5,155 research outputs found

    Nonlinearity and Noise Effects in Multi-level Signal Millimeter-Wave over Fiber Transmission using Single- and Dual-Wavelength Modulation

    Get PDF
    We transmit multilevel quadrature amplitude modulation (QAM) data-IEEE 802.16 schemes-at 20 MSps and an orthogonal frequency-division multiplexing (OFDM) 802.11 g signal (54 Mbps) with a 25 GHz millimeter-wave over fiber system, which employs a dual wavelength source, over 20 km of single mode fiber. Downlink data transmission is successfully demonstrated over both optical and wireless (up to 12 m) paths with good error vector magnitude. An analysis of two different schemes, in which data is applied to one (single) and both (dual) of the wavelengths of a dual wavelength source, is carried out. The system performance is analyzed through simulation and a good match with experimental results is obtained. The analysis investigates the impact of Mach-Zehnder modulator (MZM) and RF amplifier nonlinearity and various noise sources, such as laser relative intensity noise, amplified spontaneous emission, thermal, and shot noise. A comparison of single carrier QAM IEEE 802.16 and OFDM in terms of their sensitivity to the distortions from MZM and RF amplifier nonlinearity is also presented

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    Ring-modulator-based RoF system with local SSB modulation and remote carrier reuse

    Get PDF
    A full-duplex radio-over-fibre (RoF) system based on an integrated silicon ring modulator is proposed and demonstrated. For the downstream link, a coherent dual-wavelength laser source is coupled to a silicon ring modulator in the central office (CO). Since only one of the optical carriers in the dual-wavelength laser source is aligned to the resonance of the ring modulator, a single sideband (SSB) modulated optical downstream signal is obtained, which is able to combat the power fading introduced by the fibre dispersion. Besides, for the upstream link, the unmodulated optical carrier in the SSB-modulated optical downstream signal is reused by using an optical filter in the remote radio head. After being modulated by the upstream data, the optical upstream signal is transmitted back to the CO. A proof-of-concept experiment is carried out. Error vector magnitudes of 21-GHz downstream and 10-GHz upstream signals are measured, which confirms that the proposed architecture is a promising lowcost solution for future high-speed wireless communication systems

    An asymmetric high serial rate TDM-PON with single carrier 25 Gb/s upstream and 50 Gb/s downstream

    Get PDF
    We report a 2:1 rate asymmetric high serial rate time division multiplexing passive optical network (TDM-PON) with single carrier 25 Gb/s upstream and 50 Gb/s downstream. In the upstream, we present a first 25 Gb/s three-level modulated burst-mode receiver employing a 1/4-rate linear burst-mode avalanch photodiode transimpedance amplifier and a custom decoder IC. We successfully demonstrated burst-mode sensitivity of -20.4 dBm with 18 dB dynamic burst-to-burst for 25 Gb/s upstream links. In another direction, a downstream in upper O-band is proposed and demonstrated with three-level duo-binary modulation at 50 Gb/s in real time. The upstream and downstream transmission experiments show that the proposed asymmetric 50 G/25 G high serial rate TDM-PON can support >= 32 users while covering more than 20 km reach

    Mode division multiplexing in radio-over-free-space-optical system incorporating orthogonal frequency division multiplexing and photonic crystal fiber equalization

    Get PDF
    Radio over free space optics (Ro-FSO) is a revolutionary technology for seamlessly integrating radio and optical networks without expensive optical fiber cabling. RoFSO technology plays a crucial role in supporting broadband connectivity in rural and remote areas where current broadband infrastructure is not feasible due to geographical and economic inconvenience. Although the capacity of Ro-FSO can be increased by mode division multiplexing (MDM), the transmission distance and capacity is still limited by multipath fading and mode coupling losses due to atmospheric turbulences such as light fog, thin fog and heavy fog. The main intention of this thesis is to design MDM system for Ro-FSO for long and short haul communication. Orthogonal frequency division multiplexing (OFDM) is proposed for long haul communication to mitigate multipath fading and Photonic Crystal Fiber (PCF) is proposed for short haul communication to reduce mode coupling losses. The reported results of the proposed scheme for long haul communication show a significant 47% power improvement in deep fades from multipath propagation with the use of OFDM in MDM-Ro-FSO systems as compared to without OFDM. The results of the proposed scheme for short haul communication show 90.6% improvement in power in the dominant mode with the use of PCF in MDM-Ro-FSO as compared to without PCF. The reported results in the thesis show significant improvement in Ro-FSO systems as compared to previous systems in terms of capacity and transmission distance under clear weather conditions as well as under varying levels of fog. The contributions of this thesis are expected to provide seamless broadband services in remote areas
    • …
    corecore