andV1 ∩ V2 = ∅.
Furthermore, we defineV2

j = {s | (j, s) ∈ V2}.
In the sequel, we shall often represent inequalities by diagrams. A diagram contains

a line for each job. The blocks on the line associated with jobj indicate the time periodss

A polyhedral approach to single-machine scheduling problems 545

for whichxjs occurs in the inequality. For example, an inequality of the form (4) can be
represented by the following diagram:

.

.

.
.
.

.

t − pn

t − p2

t

t

n

2

1

≤ 1.

tt − p1

3. Facet inducing inequalities with right-hand side 1

The purpose of this section is twofold. First, we present new results that extend and
complement the work of Sousa and Wolsey [26]. Second, we familiarize the reader with
our approach in deriving complete characterizations of classes of facet inducing inequal-
ities. Note that parts of the analysis in this section can be simplified, but we present it in
this way to demonstrate the approach we use to deal with the more complicated case of
right-hand side 2.

Establishing complete characterizations of facet inducing inequalities with right-
hand side 1 for the extended polytopePS∗ proceeds in three phases. First, we derive
necessary conditions in the form of various structural properties of facet-inducing in-
equalities. These properties follow from the observation that a valid inequalityx(V) ≤ 1
can be facet inducing only if it is maximal, i.e., if there does not exist a valid inequality
x(W) ≤ 1 with V ⊂ W whereV is a proper subset ofW. Second, once we have these
structural properties, we derive classes of inequalities that contain all facet inducing
inequalities. Finally, we show that the maximality is also sufficient.

Then we show that under mild conditions on the horizonT we can guarantee that
the facet inducing inequalities we derived forPS∗ are also facet inducing for the original
polytopePS.

Recall that we do not require a schedule to contain all jobs.

Lemma 2. A facet inducing inequalityx(V) ≤ 1 for PS∗ is maximal.
ut

Property 1. If x(V) ≤ 1 is valid and maximal, then the setsVj are intervals, i.e.,
Vj = [l j − pj ,u j], for j = 1, . . . ,n.

Proof. Let j ∈ {1, . . . ,n} and assumeVj 6= ∅. By definitionl j− pj+1 is the smallests
such thats∈ Vj andu j is the largest such value. Consider anyswith l j−pj+1< s< u j

and let job j be started in periods, i.e.,xjs = 1.
Suppose(i , t) ∈ V is such thatxit = xjs = 1 defines a feasible schedule. Ift < s,

i.e., jobi is started before jobj , then the schedule that we obtain by postponing the start
of job j until periodu j is also feasible. This schedule does not satisfyx(V) ≤ 1, which

546 J.M. van den Akker et al.

contradicts the validity of the inequality. Hence no job can be started inV before jobj .
Similarly, we obtain a contradiction ift > s, which implies that no job can be started in
V after job j .

We conclude that choosingx js = 1 prohibits any job from starting inV. Because of
the maximality ofx(V) ≤ 1, we must have(j, s) ∈ V.

ut
Property 2. Let x(V) ≤ 1 be valid and maximal.
(a) Assumel = l1 ≤ l2 = min{l j | j ∈ {2, ...,n}}. ThenV1 = [l − p1,l2] and Vj =
[l j − pj , l] for all j ∈ {2, ...,n}.
(b) Assumeu = u1 ≥ u2 = max{u j | j ∈ {2, ...,n}}. Then V1 = [u2 − p1,u] and
Vj = [u− pj,u j] for all j ∈ {2, ...,n}.
Proof. (a) Suppose thatl = l1 ≤ l2 = min{l j | j ∈ {2, . . . ,n}}. Observe that Property 1
implies thatV1 is an interval and that by definition its lower bound equalsl − p1. We
now show that the upper bound is equal tol2. Sincex2,l2−p2+1 = 1 andx1s = 1 defines
a feasible schedule for anys> l2, we have that only one of these variables can occur in
x(V) ≤ 1; as by definition(2, l2 − p2 + 1) ∈ V, it follows that the upper bound ofV1
is at mostl2. Now, let x1s = 1 for somes ∈ [l − p1, l2]. Reasoning as in the proof of
Property 1, we can show that sincel − p1+ 1 ∈ V1 it follows that no job can be started
in V after job 1. Ass≤ l2 = min{l j | j ∈ {2, ...,n}}, it is impossible to start any job in
V before job 1. From the maximality ofx(V) ≤ 1 we conclude thatV1 = [l − p1, l2].
Similar arguments can be applied to show thatVj = [l j − pj , l] for all j ∈ {2, . . . ,n}.

The proof of (b) is similar to that of (a).
ut

Observe that by Property 2(a) a valid and maximal inequalityx(V) ≤ 1 with l = l1
necessarily hasu1 = u. Consequently, Lemma 2 and Properties 2(a) and 2(b) can be
combined to give the following theorem.

Theorem 1. A facet inducing inequalityx(V) ≤ 1 for PS∗ has the following structure:

V1 = [l − p1,u],
Vj = [u− pj , l] (j ∈ {2, ...,n}), (5)

wherel = l1 ≤ u1 = u.
ut

Theorem 1 says that a facet inducing inequality with right-hand side 1 can be represented
by the following diagram:

≤ 1.lu− pj

j ∈ {2, . . . ,n}

l − p1 u

1

Note that if l = u, then the inequalities with structure (5) coincide with the inequal-
ities (4); if l = p1, u = T − p1 + 1, andVj = ∅ for all j ∈ {2, . . . ,n}, then the
inequalities with structure (5) coincide with the inequalities (3).

A polyhedral approach to single-machine scheduling problems 547

Example 1.Let n = 3, p1 = 3, p2 = 4 andp3 = 5. The inequality with structure (5),
l = l1 = 6 andu = u1 = 7 is given by the following diagram:

.

1
2

1
2

1
2

≤ 1.

765432

3

2

1

Note that the fractional solutionx14 = x17 = x33 = 1
2 satisfies (3) and (4), but violates

the above inequality.

The following theorem shows that the given necessary conditions are also sufficient.
The proof of this theorem uses the concept of acounterexample. If x(V) ≤ 1 is maximal,
then for each(j, s) /∈ V, there exists a(j ′, s′) ∈ V such thatxjs = xj ′s′ = 1 is a feasible
schedule, since the variablex js could be added to the inequality otherwise. We call such
a schedule acounterexamplefor (j, s).

Theorem 2. A valid inequalityx(V) ≤ 1 is facet inducing forPS∗ if and only if it is
maximal.

Proof. Lemma 2 already states that a facet inducing inequalityx(V) ≤ 1 for PS∗ is
maximal. Now, letx(V) ≤ 1 be valid and maximal. LetF = {x ∈ PS∗|x(V) = 1}. We
show dim(F) = dim(PS∗) − 1 by exhibiting

∑n
j=1 T − pj + 1 affinely independent

vectors inF. First, take all unit vectorsx js = 1 with (j, s) ∈ V. Then, because of the
maximality of x(V) ≤ 1, there exists a counterexample for each(j, s) /∈ V. Together
with the unit vectors, these counterexamples provide the set of affinely independent
vectors.

ut

Corollary 1. A valid inequalityx(V) ≤ 1 with structure (5) that is maximal is facet
inducing forPS∗ .

ut
Sousa and Wolsey already established that the class of inequalities with structure (5) is
facet inducing forPS if the horizonT is large enough.

Theorem 3. (Sousa and Wolsey, [26])
If T ≥ ∑n

j=1 pj + 3pmax, then a valid inequalityx(V) ≤ 1 with structure(5) that is
maximal is facet inducing forPS, wherepmax= max{pj | j = 1, . . . ,n}.

ut

Now, we derive conditions for valid inequalityx(V)≤ 1 with structure (5) to be maximal.
Observe that an inequality is maximal if and only if it is impossible to add more variables
to it. Although most inequalities with structure (5) are maximal, there are two cases
in which variables can be added. The first case is ifVj = ∅ for all j 6= 1 and not all

548 J.M. van den Akker et al.

variables belonging to job 1 are included. Clearly, now the missing variables belonging
to job 1 can be added. This case is excluded by the condition that eitherVj 6= ∅ for some
j ∈ {2, . . . ,n}, orl = p1 andu = T−p1+1. The second case is if the inequality is at the
border of the interval[0, T] and some variables included in the structure (5) are missing
because they are outside the domain{xjt | j ∈ {1, . . . ,n}, t ∈ {1, . . . , T − pj + 1}}.
Now, it may be possible to add variables outside the structure. It is not hard to show
that this case is excluded by the following conditions. Ifl = u, then we must have
p[2] ≤ l ≤ T − p[2] + 1, wherep[2] denotes the processing time of the smallest job
but one. Ifl < u, then we must havel ≥ p1 andu ≥ min{pj | j 6= 1, pj > u − l} and
u ≤ T − p1+ 1 andl ≤ T + 1−min{pj | j 6= 1, pj > u− l}.

From the above, we derive the following for the maximality of the inequalities
(3) and (4) from the problem formulation. Recall that the inequalities (3) coincide
with inequalities with structure (5) withl = p1, u = T − p1 + 1, andVj = ∅ for
all j ∈ {2, . . . ,n}. The above maximality conditions imply that inequalities (3) are
maximal for each jobj1 with T ≥ 2pj1 + max{pj | j 6= j1}. Hence, if T is large
enough, especially ifT satisfies the condition from Theorem 3, then inequalities (3)
are all maximal. Inequalities (4) coincide with inequalities with structure (5) with
l = u. The above maximality conditions imply that these inequalities are maximal for
p[2] ≤ t ≤ T − p[2] + 1.

Note that an inequality with structure (5) is determined by one job, which without
loss of generality is called job 1, and two time periodsl andu. Since the maximality
condition, stating thatVj 6= ∅ for some j ∈ {2, . . . ,n}, implies thatu − pmax < l ,
it follows that the number of facet inducing inequalities with structure (5) that does
not coincide with an inequality (3) is bounded bynTpmax, and hence the total number
of facet inducing inequalities with structure (5) is bounded bynTpmax+ n, which is
polynomial in the size of the formulation.

