10,289 research outputs found

    Low power low voltage quadrature RC oscillators for modern RF receivers

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresThis thesis proposes a study of three different RC oscillators, two relaxation and a ring oscillator. All the circuits are implemented using UMC 130 nm CMOS technology with a supply voltage of 1.2 V. We present a wideband MOS current/voltage controlled quadrature oscillator constituted by two multivibrators. Two different forms of coupling named, soft (traditional)and hard (proposed) are differentiated and investigated. It is found that hard coupling reduces the quadrature error and results in a low phase-noise (about 2 dB improvement) with respect to soft coupling. The behaviour of the singular and coupled multivibrators is investigated, when an external synchronizing harmonic is applied. We introduce a new RC relaxation oscillator with pulse self biasing, to reduce power consumption, and with harmonic ltering and resistor feedback, to reduce phase-noise. The designed circuit has a very low phase-noise, -132.6 dBc/Hz @ 10 MHz offset, and the power consumption is only 1 mW, which leads to a gure of merit (FOM) of -159.1 dBc/Hz. The nal circuit is a two integrator fully implemented in CMOS technology, with low power consumption. The respective layout is made and occupies a total area of5.856x10-3 mm2, post-layout simulation is also done

    Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state

    Full text link
    Cooling a mesoscopic mechanical oscillator to its quantum ground state is elementary for the preparation and control of low entropy quantum states of large scale objects. Here, we pre-cool a 70-MHz micromechanical silica oscillator to an occupancy below 200 quanta by thermalizing it with a 600-mK cold 3He gas. Two-level system induced damping via structural defect states is shown to be strongly reduced, and simultaneously serves as novel thermometry method to independently quantify excess heating due to the cooling laser. We demonstrate that dynamical backaction sideband cooling can reduce the average occupancy to 9+-1 quanta, implying that the mechanical oscillator can be found (10+- 1)% of the time in its quantum ground state.Comment: 11 pages, 5 figure

    A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays

    Get PDF
    We report a micro-nuclear magnetic resonance (NMR) system compatible with multi-type biological/chemical lab-on-a-chip assays. Unified in a handheld scale (dimension: 14 x 6 x 11 cm³, weight: 1.4 kg), the system is capable to detect<100 pM of Enterococcus faecalis derived DNA from a 2.5 μL sample. The key components are a portable magnet (0.46 T, 1.25 kg) for nucleus magnetization, a system PCB for I/O interface, an FPGA for system control, a current driver for trimming the magnetic (B) field, and a silicon chip fabricated in 0.18 μm CMOS. The latter, integrated with a current-mode vertical Hall sensor and a low-noise readout circuit, facilitates closed-loop B-field stabilization (2 mT → 0.15 mT), which otherwise fluctuates with temperature or sample displacement. Together with a dynamic-B-field transceiver with a planar coil for micro-NMR assay and thermal control, the system demonstrates: 1) selective biological target pinpointing; 2) protein state analysis; and 3) solvent-polymer dynamics, suitable for healthcare, food and colloidal applications, respectively. Compared to a commercial NMR-assay product (Bruker mq-20), this platform greatly reduces the sample consumption (120x), hardware volume (175x), and weight (96x)

    Directly diode-pumped, Kerr-lens mode-locked, few-cycle Cr:ZnSe oscillator

    Full text link
    Lasers based on Cr2+^{2+}-doped II-VI material, often known as the Ti:Sapphire of the mid-infrared, can directly provide few-cycle pulses with super-octave-spanning spectra, and serve as efficient drivers for generating broadband mid-infrared radiation. It is expected that the wider adoption of this technology benefits from more compact and cost-effective embodiments. Here, we report the first directly diode-pumped, Kerr-lens mode-locked Cr2+^{2+}-doped II-VI oscillator pumped by a single InP diode, providing average powers of over 500 mW and pulse durations of 45 fs - shorter than six optical cycles at 2.4 μ\mum. These correspond to a sixty-fold increase in peak power compared to the previous diode-pumped record, and are at similar levels with respect to more mature fiber-pumped oscillators. The diode-pumped femtosecond oscillator presented here constitutes a key step towards a more accessible alternative to synchrotron-like infrared radiation, and is expected to accelerate research in laser spectroscopy and ultrafast infrared optics.Comment: 8 pages, 5 figure