4. Facet inducing inequalities with right-hand side 2

In the previous section, we have derived a complete characterization of all facet in-
ducing inequalities with right-hand side 1 for the extended polytopePS∗ . Through
a similar analysis, we now derive a characterization of all facet inducing inequal-
ities with right-hand side 2 forPS∗ . First, we consider the structure of valid
inequalities x(V1) + 2x(V2) ≤ 2 carefully. We find that in such an inequality
we can distinguish three sets of variables, which we will callL, M, and U;
consequently, we call the corresponding structure theLMU-structure. Then, based
on this LMU-structure, we derive a characterization of facet inducing inequalities
with right-hand side 2 forPS∗ . Finally, we give mild conditions on the horizonT
under which the identified inequalities are facet inducing for the original polytope
PS too. Recall again that a schedule does not have to contain all jobs.

We start by studying the structure of valid inequalities with right-hand side 2 and coef-
ficients 0, 1, and 2. Consider a valid inequalityx(V1) + 2x(V2) ≤ 2. Clearly, at most
two jobs can be started inV = V1 ∪ V2. Let j ∈ {1, ...,n} ands ∈ Vj . It is easy to see
that, if job j is started in periods, at least one of the following three statements is true.

A polyhedral approach to single-machine scheduling problems 549

(i) It is impossible to start any job inV before jobj , and at most one job can be
started inV after job j .

(ii) There exists a jobi with i 6= j such that jobi can be started inV before as
well as after jobj and any jobj ′ with j ′ 6= j, i cannot be started inV.

(iii) At most one job can be started inV before job j , and it is impossible to start
any job inV after job j .

Therefore, we can writeV = L ∪M ∪U, whereL ⊆ V is the set of variables for which
statement (i) holds,M ⊆ V is the set of variables for which statement (ii) holds, and
U ⊆ V is the set of variables for which statement (iii) holds. Analogously, we can write
Vj = L j ∪ Mj ∪Uj . Note that each of the setsL j ,Mj , andUj may be empty.

If job j is started in a period inV2
j , then it is impossible to start any job inV before

or after job j . It follows thatV2
j ⊆ L j ∩ Uj for all j and henceV2 ⊆ L ∩ U. It is not

hard to see that, ifL j 6= ∅ andUj 6= ∅, then the minimum element inL j is less than or
equal to the minimum element inUj , and the maximum element inL j is less than or
equal to the maximum element inUj . By definitionL j ∩ Mj = ∅ andMj ∩ Uj = ∅.
The setMj consists of periods between the maximum element ofL j and the minimum
element ofUj and henceMj must be empty ifL j ∩ Uj 6= ∅. By definition of the sets
L andU, x(L) ≤ 1 andx(U) ≤ 1 are valid inequalities.

We conclude that a valid inequalityx(V1) + 2x(V2) ≤ 2 can be represented by
a collection of setsL j , Mj , andUj . To derive necessary conditions on the structure of
facet inducing inequalities with right-hand side 2, we study this LMU-structure more
closely.

In the case of right-hand side 1, we only needed the concept of maximality to derive
the structural properties. In this case, we also need the concept of nondecomposability.
A valid inequalityx(V1)+2x(V2) ≤ 2 is callednondecomposableif it cannot be written
as the sum of two valid inequalitiesx(W)≤ 1 andx(W′) ≤ 1. The concept of maximality
becomes a little more complex in this case. A valid inequalityx(V1) + 2x(V2) ≤ 2
is called maximal if there does not exist a valid inequalityx(W1) + 2x(W2) ≤ 2
with V ⊆ W, V2 ⊆ W2, where at least one of the subsets is a proper subset. The
following lemma yields a general necessary condition and will be frequently used to
prove structural properties.

Lemma 3. A facet inducing inequalityx(V1)+2x(V2) ≤ 2 for PS∗ is nondecomposable
and maximal.

ut
The remaining part of the analysis of the LMU-structure proceeds in two phases. In the
first phase, we derive conditions on the structure of the setsL andU by considering each
of them separately. After having characterized the structure ofL andU, it turns out that,
when considering the overall LMU-structure, we have to distinguish three situations,
one for each possible way of combiningL andU. In the second phase, we characterize
the setM for each of these three situations.

550 J.M. van den Akker et al.

Property 3. If x(V1)+ 2x(V2) ≤ 2 is valid and maximal, then the setsL j , Mj , andUj
(j = 1, . . . ,n) are intervals. Moreover,V2

j = L j ∩Uj for all j , i.e.,V2 = L ∩U.

Proof. The proof of the first part is similar to the proof of Property 1; the second part is
trivial.

ut
Property 4. Let x(V1)+ 2x(V2) ≤ 2 be valid, nondecomposable, and maximal.
(a) Assumel = l1 ≤ l2 ≤ min{l j | j ∈ {3, . . . ,n}}. Then L1 = [l − p1, l2] and
L j = [l j − pj , l] for all j ∈ {2, . . . ,n}. Furthermore, there exists aj ∈ {2, . . . ,n}
such thatL j 6= ∅.
(b) Assumeu = u1 ≥ u2 ≥ max{u j | j ∈ {3, . . . ,n}}. ThenU1 = [u2 − p1,u] and
Uj = [u − pj ,u j] for all j ∈ {2, . . . ,n}. Furthermore, there exists aj ∈ {2, . . . ,n}
such thatUj 6= ∅.
Proof. (a) The proof forL1 = [l − pj , l2] andL j = [l j − pj , l] for all j ∈ {2, . . . ,n}
is similar to the proof of Property 2. Now suppose thatL j = ∅ for all j ∈ {2, . . . ,n}.
Thenx(V1)+ 2x(V2) ≤ 2 can be written as the sum of the valid inequalitiesx(W) ≤ 1
andx(W′) ≤ 1, whereW = {(1, s) | s ∈ L1 ∩ U1} ∪ {(j, s) | j ∈ {2, . . . ,n}, s ∈ Vj }
and W′ = {(1, s) | s ∈ V1}. This contradicts the fact thatx(V1) + 2x(V2) ≤ 2 is
nondecomposable.

The proof of (b) is similar to that of (a).
ut

Like the proof of Theorem 2, many of the proofs of the properties and theorems presented
in this section use the concept of a counterexample. Ifx(V1)+ 2x(V2) ≤ 2 is maximal,
then for any(j, s) /∈ V there must exist a feasible schedule such thatx js = 1 and
x(V1)+ 2x(V2) = 2; this schedule is called acounterexamplefor (j, s).

The following property plays a crucial role in the characterization. It shows that
a facet inducing inequalityx(V1)+ 2x(V2) ≤ 2 has at most three types of intervalL j
and at most three types of intervalUj .

Property 5. Let x(V1)+ 2x(V2) ≤ 2 be valid, nondecomposable, and maximal.
(a) Assumel = l1 ≤ l2 ≤ l∗, wherel∗ = min{l j | j ∈ {3, . . . ,n}}. Then for all
j ∈ {3, . . . ,n} with L j 6= ∅ we havel j = l∗ and for all j ∈ {3, . . . ,n} with L j = ∅
we havel∗ − pj ≥ l , i.e., L j = [l∗ − pj , l] for all j ∈ {3, . . . ,n}.
(b) Assumeu = u1 ≥ u2 ≥ u∗, whereu∗ = max{u j | j ∈ {3, . . . ,n}}. Then for all
j ∈ {3, . . . ,n} with Uj 6= ∅ we haveu j = u∗ and for all j ∈ {3, . . . ,n} with Uj = ∅
we haveu∗ ≤ u− pj , i.e.,Uj = [u− pj ,u∗] for all j ∈ {3, . . . ,n}.

Proof. (a) Let x(V1) + 2x(V2) ≤ 2 be valid and maximal withl = l1 ≤ l2 ≤ l∗.
By definition of l∗ and Property 4,L j ⊆ [l∗ − pj , l] for all j ∈ {3, . . . ,n}. We
assume without loss of generalityl∗ = l3. Suppose thatL j 6= [l∗ − pj , l] for some
j ∈ {4, . . . ,n}, sayL4 6= [l∗− p4, l]. Clearly, ifl∗− p4 ≥ l , thenL4 = ∅ = [l∗− p4, l].
Consequently,l∗− p4 < l andl4 > l∗, i.e.,l∗− p4+1 /∈ V4. Sincex(V1)+2x(V2) ≤ 2
is maximal, there exists a counterexample for(4, l∗ − p4+1). Let x4,l∗−p4+1 = xj1s1 =
xj2s2 = 1 define such a counterexample. Sincel∗ − p4 + 1 ≤ l , the jobs j1 and j2

A polyhedral approach to single-machine scheduling problems 551

are started after job 4. Clearly one of the jobs 1,2 and 3 does not occur in{ j1, j2}.
Suppose job 3 does not occur. It is now easy to see thatx3,l∗−p3+1 = xj1s1 = xj2s2 = 1
is a feasible schedule, which contradicts the validity ofx(V1)+ 2x(V2) ≤ 2. If job 1 or
job 2 does not occur in{ j1, j2} we obtain a contradiction in the same way.

The proof of (b) is similar to that of (a).
ut

The combination of Lemma 3 and Properties 4 and 5 shows that, ifx(V1)+2x(V2) ≤ 2
is facet inducing forPS∗ and if l = l1 ≤ l2 ≤ l∗, then the setL can be represented by
the following diagram:

l∗ − pj

l2 − p2

l

l

l2l − p1

j ∈ {3, . . . ,n}

2

1

Similarly, if u = u1 ≥ u2 ≥ u∗, then the setU can be represented by the following
diagram:

u− pj

u− p2

u2− p1

u∗

u2

u

j ∈ {3, . . . ,n}

2

1

The diagrams clearly show that a facet inducing inequality with right-hand side 2 for
PS∗ contains at most three types of intervalsL j and at most three types of intervalsUj .
The intervalsL j are characterized by the definition of the first period of the interval;
the intervalsUj are characterized by the definition of the last period of the interval. In
fact, the intervalsL j have the same structure for all but two jobs; the same holds for the
intervalsUj .

It turns out that, when we study the overall LMU-structure, it suffices to consider
three situations, based on the jobs with the deviant intervalsL j andUj :

(1a) l = l1 < l2 ≤ l∗ andu = u1 > u2 ≥ u∗, wherel∗ = min{l j | j ∈ {3, . . . ,n}}
andu∗ = max{u j | j ∈ {3, . . . ,n}};

552 J.M. van den Akker et al.

(1b) l = l1 < l2 ≤ l∗, u = u1 > u3 ≥ u∗, andl j > l2 or u j < u3 for all
j ∈ {2, . . . ,n}, wherel∗ = min{l j | j ∈ {3, . . . ,n}}
andu∗ = max{u j | j ∈ {2,4, . . . ,n}};

(2) l = l1 andu = u2.

Before we investigate each of the three situations, we present a property that applies to
Case 1.

Property 6. If x(V1) + 2x(V2) ≤ 2 with l = l1 < l2 = min{l j | j ∈ {2, . . . ,n}} and
u = u1 > ui = max{u j | j ∈ {2, . . . ,n}} is valid, nondecomposable, and maximal,
thenl2 < ui .

Proof. The proof is based on the fact that ifl2 ≥ ui , thenx(V1)+ 2x(V2) ≤ 2 can be
written as the sum of two valid inequalities with right-hand side 1.

ut

4.1. Case (1a)

The conditions onl j andu j and Properties 4 and 5 completely determine the setsL
andU. Therefore, all that remains to be investigated is the structure of the setM.

Property 7. If x(V1) + 2x(V2) ≤ 2 is valid, nondecomposable, and maximal with
l = l1 < l2 ≤ l∗ andu = u1 > u2 ≥ u∗, then

M1 = [u∗ − p1, l∗] ∩ [l2,u2− p1],
M2 = [u∗ − p2, l∗] ∩ [l,u− p2] ∩ [l2− p2,u2],
Mj = [u2− pj , l2] ∩ [l,u− pj], (j ∈ {3, . . . ,n}).

Proof. Let x(V1)+ 2x(V2) ≤ 2 with l = l1 < l2 ≤ l∗ andu = u1 > u2 ≥ u∗ be valid,
nondecomposable, and maximal. We derive the structure of the setM from that of L
andU.

Each setMj is the intersection of three intervals. The first interval follows from the
condition that there exists a jobi with i 6= j such that if jobj is started inMj , then job
i can be started inV before as well as after jobj . The second interval follows from the
condition that if job j is started inMj , then any jobj ′ with j ′ 6= j, i cannot be started
in V. The third interval is[l j − pj ,u j].

We first determineM1. If job 1 is started inM1, then, sincel2 ≤ l∗ andu2 ≥ u∗,
job 2 is the job that can be started inV before as well as after job 1. This implies that
M1 ⊆ [l2,u2 − p1]. Furthermore, it is impossible to start any jobj ∈ {3, . . . ,n} in V
and henceM1 ⊆ [u∗ − p1, l∗]. We conclude thatM1 ⊆ [u∗ − p1, l∗] ∩ [l2,u2 − p1].
Clearly, this dominates the condition thatM1 ⊆ [l − p1,u]. If job 1 is started in period
s ∈ [u∗− p1, l∗]∩[l2,u2− p1], then, sinces ∈ [l2,u2− p1], [l2,u2− p1] ⊂ [l− p1,u],
andL2∩U2 = [u− p2, l], job 2 cannot be started inL2∩U2. Sincex(V1)+2x(V2) ≤ 2
is maximal, it follows thatM1 = [u∗ − p1, l∗] ∩ [l2,u2 − p1].

The other setsMj can be determined in the same way. The conditionMj ⊆ [l j −
pj ,u j] is dominated by other conditions for all butj = 2.

ut

A polyhedral approach to single-machine scheduling problems 553

Lemma 3 and Properties 4, 5 and 7 completely determine the LMU-structure of
a facet inducing inequalityx(V1) + 2x(V2) ≤ 2 for PS∗ with l = l1 < l2 ≤ l∗
and u = u1 > u2 ≥ u∗. We can further show that for allj ∈ {3, . . . ,n} we have
[u2− pj , l] ⊆ L j and [u− pj , l2] ⊆ Uj . We combine all these results to obtain the
following theorem. Note that we have reformulated the intervalsMj to emphasize
their inherent structure.

Theorem 4. A facet inducing inequalityx(V1) + 2x(V2) ≤ 2 for PS∗ with l = l1 <
l2 ≤ l∗ andu = u1 > u2 ≥ u∗ has the following LMU-structure:

L1 = [l − p1, l2], M1 = [u∗ − p1, l∗] \ (L1 ∪U1),

L2 = [l2− p2, l], M2 = [max{u∗, l2} − p2,min{l∗,u2}] \ (L2 ∪U2),

L j = [l∗ − pj , l], Mj = [u2− pj , l2] \ (L j ∪Uj),

U1 = [u2− p1,u],
U2 = [u− p2,u2],
Uj = [u− pj ,u∗] (j ∈ {3, . . . ,n}),

(6)

where[u2− pj , l] ⊆ L j and[u− pj , l2] ⊆ Uj for all j ∈ {3, . . . ,n}.
ut

Hence, a facet inducing inequalityx(V1)+2x(V2) ≤ 2 for PS∗ with l = l1 < l2 ≤ l∗
andu = u1 > u2 ≥ u∗ can be represented by the following diagram:

UML

≤ 2.

l2

u2− pj

min{l∗,u2}max{u∗, l2} − p2

l∗u∗ − p1

u− pj u∗

u− p2 u2

uu2− p1

l

l

l∗ − pj

l2 − p2

l2l − p1

j ∈ {3, . . . ,n}

2

1

Example 2.Let n = 4, p1 = 3, p2 = 5, p3 = 6, and p4 = 9. The inequality with
LMU-structure (6) andl = l1 = 7, l2 = 9, l∗ = 12,u∗ = 14,u2 = 16 andu = u1 = 19
is given by the following diagram:

1
2

1
2

1
2

1
2

1
2

UML

193

≤ 2.

181716151413121110987654

4

3

2

1

554 J.M. van den Akker et al.

Note that the fractional solutionx15 = x1,19 = x2,10 = x2,16 = x4,4 = 1
2 violates this

inequality. It is easy to check that this solution satisfies all inequalities with structure (5).

The following theorem shows that the given necessary conditions are also sufficient.

Theorem 5. A valid inequalityx(V1) + 2x(V2) ≤ 2 with l = l1 < l2 ≤ l∗ and
u = u1 > u2 ≥ u∗ and LMU-structure(6) that is nondecomposable and maximal is
facet inducing forPS∗ .

Proof. Let x(V1) + 2x(V2) ≤ 2 be a valid inequality withl = l1 < l2 ≤ l∗ and
u = u1 > u2 ≥ u∗ and LMU-structure (6) that is nondecomposable and maximal,
and letF = {x ∈ PS∗ |x(V1) + 2x(V2) = 2}. We show that dim(F) = dim(PS∗) − 1
by exhibiting dim(PS∗) − 1 linearly independent directions inF, where a direction
is a vectord = x − y with x, y ∈ F. For notational convenience, a direction will
be specified by its nonzero components. We give three sets of directions: unit vectors
djs = 1 for all (j, s) /∈ V, vectorsdjs = 1,d1,l−p1+1 = d2u2 = −1 for all (j, s) ∈ V2,
and a set of|V| − |V2| − 1 linearly independent directionsdj1s1 = 1,dj2,s2 = −1
with (j1, s1), (j2, s2) ∈ V \ V2. Together these give dim(PS∗)− 1 linearly independent
directions inF.

If (j, s) /∈ V, then, sincex(V1)+2x(V2) ≤ 2 is maximal, there is a counterexample
for (j, s), say, defined byxjs = xj1s1 = xj2s2 = 1. Clearly this schedule is an element
of F. Note that the scheduleyj1s1 = yj2s2 = 1 also is an element ofF and hence
d = x− y yields the directiondjs = 1.

For(j, s) ∈ V2 the schedule defined byx js = 1 is an element ofF. Sincel < l2 and,
by Property 6,l2 < u2, we have thaty1,l−p1+1 = y2u2 = 1 defines a feasible schedule.
This schedule is also an element ofF and hencedjs = 1,d1,l−p1+1 = d2u2 = −1 is
a direction inF for all (j, s) ∈ V2.

The remaining|V| − |V2| − 1 directions have the formdj1s1 = 1,dj2s2 = −1 with
(j1, s1), (j2, s2) ∈ V \V2. We determine the directions in such a way that the undirected
graphG with vertex setV \ V2 and with edge set equal to the pairs(j1, s1), (j2, s2)

corresponding to the chosen directions forms a spanning tree. This guarantees that
the determined directions are linearly independent. We refer to Van den Akker [1] for
a complete description of the determination of these directions.

ut
The following theorem shows that the sufficient conditions given by the previous theorem
are also sufficient for the original polytope if the planning horizonT is large enough.

Theorem 6. If T ≥ ∑n
j=1 pj + 5pmax, then a valid inequalityx(V1) + 2x(V2) ≤ 2

with l = l1 < l2 ≤ l∗ and u = u1 > u2 ≥ u∗ and LMU-structure(6) that is
nondecomposable and maximal is facet inducing forPS.

Proof. The proof proceeds along the same lines as the proof of the previous theorem:
we pick almost the same set of directions. We need the extra term of 5pmax in the bound
on T, because we now have to extend the partial schedules used to define the directions
to complete schedules.

ut

A polyhedral approach to single-machine scheduling problems 555

An inequality with LMU-structure (6) is determined by two jobs and six time periods
l, l2, l∗, u∗,u2 and u. It is facet inducing forPS∗ if and only if it is maximal and
nondecomposable. We have derived the exact conditions on the eight defining parameters
to ensure this. These conditions are omitted here for reasons of brevity. We refer to Van
den Akker [1] for a complete description. It turns out that the number of facet inducing
inequalities forPS∗ with structure (6) is bounded by 2n2T3 p3

max, and is hence polynomial
in the size of the formulation.