    Driven dynamics and rotary echo of a qubit tunably coupled to a harmonic oscillator

    Get PDF
    We have investigated the driven dynamics of a superconducting flux qubit that is tunably coupled to a microwave resonator. We find that the qubit experiences an oscillating field mediated by off-resonant driving of the resonator, leading to strong modifications of the qubit Rabi frequency. This opens an additional noise channel, and we find that low-frequency noise in the coupling parameter causes a reduction of the coherence time during driven evolution. The noise can be mitigated with the rotary-echo pulse sequence, which, for driven systems, is analogous to the Hahn-echo sequence

    DC-powered Fe3+:sapphire Maser and its Sensitivity to Ultraviolet Light

    Full text link
    The zero-field Fe3+:sapphire whispering-gallery-mode maser oscillator exhibits several alluring features: Its output is many orders of magnitude brighter than that of an active hydrogen maser and thus far less degraded by spontaneous-emission (Schawlow-Townes) and/or receiving-amplifier noise. Its oscillator loop is confined to a piece of mono-crystalline rock bolted into a metal can. Its quiet amplification combined with high resonator Q provide the ingredients for exceptionally low phase noise. We here concentrate on novelties addressing the fundamental conundrums and technical challenges that impede progress. (1) Roasting: The "mase-ability" of sapphire depends significantly on the chemical conditions under which it is grown and heat-treated. We provide some fresh details and nuances here. (2) Simplification: This paper obviates the need for a Ka-band synthesizer: it describes how a 31.3 GHz loop oscillator, operating on the preferred WG pump mode, incorporating Pound locking, was built from low-cost components. (3) "Dark Matter": A Siegman-level analysis of the experimental data determines the substitutional concentration of Fe3+ in HEMEX to be less than a part per billion prior to roasting and up to a few hundred ppb afterwards. Chemical assays, using different techniques (incl. glow discharge mass spectra spectroscopy and neutron activation analysis) consistently indicate, however, that HEMEX contains iron at concentrations of a few parts per million. Drawing from several forgotten-about/under-appreciated papers, this substantial discrepancy is addressed. (4) Excitons: Towards providing a new means of controlling the Fe3+:sapph. system, a cryogenic sapphire ring was illuminated, whilst masing, with UV light at wavelengths corresponding to known electronic and charge-transfer (thus valence-altering) transitions. Preliminary experiments are reported.Comment: pdf only; submitted to the proceedings of the 24th European Frequency and Time Forum, 13-15th April, 201

    Multimode laser cooling and ultra-high sensitivity force sensing with nanowires

    Full text link
    Photo-induced forces can be used to manipulate and cool the mechanical motion of oscillators. When the oscillator is used as a force sensor, such as in atomic force microscopy, active feedback is an enticing route to enhancing measurement performance. Here, we show broadband multimode cooling of −23-23 dB down to a temperature of 8±18 \pm 1~K in the stationary regime. Through the use of periodic quiescence feedback cooling, we show improved signal-to-noise ratios for the measurement of transient signals. We compare the performance of real feedback to numerical post-processing of data and show that both methods produce similar improvements to the signal-to-noise ratio of force measurements. We achieved a room temperature force measurement sensitivity of <2×10−16< 2\times10^{-16} N with integration time of less than 0.10.1 ms. The high precision and fast force microscopy results presented will potentially benefit applications in biosensing, molecular metrology, subsurface imaging and accelerometry.Comment: 16 pages and 3 figures for the main text, 14 pages and 5 figures for the supplementary informatio

    Vacuum Squeezing in Atomic Media via Self-Rotation

    Full text link
    When linearly polarized light propagates through a medium in which elliptically polarized light would undergo self-rotation, squeezed vacuum can appear in the orthogonal polarization. A simple relationship between self-rotation and the degree of vacuum squeezing is developed. Taking into account absorption, we find the optimum conditions for squeezing in any medium that can produce self-rotation. We then find analytic expressions for the amount of vacuum squeezing produced by an atomic vapor when light is near-resonant with a transition between various low-angular-momentum states. Finally, we consider a gas of multi-level Rb atoms, and analyze squeezing for light tuned near the D-lines under realistic conditions.Comment: 10 pages, 6 figures; Submitted to PR
    • …
    corecore