4.2. Case (1b)

Like in Case (1a), the conditions onl j and u j and Properties 4 and 5 completely
determine the setsL and U. From these properties we derive that, ifl2 = l∗ and
u3 = u∗, thenLi 6= ∅ andUi 6= ∅, wherei is such thatpi = max{pj | j ∈ {2, . . . ,n}}.
But thenl i = l2 andui = u3 and we are in Case (1a). We conclude thatl2 < l∗ or
u3 > u∗. All that remains to be investigated is the structure of the setM.

Property 8. If x(V1) + 2x(V2) ≤ 2 is valid, nondecomposable, and maximal with
l = l1 < l2 ≤ l∗, u = u1 > u3 ≥ u∗, andl j > l2 or u j < u3 for all j ∈ {2, . . . ,n},
then

M1 = ∅,
M2 = [u3− p2, l∗] ∩ [l,u− p2] ∩ [l2− p2,u∗],
M3 = [u∗ − p3, l2] ∩ [l,u− p3] ∩ [l∗ − p3,u3],
Mj = [u3− pj , l2] ∩ [l,u− pj] j ∈ {4, . . . ,n}.

Proof. The proof is analogous to the proof of Property 7.
ut

Properties 4, 5, and 8 determine the LMU-structure of a facet inducing inequality
x(V1) + 2x(V2) ≤ 2 for PS∗ with l = l1 < l2 ≤ l∗, u = u1 > u3 ≥ u∗, andl j > l2
or u j < u3 for all j ∈ {2, . . . ,n}. Like in Case (1a), we use a different representation
of the setM to emphasize the inherent structure of the intervalsMj . It turns out that
a facet inducing inequalityx(V1) + 2x(V2) ≤ 2 for PS∗ with l = l1 < l2 ≤ l∗,
u = u1 > u3 ≥ u∗, andl j < l2 or u j < u3 for all j ∈ {2, . . . ,n} has the following
property, which restricts the class of inequalities determined by Properties 4, 5, and 8
and leads to a simpler form of the intervalsMj .

Property 9. If x(V1) + 2x(V2) ≤ 2 is valid, nondecomposable, and maximal with
l = l1 < l2 ≤ l∗, u = u1 > u3 ≥ u∗, andl j > l2 or u j < u3 for all j ∈ {2, . . . ,n},
thenl∗ ≤ u∗.

ut
Lemma 3 and Properties 4, 5, 8, and 9 can be combined to give the following theorem.

Theorem 7. A facet inducing inequalityx(V1) + 2x(V2) ≤ 2 for PS∗ with l = l1 <
l2 ≤ l∗, u = u1 > u3 ≥ u∗, and l j > l2 or u j < u3 for all j ∈ {2, . . . ,n} has the

556 J.M. van den Akker et al.

following LMU-structure:

L1 = [l − p1, l2], M1 = ∅, U1 = [u3− p1,u],
L2 = [l2− p2, l], M2 = [u3− p2, l∗] \ (L2 ∪U2), U2 = [u− p2,u∗],
L3 = [l∗ − p3, l], M3 = [u∗ − p3, l2] \ (L3 ∪U3), U3 = [u− p3,u3],
L j = [l∗ − pj , l], Mj = [u3− pj , l2] \ (L j ∪Uj), Uj = [u− pj ,u∗]

(j ∈ {4, . . . ,n}),

(7)

wherel∗ ≤ u∗.
ut

Hence, a facet inducing inequalityx(V1)+ 2x(V2) ≤ 2 for PS∗ with l = l1 < l2 ≤ l∗,
u = u1 > u3 ≥ u∗, andl j > l2 or u j < u3 for all j ∈ {2, . . . ,n} can be represented by
the following diagram:

l2u3− pj

l2u∗ − p3

l∗u3− p2

u− pj u∗

u− p3 u3

u∗

u3− p1

ll∗ − pj

l∗ − p3

j ∈ {4, . . . ,n}

3

UML

≤ 2.

u− p2

u

l

ll2 − p2

l2l − p1

2

1

The following theorem shows that the given necessary conditions are also sufficient.

Theorem 8. A valid inequalityx(V1)+ 2x(V2) ≤ 2 with l = l1 < l2 ≤ l∗, u = u1 >

u3 ≥ u∗, andl j > l2 or u j < u3 for all j ∈ {2, . . . ,n} and LMU-structure(7) that is
nondecomposable and maximal is facet inducing forPS∗ .

Proof. The proof of this theorem is similar to that of Theorem 5.
ut

In the same way as in Case (1a), the proof can be extended to prove that the sufficient
conditions given by the previous theorem are also sufficient for the original polytope if
the horizonT is large enough.

Theorem 9. If T ≥∑n
j=1 pj+5pmax, then a valid inequalityx(V1)+2x(V2) ≤ 2 with

l = l1 < l2 ≤ l∗, u = u1 > u3 ≥ u∗, andl j > l2 or u j < u3 for all j ∈ {2, . . . ,n} and
LMU-structure(7) that is nondecomposable and maximal is facet inducing forPS.

ut
An inequality with LMU-structure (7) is determined by three jobs and six time periods
l, l2, l∗,u∗,u3 andu. Like in Case (1a), we have derived the exact conditions on the
nine defining parameters to ensure that it is nondecomposable and maximal. Again, we
refer to Van den Akker [1] for a complete description. The number of facet inducing
inequalities forPS∗ with structure (7) is bounded byn3T4 p2

max.

A polyhedral approach to single-machine scheduling problems 557

Remark. It may seem more natural to define Case (1a) asl = l1 < l2 < l∗ and
u = u1 > u2 > u∗, and Case (1b) asl = l1 < l2 ≤ l∗ andu = u1 > u3 ≥ u∗. Since
under this definition Property 9 does not hold, we prefer the given one.

4.3. Case (2)

This case differs from the other ones, as the conditions onl j andu j and Properties 4 and 5
do not completely determine the setsL andU. It turns out to be beneficial to introduce
two parametersl ′ = min{l j | j ∈ {3, . . . ,n}} andu′ = max{u j | j ∈ {3, . . . ,n}},
which slightly differ froml∗ andu∗ defined in Property 5, because it is possible that
l2 > l ′ or u1 < u′. This leads to the following property, which is similar to Property 5.

Property 10.Let x(V1) + 2x(V2) ≤ 2 be a valid, nondecomposable, and maximal
inequality withl = l1 andu = u2.
(a) For all j ∈ {3, . . . ,n} with L j 6= ∅, we havel j = l ′ and for all j ∈ {3, . . . ,n} with
L j = ∅, we havel ′ − pj ≥ l , i.e., L j = [l ′ − pj , l] for all j ∈ {3, . . . ,n}.
(b) For all j ∈ {3, . . . ,n} with Uj 6= ∅, we haveu j = u′ and for all j ∈ {3, . . . ,n}
with Uj = ∅, we haveu′ ≤ u− pj , i.e.,Uj = [u− pj ,u′] for all j ∈ {3, . . . ,n}.

ut
We next investigate the structure of the setM.

Property 11. If x(V1) + 2x(V2) ≤ 2 is a valid, nondecomposable, and maximal in-
equality withl = l1 andu = u2, then

M1 = [u′ − p1, l ′] ∩ [min{l2, l ′},u− p1] ∩ [l − p1,u1],
M2 = [u′ − p2, l ′] ∩ [l,max{u1,u′} − p2] ∩ [l2− p2,u],
Mj = ∅ j ∈ {3, . . . ,n}

Proof. Like in Case (1b), the proof of this property is analogous to that of Property 7.
ut

Lemma 3 and Properties 4, 10, and 11 completely determine the LMU-structure of
a facet inducing inequalityx(V1) + 2x(V2) ≤ 2 for PS∗ with l = l1 andu = u2. We
can further show that[l ′ − p2, l] ⊆ L2 and[u − p1,u′] ⊆ U1. We combine all these
results to obtain the following theorem. Just like in the previous two cases, we have
reformulated the intervalsMj to emphasize their inherent structure.

Theorem 10. A facet inducing inequalityx(V1)+ 2x(V2) ≤ 2 for PS∗ with l = l1 and
u = u2 has the following LMU-structure:

L1 = [l − p1,min{l2, l ′}], M1 = [u′ − p1,min{l ′,u1}] \ (L1 ∪U1),

L2 = [l2− p2, l], M2 = [max{u′, l2} − p2, l ′] \ (L2 ∪U2),

L j = [l ′ − pj , l], Mj = ∅,
U1 = [u− p1,u1],
U2 = [max{u1,u′} − p2,u],
Uj = [u− pj ,u′] (j ∈ {3, . . . ,n}),

(8)

558 J.M. van den Akker et al.

where[l ′ − p2, l] ⊆ L2 and[u− p1,u′] ⊆ U1.
ut

Hence, a facet inducing inequalityx(V1)+ 2x(V2) ≤ 2 for PS∗ with l = l1 andu = u2
can be represented by the following diagram:

min{l′,u1}

max{u′, l2} − p2 max{u1,u
′} − p2

min{l2, l′} u1u− p1

l′

UML

≤ 2.

u′ − p1

u− pj u′

u

ll′ − pj

ll2 − p2

l − p1

j ∈ {3, . . . ,n}
2

1

The following theorem shows that the given necessary conditions are also sufficient.

Theorem 11. A valid inequalityx(V1) + 2x(V2) ≤ 2 with l = l1 and u = u2 and
LMU-structure(8) that is nondecomposable and maximal is facet inducing forPS∗ .

Proof. The proof proceeds along the same lines as that of Theorem 5.
ut

In the same way as in Case (1a), we can extend the proof of the above theorem to
show that if the horizonT is large enough, then the given sufficient conditions are also
sufficient for the original polytope.

Theorem 12. If T ≥ ∑n
j=1 pj + 5pmax then, a valid inequalityx(V1)+ 2x(V2) ≤ 2

with l = l1 andu = u2 and LMU-structure(8) that is nondecomposable and maximal
is facet inducing forPS.

ut
An inequality with structure (8) is determined by two jobs and six time periods. Like
in Case (1a), we have derived exact conditions on the parameters that ensure that the
inequality is nondecomposable and maximal. The number of facet inducing inequalities
with structure (8) is bounded by 2n2T4 p2

max.

5. Separation

Since we want to use the classes of facet-inducing inequalities derived above in
a branch-and-cut algorithm, we must solve the separation problem associated with
each class, i.e., we must be able to identify an inequality in the class that cuts
of the current fractional LP solution or to prove that such an inequality does not
exist.

Clearly, a branch-and-cut algorithm for a single-machine scheduling problem
optimizes some objective function over the convex hull of complete schedules, i.e.,
PS. However, since we characterized facet inducing inequalities forPS∗ , i.e., the
convex hull of partial schedules, our separation algorithms will identify violated

A polyhedral approach to single-machine scheduling problems 559

inequalities for the latter polytope. Fortunately, facet inducing inequalities forPS∗
always define valid inequalities forPS and, as we have shown, in many cases de-
fine facet inducing inequalities forPS.

Our separation algorithms are based on clever enumeration. We analyze the
characteristics of violated facet-inducing inequalities and use these characteristics
to enumerate only a small fraction of all facet inducing inequalities while guaran-
teeing that a violated facet inducing inequality will be found if one exists.

We illustrate the underlying idea for the class of facet-inducing inequalities with
right-hand side 1. Recall that each facet inducing inequalityx(V) ≤ 1 is completely
determined by a jobk, which without loss of generality is called job 1, and values
l and u. Let x̃ be the current LP solution and letF be a subset of variables with
x̃ jt > 0 for all (j, t) ∈ F and x̃(F) > 1. Our separation algorithm restricts the
search for a violated inequality to the subset of facet inducing inequalities covering
F for which u − l is minimal. A facet inducing inequalityx(V) ≤ 1 covering
F is minimal with respect tou − l when there does not exist a facet inducing
inequality x(V ′) ≤ 1 with F ⊆ V ′ and u′ − l ′ < u − l , i.e., u − l cannot be
decreased without removing nonzero variables from the inequality. We will show
that a facet inducing inequalityx(V) ≤ 1 covering F with minimal u − l value
has x̃1,l−p1+1 > 0 and x̃1u > 0. We refer to this condition as thepositive subset
condition. As a consequence of the positive subset condition, all potential violated
minimal facet inducing inequalitiesx(V) ≤ 1 can be enumerated in time polynomial
in the number of fractional variables in the current LP solution, whereas the total
number of facet inducing inequalities with right-hand side 1 is only polynomial in
the planning horizonT.

Example 3.Consider a three-job problem withp1 = 4, p2 = 4, andp3 = 3. The LP
solutionx15 = x19 = x27 = x2,11 = 1

2, x31 = 1 violates the three inequalities with
structure (5) given by the diagrams below

1
2
3

4 5 6 7 8 9
1
2

1
2

1
2 ≤ 1; 1

2
3

5 6 7 8 9
1
2

1
2

1
2 ≤ 1; 1

2
3

5 6 7 8 9 10
1
2

1
2

1
2 ≤ 1;

Our separation algorithm will only examine the facet inducing inequality corresponding
to the middle diagram.

The development of separation algorithms for facet inducing inequalities with right-
hand side 2 is also based on the identification of positive subset conditions.

In the sequel,̃x denotes the current LP-solution. As we start with the LP-relaxation
of the original formulation,̃x satisfies (1) and (2).

5.1. A separation algorithm for facet inducing inequalities with right-hand side 1

To identify violated facet inducing inequalities with right-hand side 1, we have to identify
violated inequalities with structure (5).

560 J.M. van den Akker et al.

The following lemma shows that the separation can be restricted to the identification
of inequalities satisfying a positive subset condition which states thatx̃1,l−p1+1 > 0
andx̃1u > 0. By this conditionu− l is minimal in the sense that it cannot be decreased
without removing nonzero variables from the inequality.

Lemma 4. If x̃ violates a facet inducing inequalityx(V) ≤ 1, then we may assume that
x̃1,l−p1+1 > 0 and x̃1u > 0.

Proof. Let x̃ violate a facet inducing inequalityx(V) ≤ 1. Sincex̃ satisfies (4), we
must havel < u. Supposex̃1,l−p1+1 = 0. If we increasel by 1, then we obtain
another inequality with structure (5). Since in the original inequalityx̃1,l−p1+1 = 0,
x̃ also violates the new inequality. We may hence assume that for a violated inequality
x̃1,l−p1+1 > 0. In the same way we can show ifx̃1u = 0, then we obtain another violated
inequality by decreasingu. We may hence also assume thatx̃1u > 0.

ut
Since the current LP-solutioñx satisfies the equations (3), a violated inequalityx(V) ≤ 1
must haveVj 6= ∅ for somej ∈ {2, . . . ,n} and henceu−max{pj | j ∈ {2, . . . ,n}} < l .

A facet inducing inequalityx(V) ≤ 1 is determined by a jobj and time periods
l andu. Recall that the number of such inequalities is of ordernTpmax, where pmax
denotes the maximal processing time. However, the number of inequalities satisfying
the positive subset condition is bounded by the square of the number of fractional
variables in the current LP-solution and hence the number of inequalities that have to be
checked by the separation algorithm is bounded by this number. The resulting separation
algorithm is as follows.

SepRHS1(x̃)

begin
for all jobs j ∈ {1, . . . ,n} do

for all l such that 0< x̃ j,l−pj+1 < 1 do
for all u such thatl < u < l +max{pi | i 6= j } and 0< x̃ ju < 1 do

if
∑

s∈[l−pj ,u] x̃ js +∑i 6= j
∑

s∈[u−pi ,l] x̃is > 1
then violated inequality identified;

end.

5.2. A separation algorithm for facet inducing inequalities with right-hand side 2

Facet inducing inequalities with right-hand side 2 are inequalities with structure (6),
(7), or (8). Because of the complexity of the necessary conditions for an inequality with
one of these structures to be nondecomposable and maximal, and hence facet inducing,
the separation algorithm is not restricted to facet inducing inequalities but considers
all nondecomposable inequalities with one of these structures. As we have done in the
previous subsection, we will study the characteristics of violated inequalities and use
these characteristics to develop clever enumeration schemes. For reasons of brevity,

A polyhedral approach to single-machine scheduling problems 561

we only consider facet inducing inequalities with structure (6) and omit proofs. The
interested reader is referred to Van den Akker [1] for additional information.

Lemma 5. If x̃ satisfies all valid inequalitiesx(W) ≤ 1 with W ⊆ V and violates an
inequalityx(V1)+ 2x(V2) ≤ 2, thenx̃ js < 1 for all (j, s) ∈ V.

The following lemmas show that the separation can again be restricted to the identi-
fication of inequalities satisfying a positive subset condition. In this case, the positive
subset condition implies thatu − l , u2 − l2, and(l∗ − l2)+ + (u2 − u∗)+ have to be
minimal, where the expressions(l∗ − l2)+ and(u2− u∗)+ stem from the conditions on
the parameters stating thatl2 ≤ l∗ andu2 ≥ u∗.

Lemma 6. If x̃ violates an inequalityx(V1)+ 2x(V2) ≤ 2 with structure(6), then we
may assume that̃x1,l−p1+1 > 0 and x̃1u > 0.

Lemma 7. If x̃ violates an inequalityx(V1)+ 2x(V2) ≤ 2 with structure(6), then we
may assume that̃x2,l2−p2+1 > 0, andx̃2u2 > 0.

Lemma 8. If x̃ violates an inequalityx(V1)+ 2x(V2) ≤ 2 with structure(6), then we
may assume that
(a) if l∗ > l2, then either̃x1l∗ > 0, M1 6= ∅, andl∗ is the maximum ofM1, or x̃2l∗ > 0,
M2 6= ∅, andl∗ is the maximum ofM2 ;
(b) if u∗ < u2, then either̃x1u∗−p1+1 > 0, M1 6= ∅, andu∗ − p1+ 1 is the minimum of
M1, or x̃2u∗−p2+1 > 0, M2 6= ∅, andu∗ − p2+ 1 is the minimum ofM2.

Note that for an inequalityx(V1)+ 2x(V2) ≤ 2 with structure (6) and withl2 < l∗ we
have thatM1 6= ∅ andl∗ is the maximum ofM1 if and only if u∗ − p1 < l∗ ≤ u2− p1.
The other conditions in Lemma 8 can be rewritten in a similar way.

Based on the previous lemmas, we can derive a separation algorithm for inequalities
x(V1) + 2x(V2) ≤ 2 with structure (6). As for facet inducing inequalities with right-
hand side 1, the algorithm is based on enumeration of fractional variables in the current
solution. The algorithm is more involved because when we enumerate overl∗ andu∗
we have to distinguish the casesL2 = ∅, U2 = ∅, andL2 6= ∅ ∧U2 6= ∅.

6. A branch-and-cut algorithm for 1|r j |∑w j Cj

Based on the separation algorithms discussed in the previous section, we have developed
a branch-and-cut algorithm for the problem of minimizing the sum of the weighted
completion times on a single machine subject to release dates, i.e., 1|r j |∑w j Cj ,
which is known to be stronglyNP-hard (Lenstra, Rinnooy Kan, and Brucker [15]).
Developing a branch-and-cut algorithm involves a lot of engineering, especially when
dealing with large linear programs and large numbers of cuts. We elaborate on several
such engineering aspects and show that handling them properly is of crucial importance
to the overall performance of the algorithm.

The branch-and-cut algorithms have been implemented using MINTO, a Mixed
INTeger Optimizer (Nemhauser, Savelsbergh, and Sigismondi [17]). MINTO is a soft-
ware system that solves mixed-integer linear programs by a branch-and-boundalgorithm

562 J.M. van den Akker et al.

with linear relaxations. The user can enrich the basic algorithm by providing a variety
of specialized application functions that can customize MINTO to achieve maximum
efficiency for a problem class. Our computational experiments have been conducted
with MINTO 2.0/CPLEX 3.0 and have been run on an IBM RS/6000 model 590.

For our computational experiments, we have used sets of 20 randomly generated
instances with uniformly distributed parameters; the weights are in[1,10], the release
dates are in[0, 1

2

∑n
j=1 pj], and the processing times are in[1, pmax]. We consider sets

of 20-job instances withpmax equal to 5, 10, and 20, respectively, and sets of 30-job
instances withpmaxequal to 5 and 10, respectively. Recall that the number of constraints
(3) and (4) in the LP-relaxation isn+T and the number of variables is approximatelynT.
SinceT ≥∑n

j=1 pj , the size of the linear program increases when the number of jobs
increases as well as when the processing times increase. For the 30-job problems we
did not considerpmax= 20, since the memory requirements were too large.

6.1. Quality of the lower bounds

The goal of our first experiments was to evaluate the quality of the lower bounds
obtained by just solving the LP-relaxation, by solving the LP-relaxation in combination
with facet inducing inequalities with right-hand side 1, and by solving the LP-relaxation
in combination with facet inducing inequalities with right-hand side 1 and 2. The results
for one hundred instances, twenty in each of the sets, are summarized in Table 1. Let
ZL B denote a lower bound on the optimal valueZIP of the integer program. The gap
GL B corresponding to this lower bound is defined by

GL B = ZIP − ZL B

ZIP
× 100%.

Note that this gap is expressed as a percentage. In Table 1, we report for each set
of twenty instances corresponding to the same combination(n, pmax) the following
numbers:

• Gav
L P andGmax

L P : the average gap after solving the LP-relaxation and the maximum
of these gaps;
• Gav

1 andGmax
1 : the average gap after the addition of cuts with right-hand side 1 and

the maximum of these gaps;
• Gav

2 andGmax
2 : the average gap after the addition of cuts with right-hand side 1 and

2 and the maximum of these gaps.

These results show that the bounds obtained for these randomly generated instances
are excellent, even the initial linear relaxation is always within two percent of the
optimum, and that both classes of inequalities are effective in reducing the integrality
gap. Table 1 indicates that for most of the instances the addition of cuts with right-hand
side 1 closes at least half of the integrality gap and that addition of cuts with right-hand
side 2 reduces this gap even further.

The results in Table 1 do not reflect the fact that many instances were solved to
optimality just by adding cuts. Table 2 provides statistics on the frequency with which
optimal solutions were found. More precisely, we report:

A polyhedral approach to single-machine scheduling problems 563

Table 1.Quality of the bounds

LP 1 2
(n, pmax) Gav

L P Gmax
L P Gav

1 Gmax
1 Gav

2 Gmax
2

(20, 5) 0.379 1.346 0.157 1.228 0.058 0.572
(20,10) 0.64 1.959 0.233 1.337 0.054 0.407
(20,20) 0.507 1.657 0.126 0.966 0.047 0.385
(30, 5) 0.390 1.309 0.179 0.664 0.121 0.599
(30,10) 0.478 1.099 0.121 0.934 0.096 0.592

• nL P: the number of instances for which the optimal solution of the LP-relaxation
was integral;
• n1: the total number of instances that were solved to optimality after the addition of

cuts with right-hand side 1;
• n2: the total number of instances that were solved to optimality after the addition of

cuts with right-hand side 1 and 2.

Table 2.Number of instances that were solved to optimality

(n, pmax) nL P n1 n2
(20, 5) 5 12 18
(20,10) 0 6 16
(20,20) 4 13 17
(30, 5) 5 6 8
(30,10) 0 5 9

From Table 2 we conclude that the addition of cuts with right-hand side 2 significantly
increases the number of instances that are solved without branching.

6.2. Branching strategies

When the addition of cuts fails to solve the problem, we resort to branch-and-bound. In
this section, we discuss three branching strategies and we evaluate their performance.

In the first branching strategy, we branch on the fractional variablex jt closest to 0.5
(variable dichotomy). We setx jt = 1 on one branch, i.e., we force jobj to start in time
periodt, andxjt = 0 on the other branch, i.e., we prevent jobj from being started in
time periodt. In case of ties, we select the variable with the smallestt.

In the second branching strategy, we branch on the assignment constraint∑
1≤t≤T−pj+1 xjt = 1 for the job j that covers the largest time interval, i.e., the jobj for

which the difference between the first and last period with positivex jt is maximal (GUB
dichotomy). We set

∑
1≤t≤bt∗c xjt = 1 on one branch, i.e, we force jobj to start not

later thanbt∗c, and
∑
bt∗c<t≤T−pj+1 xjt = 1 on the other branch, i.e., we force jobj to

start not beforebt∗c+1, where we chooset∗ to be equal to
∑

1≤t≤T−pj+1(t−1)xjt , i.e.,
the mean start time suggested by the current LP solution. The second branching scheme
has the advantage that it divides the search space more evenly, which is a desirable
characteristic of a branching strategy.

564 J.M. van den Akker et al.

Computational experiments have revealed that these two branching strategies work
best with best-bound search of the tree, i.e., select the node with the smallest lower
bound.

In the third branching strategy (positional branching), we exploit the structure of
feasible schedules and fix jobs at certain positions in the schedule. At leveld in the
branch-and-bound tree the jobs in positions 1, . . . ,d − 1 have already been fixed and
some jobj is fixed at positiond. Fixing a job j in positiond is accomplished by fixing
its start time at the maximum of its release date and the completion time of the(d−1)th
job. Note that this can be done because the objective function is nondecreasing in the
completion times of the jobs. As a dominance rule, we do not allow a job to be fixed in
positiond if its release date is so large that it is possible to complete some other job that
has not yet been fixed before this release date. The subproblems at leveld are defined by
fixing at positiond the jobs that have not been fixed yet at an earlier position. The order
in which these subproblems are selected is determined on the basis of the mean start
times suggested by the current LP solution, i.e., the jobs are put in nondecreasing order
of
∑

1≤t≤T−pj+1(t − 1)xjt . This strategy works best in combination with depth-first
search of the tree.

In Tables 3a and 3b, we compare the performance of the different branching strategies
for the two sets of 30-job instances withpmax= 5 andpmax= 10. Since the majority of
the 20-job instances were solved to optimality in the root node, we do not report results
for these instances. In the experiments we used all cuts, i.e., cuts with right-hand side 1
as well as cuts with right-hand side 2. In the first three rows of the tables, we report on the
number of nodes in the branch-and-bound tree: the average number (nav), the maximum
number (nmax), and the standard deviation (σn). In the last three rows of the table, we
report on the computation time (in seconds). Several observations can be made based

Table 3a.Performance of the different branching strategies forn = 30 andpmax= 5

(30,5) positional GUB variable
branching dichotomy dichotomy

nav 52.30 6.60 489.90
nmax 255 29 7545
σn 66.02 7.63 1641.01

tav 7.98 6.08 213.12
tmax 20.31 23.99 3307.94
σt 5.50 4.55 716.77

Table 3b.Performance of the different branching strategies forn = 30 andpmax= 10

(30,10) positional GUB variable
branching dichotomy dichotomy

nav 26.57 19.35 169.05
nmax 286 247 2661
σn 56.62 52.86 578.68

tav 23.27 53.15 477.38
tmax 384.63 691.51 7269.59
σt 60.10 146.96 1585.95

A polyhedral approach to single-machine scheduling problems 565

on these results. First, the branching strategy based on variable dichotomy is clearly
inferior to the other two. Second, GUB branching requires fewer nodes than positional
branching. However, evaluating fewer nodes does not translate into faster solution times.
There are two factors that, in our opinion, contribute to this phenomenon. Positional
branching fixes many more variables, which reduces the size of the linear programs
that have to be solved. In addition, in a depth-first search strategy consecutive linear
programs differ only slightly. Consequently, the basis of the last solved linear program
is a good starting basis for the current linear program. In a best-bound search strategy
consecutive linear programs are likely to differ considerably. Consequently, the basis
of the last solved linear program does not provide a good starting basis for the current
linear program. Furthermore, since many cuts are generated during the solution process,
the basis associated with the last linear program solved in the parent node does not
provide a good starting basis either. A final observation is that there is a high variation
in complexity among the instances. With GUB branching all but one instance are solved
in fewer than 20 nodes and less than 60 seconds; the one difficult instance took a little
less than 250 nodes and 700 seconds. To verify whether this is typical behavior, we
generated 20 additional 30-job instances withpmax = 10 and tested GUB branching
and positional branching on the extended set of 40 instances. The results for this extended
set of instances can be found in Table 4 and show a similar pattern.

Table 4.Performance of the different branching strategies forn = 30 andpmax= 10

(30,10) positional GUB
branching dichotomy

nav 133.38 29.05
nmax 2108 573
σn 370.06 95.92

tav 83.49 59.98
tmax 638.79 691.51
σt 158.91 142.37

An advantage of the branching strategy based on GUB dichotomy is that it can

be applied for all objective functions
∑n

j=1
∑T−pj+1

t=1 cjt x jt , whereas the positional
branching strategy is based on the assumption that it is most favorable to start a job as
early as possible, i.e., it can only be applied if the objective function is nondecreasing
in the completion times of the jobs.

On the other hand, with the positional branching strategy the total number of nodes
in the branch-and-bound tree only depends on the number of jobs, whereas for the
branching strategy based on GUB dichotomy the number of nodes depends on the
number of jobs as well as on the planning horizon, i.e., on the size of the processing
times. This suggests that positional branching may perform better for instances with
large processing times.

6.3. Cut generation schemes

In this subsection, we study the influence of different cut generation schemes on the
performance of the branch-and-cut algorithm. Cut generation schemes try to find the

566 J.M. van den Akker et al.

proper balance between the expected increase in performance due to stronger bounds
that result from the addition of cuts and the expected decrease in performance due to
the effort required to identify violated cuts and to solve larger and more difficult linear
programs. Cut generation schemes specify, among other things, when we try to identify
violated inequalities, which of the identified violated inequalities are added, and when
inactive inequalities are deleted.

The experiments of the previous section showed that 30-job instances withpmax= 5
are relatively easy, in the sense that their solution requires very few nodes, and that
a large sample of 30-job instances withpmax = 10 is necessary to be able to draw
reliable conclusions. Therefore, the remaining experiments have been conducted on the
extended set of 40 randomly generated 30-job instances withpmax= 10.

We have investigated various possible cut generation schemes that specify choices
related to which classes of cuts to use and when to use them.

R12T12: At all nodes, add cuts with right-hand side 1 and 2.
R12T1: At the root node, add cuts with right-hand side 1 and 2; in all other nodes, add

cuts with right-hand side 1.
R12: At the root node, add cuts with right-hand side 1 and 2; in all other nodes, do not

add cuts.
R1T1: At all nodes, add cuts with right-hand side 1.

The performance of these variants is shown in Table 5a and 5b. We report the
performance of these variants with positional branching as well as with GUB branching.
Again, nav andnmax denote the average and maximum number of nodes, andtav and
tmax denote the average and maximum computation time (in seconds).

Table 5a.Cut generation schemes with positional branching

R12T12 R12T1 R12 R1T1
nav 133.38 220.90 377.07 422.07
nmax 2108 3677 7504 4764

tav 83.49 71.25 75.62 64.01
tmax 638.79 528.46 816.73 595.59

Table 5b.Cut generation schemes with GUB branching

R12T12 R12T1 R12 R1T1
nav 29.05 67.42 107.70 89.97
nmax 573 1981 3443 1595

tav 59.98 69.54 66.09 59.81
tmax 691.51 889.87 991.02 846.20

Several observations can be made based on these results. First, it is advantageous to
generate cuts throughout the search tree. Second, the cut generation schemeR12T12,
i.e., generating cuts with right-hand side 1 and 2, clearly results in the fewest number of
evaluated nodes. However, evaluating fewer nodes does not translate into faster solution

A polyhedral approach to single-machine scheduling problems 567

times. For positional branching, cut generation schemeR1T1, i.e., generating only cuts
with right-hand side 1, is much faster thanR12T12even though it generates considerably
more nodes, and for GUB branching, cut generation schemeR1T1is about as fast as
R12T12although it generates more nodes. This is probably due to the fact that the
linear programs that result if cuts with right-hand side 2 are added are more difficult
because they are denser than the ones resulting from the addition of cuts with right-hand
side 1. So far the two best variants of the algorithm with respect to computation time
are positional branching with cut generation schemeR1T1and GUB branching with
cut generation schemeR12T12. Note that GUB-branching with cut generation scheme
R1T1has smallest average computation timetav. However, because of its relatively large
maximum computation timetmax, it is not considered to be among the best variants.
Moreover, we prefer cut generation schemeR12T12over R1T1 for GUB branching
because it seems to be more robust in the sense that the maximum number of evaluated
nodes and the maximum computation time over all instances are the smallest. For the
remainder, we will restrict our computational experiments to these two variants.

The cut generation schemes discussed above specify choices related to which classes
of cuts to use and when to use them. We have also considered cut generation schemes
that try to improve the performance by limiting the number of violated inequalities
that will be added to the active linear program. In fact, such a cut generation scheme
has been active during all previous experiments. When MINTO processes a node, it
monitors the changes in the value of the LP solutions from iteration to iteration. If it
detects that the total change in the value of the LP solution in the last three iterations
is less than 0.5 percent, i.e., 0.005 times the value of the current LP solution, it forces
MINTO to branch. This feature is incorporated in MINTO to handle the ‘tailing-off’
effect exhibited by many cutting plane algorithms.

The experiments carried out to evaluate the quality of the bounds, discussed in Sec-
tion 6.1, revealed that it is impossible to predict the change in objective function value
after the addition of violated inequalities. It frequently happened that the objective func-
tion hardly changed for several iterations before improving significantly. Consequently,
it is very likely that MINTO, with default settings, would sometimes force branching too
soon. To ensure the best possible bound at the root node, we have chosen to deactivate
forced branching in the root node.

To evaluate the effect of different forcing strategies on the performance of the
algorithms, we have investigated the following three strategies: no forced branching, no
forced branching at the root node but forced branching at all other nodes, and forced
branching throughout the tree. The results are shown in Tables 6a and 6b. We conclude
the following from these results. First, the tailing-off effect is much stronger when cuts
with right-hand side 2 are used. Second, the strategy that we adopted, i.e., no forcing at
the root node, works well.

There are various other ways to limit the number of violated inequalities that will
be added to the active linear program: limit the number of cuts that are added in a single
round of cut generation, limit the number of rounds of cut generation per node evaluation,
and limit the number of nodes at which cut generation takes place (this is sometimes
referred to as the cut frequency). All these did not seem to have a significant positive
effect on the performance of the basic algorithm. In most cases, the performance of
these variants was actually worse.

568 J.M. van den Akker et al.

Table 6a.Forcing strategies with GUB branching

no forcing no root forcing forcing
nav 27.92 29.05 56.12
nmax 419 573 1419
tav 130.33 59.98 56.45
tmax 2396.48 691.51 804.85

Table 6b.Forcing strategies with positional branching

no forcing no root forcing forcing
nav 432.70 422.07 409.80
nmax 5036 4746 4746
tav 65.55 64.01 62.32
tmax 602.62 595.59 608.17

Finally, we have experimented with cut generation schemes in which inequalities
are deleted when they have been inactive for a number of consecutive iterations, i.e.,
the dual variable associated with the inequality has been 0 for a number of consecutive
iterations. Table 7 shows the effect of different thresholds for deletion (10, 50, 1000) for
GUB branching. Note that setting the threshold to 1000 for this application is equivalent
to no cut deletion. We see that cut deletion does influence the computation time and

Table 7.Effect of different thresholds for cut deletion

10 50 1000
nav 28.82 29.05 30.42
nmax 573 573 595
tav 75.98 59.98 80.06
tmax 901.98 691.51 1320.93

that a threshold of 50 seems appropriate for our application. We have not performed the
same experiment for positional branching, but it is very likely that our conclusions are
also applicable to positional branching.

6.4. Primal heuristics

In this subsection, we describe the primal heuristics that have been incorporated in
the branch-and-cut algorithm. The availability of good feasible solutions is important
for various reasons. In case of depth-first search (which we do in case of positional
branching) it may significantly reduce the number of nodes that have to be evaluated,
since any node with a lower bound greater than or equal to the value of the best known
solution can be skipped from further consideration. In case of best-bound search (which
we do in case of GUB branching) it will not reduce the number of evaluated nodes
so much, because any unevaluated node with a lower bound that exceeds the optimum
value will not be evaluated, since the optimum will be found before this node is selected

A polyhedral approach to single-machine scheduling problems 569

for evaluation. However, the availability of a good feasible solution will reduce the set
of unevaluated nodes that has to be kept, which is important for large integer programs
because it reduces the chance of running out of memory. Finally, good feasible solutions
are essential for effective reduced cost fixing.

We have implemented four primal heuristics. The first heuristic is derived from
Smith’s rule (Smith [24]). Smith’s rule solves 1||∑w j Cj , i.e., the case without release
dates. Smith’s rule states that 1||∑w j Cj is solved by scheduling the jobs in order
of nondecreasingpj/w j ratio. Our first heuristic schedules the jobs according to the
following rule: at each decision point schedule the available job with the smallestpj/w j
ratio, where the first decision point is the smallest release date, and thekth decision point
is either the completion time of the job scheduled in the(k− 1)th position or, in case
there are no jobs available at that time, the smallest release date among the unscheduled
jobs.

The other three heuristics schedule the jobs according to some ordering based on
the values of the current linear programming solution. We have used the following three
orderings:

• schedule jobs in order of nondecreasing mean start time
∑T−pj+1

t=1 (t − 1)xjt ;
• schedule jobs in order of nondecreasing maximum start timeargmaxt{xjt };
• schedule jobs in order of nondecreasing first start timeargmint{xjt > 0}.

In most situations, the ordering based on the mean start time provides the best feasible
solution. However, since these heuristics take very little time we always apply all of
them. Furthermore, note that these heuristics are applied every time that a linear program
has been solved, whereas the first heuristic is applied only once.

Let zUB denote an upper bound on the optimal valuezIP of the integer program.
The gapGUB corresponding to this upper bound is defined by

GUB = zUB − zIP

zIP
× 100%.

In Table 8, we report for those 30-job instances that were not solved to optimality by
the initial LP-relaxation the following numbers:

• Gav
ratio andGmax

ratio: the average gap for the first heuristic and the maximum of these
gaps;
• Gav

init andGmax
init : the average gap for the best of the other three heuristics when applied

to the solution of the initial LP relaxation and the maximum of these gaps;
• Gav

root and Gmax
root: the average gap after the root node has been evaluated and the

maximum of these gaps.

Observe that the gap after the root node has been evaluated may differ for the two
variants we consider, since we do not generate cuts with right-hand side 2 with the
positional branching scheme.

The computational results show that the solutions to the LP-relaxations encountered
during the solution process provide good starting-points for obtaining primal solutions;
the heuristics based on these fractional solutions provide much better primal solutions
than the first heuristic. Recent results on approximation algorithms for machine schedul-
ing problems [9,10] provide theoretical evidence of the strength of LP-based heuristics
for single machine scheduling problems.

570 J.M. van den Akker et al.

Table 8.Performance of the primal heuristics

RHS1 RHS12
Gav

ratio Gmax
ratio Gav

init Gmax
init Gav

root Gmax
root Gav

root Gmax
root

9.03 17.52 1.47 6.94 0.44 2.22 0.19 1.23

7. Related research and conclusions

As mentioned in the introduction, Sousa and Wolsey [26] and Crama and Spieksma [5]
have also studied the time-indexed formulation of single machine scheduling problems.
In this section, we briefly indicate the relation between their research and our research.

Sousa and Wolsey present three classes of valid inequalities. The first class consists of
inequalities with right-hand side 1, and the second and third class consist of inequalities
with right-hand sidek ∈ {2, . . . ,n − 1}. Each class of inequalities is derived by
considering a set of jobs and a certain time period. The right-hand side of the resulting
inequality is equal to the cardinality of the considered set of jobs.

Sousa and Wolsey show that the inequalities in the first class, which is exactly the
class of inequalities with structure (5), are all facet inducing, ifT ≥∑n

j+1 pj + 3pmax.
In Section 3, we have complemented this result by showing thatall facet inducing
inequalities with right-hand side 1 for the extended polytopePS∗ are in this class, and
hence all facet inducing inequalities with right-hand side 1 for the original polytopePS

have a representation in this class.
With respect to the other two classes of valid inequalities studied by Sousa and

Wolsey we make the following observations. Any inequality in the second class that has
right-hand side 2 can be lifted to an inequality with LMU-structure (6) ifpk1 6= pk2, and
to an inequality with LMU-structure (8) ifpk1 = pk2, where{k1, k2} is the set of jobs
considered. Any inequality in the third class that has right-hand side 2 can be written as
the sum of two valid inequalities with right-hand side 1.

Sousa and Wolsey also developed a cutting plane algorithm based on the three
classes of inequalities they derived. We have only been able to compare our algorithm
with their algorithm on a set of 4 instances. Each one is solved at the root node by both
algorithms. Therefore, we cannot make any meaningful comparative statements.

Crama and Spieksma investigate the special case of equal processing times. They
completely characterize all facet inducing inequalities with right-hand side 1 and present
two other classes of facet inducing inequalities with right-hand sidek ∈ {2, . . . ,n−1}.

Our characterization of all facet inducing inequalities with right-hand side 1 was
found independently and generalizes their result. The inequalities in their second class
that have right-hand side 2 are special cases of the inequalities with LMU-structure (8),
and the inequalities in their third class that have right-hand side 2 are special cases of
the inequalities with LMU-structure (6). In addition to the facet inducing inequalities
reported in their paper, they have identified other classes of facet inducing inequalities
with right-hand side 2 [27].

Crama and Spieksma also developed a branch-and-cutalgorithm based on the classes
of facet-inducing inequalities they derived. They tested their algorithm on two classes
of problems. The first one has randomly generated objective coefficientscjt . The second

A polyhedral approach to single-machine scheduling problems 571

one has objective coefficientscjt = w j (t − r j) if r j ≤ t ≤ dj andcjt = M otherwise,
whereM is some large integer; these instances model minimization of the weighted sum
of the completion times subject to release dates and deadlines, where release dates and
deadlines may be violated at large cost. For both problem classes the performance of our
algorithm and their algorithm is comparable. However, their branch-and-cut algorithm
incorporates classes of cuts that have been derived specifically for problems with equal
processing times, whereas our algorithm does not.

For the problem 1|r j |∑w j Cj , several combinatorial branch-and-bound algorithms
have been developed, i.e., branch-and-boundalgorithms that are not based on linear pro-
gramming relaxations. An example is the algorithm of Belouadah, Posner, and Potts [4].
The lower bounds in their algorithm are based on job-splitting. The number of nodes
that have to be evaluated by their algorithm is larger than the number of nodes that have
to be evaluated by our algorithm, but their algorithm requires less computation time.
This indicates that our lower bounds are better, but that we need more time to compute
them. This is due to the fact that we have to solve large linear programs. However,
our branch-and-cut algorithm can easily be applied to many types of scheduling prob-
lems with various objective functions, whereas these combinatorial branch-and-bound
algorithms are typically designed for one specific problem type.

We conclude that the strength of the presented branch-and-cutalgorithm is that it can
be applied successfully to a wide range of single-machine scheduling problems, but that
its weakness is the fact that in its current form it is limited to instances with a relatively
small number of jobs and relatively small processing times, because otherwise the time
to solve the linear programs becomes prohibitive. In a sequel paper (Van den Akker,
Hurkens, and Savelsbergh [2]), we will investigate column generation as a way of
handling this weakness.

The new classes of facet inducing inequalities that we have derived and subsequently
incorporated in a branch-and-cutalgorithm are valuable, since they reduce the integrality
gap and have allowed us to solve larger instances, in terms of processing times, than
have been solved with other branch-and-cut codes.

Another important strength of the proposed approach is the quality of the feasible
solutions obtained at the root node. The embedded LP-based heuristics produce high
quality feasible solutions.

Acknowledgements.The authors wish to thank Cor Hurkens for his useful remarks and suggestions and for
his help with the computational experiments and an anonymous referee for his comments on an earlier draft
of the paper.

References

1. van den Akker, J.M. (1994): LP-based solution methods for single-machine scheduling problems. PhD
Thesis, University of Technology Eindhoven

2. van den Akker, J.M., Hurkens, C.A.J., Savelsbergh, M.W.P. (1995): Column generation for single-machine
scheduling problems. INFORMS J. Comput., to appear

3. Balas, E. (1985): On the facial structure of scheduling polyhedra. Math. Program. Study24, 179–218
4. Belouadah, H., Posner, M.E., Potts, C.N. (1992): Scheduling with release dates on a single machine to

minimize total weighted completion time. Discrete Appl. Math.36, 213–231
5. Crama, Y., Spieksma, F.C.R. (1996): Scheduling jobs of equal length: complexity and facets. Math.

Program.72, 207–227

572 J.M. van den Akker et al.: A polyhedral approach to single-machine scheduling problems

6. CPLEX Optimization, Inc. (1994): Using the CPLEX Callable Library, Version 3.0
7. Crowder, H., Johnson, E.L., Padberg, M.W. (1983): Solving large-scale zero-one linear programming

problems. Oper. Res.31, 803–834
8. Dyer, M.E., Wolsey, L.A. (1990): Formulating the single machine sequencing problem with release dates

as a mixed integer program. Discrete Appl. Math.26, 255–270
9. Goemans, M.X., Queyranne, M., Schulz, A.S., Skutella, M., Wang, Y. (1999): Single Machine Scheduling

with Release Dates. Manuscript
10. Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J. (1997): Scheduling to minimize average completion

time: Off-line and on-line approximation algorithms. Math. Oper. Res.22, 513–544
11. Hammer, P.L., Johnson, E.L., Peled, U.N. (1975): Facets of regular 0-1 polytopes. Math. Program.8,

179–206
12. Hoffman, K.L., Padberg, M.W. (1985): LP-based combinatorial problem solving. Ann. Oper. Res.4,

145–194
13. Lasserre, J.B., Queyranne, M. (1992): Generic scheduling polyhedra and a new mixed-integer formulation

for single-machine scheduling. In: Balas, E., Cornuéjols, G., Kannan, R., eds., Integer Programming and
Combinatorial Optimization, Proceedings of the IPCO-Conference held at Carnegie Mellon University.
University Printing and Publications, Carnegie Mellon University, Pittsburgh

14. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (1993): Sequencing and scheduling:
Algorithms and complexity. In: Graves, S.C., et al., eds., Handbooks in Operations Research and Man-
agement Science, Vol. 4., pp. 445–522 North-Holland, Amsterdam

15. Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P. (1977): Complexity of machine scheduling problems.
Ann. Discrete Math.1, 343–362

16. Nemhauser, G.L., Savelsbergh, M.W.P. (1992): A cutting plane algorithm for the single machine schedul-
ing problem with release times. In: Akgül, M., Hamacher, H., Tufecki, S., eds., Combinatorial Optimiza-
tion: New Frontiers in the Theory and Practice, NATO ASI Series F: Computer and Systems Sciences
82, pp. 63–84. Springer, Berlin

17. Nemhauser, G.L., Savelsbergh, M.W.P., Sigismondi, G.C. (1994): MINTO, a Mixed INTeger Optimizer.
Oper. Res. Lett.15, 47–58

18. Nemhauser , G.L., Wolsey, L.A. (1988): Integer and Combinatorial Optimization. Wiley, New York
19. Padberg, M.W., Rinaldi, G. (1991): A branch-and-cut algorithm for the resolution of large-scale symmetric

traveling salesman problems. SIAM Rev.33, 60–100
20. Queyranne, M. (1993): Structure of a simple scheduling polyhedron. Math. Program.58, 89–110
21. Queyranne, M., Schulz, A.S. (1994): Polyhedral Approaches to Machine Scheduling, Preprint 408/1994

Department of Mathematics, Technical University of Berlin. Revised in October 1996
22. Queyranne, M., Wang, Y. (1991): Single machine scheduling polyhedra with precedence constraints.

Math. Oper. Res.16, 1–20
23. van Roy, T.J., Wolsey, L.A. (1987): Solving Mixed 0-1 Programs by Automatic Reformulation. Oper.

Res.35, 45–57
24. Smith, W.E. (1956): Various optimizers for single-stage production. Nav. Res. Logist. Quarterly3, 59–66
25. de Sousa, J.P. (1989): Time-indexed formulations of non-preemptive single-machine scheduling prob-

lems. PhD thesis, Catholic University of Louvain-la-Neuve
26. de Sousa, J.P., Wolsey, L.A. (1992): A time-indexed formulation of non-preemptive single-machine

scheduling problems. Math. Program.54, 353–367
27. Spieksma, F.C.R. (1991): Personal communication
28. Wolsey, L.A. (1989): Formulating single machine scheduling problems with precedence constraints.

CORE discussion paper 8924, Catholic University of Louvain-la-Neuve

