5 research outputs found

    Phase-locked loop using time-based integral control

    Get PDF
    This thesis explores the time-based techniques in the context of phase-locked loop (PLL) implementation. Many studies of the topic have been performed in the past. Functioning as an effective replacement of passive capacitors, time-based integrators using oscillators prove to be more area efficient and highly digital when implemented in integrated circuits. To better explore their potential area saving benefits, the time-based techniques are implemented to serve the integral control of a type-II PLL. A comprehensive analysis is performed to evaluate the pros and cons of the new techniques. In particular, the noise and power trade-off of having additional oscillators in the system is explained in detail. The analyses are veri ed with a prototype PLL fabricated in 65 nm CMOS technology. The prototype PLL occupies an active area of only 0.0021mm^2 and operates across a supply voltage range of 0.6V to 1.2V providing 0.4-to-2.6 GHz output frequencies. At 2.2 GHz output frequency, the PLL consumes 1.82mW at 1V supply voltage, and achieves 3.73 ps_rms integrated jitter. This translates to an FoM_J of -226.0 dB, which compares favorably with state-of-the-art designs while occupying the smallest reported active area. With the application of time-based techniques in clocking circuitry, the proposed time-based integral control PLL shall present a viable alternative to the conventional purely analog or digital PLL architectures

    Intermittent Excitation of High-Q Resonators for Low-Power High-Speed Clock Generation

    Get PDF
    There is growing demand for circuits that can provide ever greater performance from a minimal power budget. Example applications include wireless sensor nodes, mobile devices, and biomedical implants. High speed clock circuits are an integral part of such systems, playing roles such as providing digital processor clocks, or generating wireless carrier signals; this clock generation can often take a large part of a system’s power budget. Common techniques to reduce power consumption generally involve reducing the clock speed, and/or complex designs using a large circuit area. This paper proposes an alternative method of clock generation based on driving a high-Q resonator with a periodic chain of impulses. In this way, power consumption is reduced when compared to traditional resonator based designs; this power reduction comes at the cost of increased period jitter. A circuit was designed and laid out in 0.18µm CMOS, and was simulated in order to test the technique. Simulation results suggest that the circuit can achieve a FoM of 4.89GHz/mW, with a peak period jitter of 10.2ps at 2.015GHz, using a model resonator with a Q-factor of 126

    Self-Calibrated, Low-Jitter and Low-Reference-Spur Injection-Locked Clock Multipliers

    Get PDF
    Department of Electrical EngineeringThis dissertation focuses primarily on the design of calibrators for the injection-locked clock multiplier (ILCM). ILCMs have advantage to achieve an excellent jitter performance at low cost, in terms of area and power consumption. The wide loop bandwidth (BW) of the injection technique could reject the noise of voltage-controlled oscillator (VCO), making it thus suitable for the rejection of poor noise of a ring-VCO and a high frequency LC-VCO. However, it is difficult to use without calibrators because of its sensitiveness in process-voltage-temperature (PVT) variations. In Chapter 2, conventional frequency calibrators are introduced and discussed. This dissertation introduces two types of calibrators for low-power high-frequency LC-VCO-based ILFMs in Chapter 3 and Chapter 4 and high-performance ring-VCO-based ILCM in Chapter 5. First, Chapter 3 presents a low power and compact area LC-tank-based frequency multiplier. In the proposed architecture, the input signals have a pulsed waveform that involves many high-order harmonics. Using an LC-tank that amplifies only the target harmonic component, while suppressing others, the output signal at the target frequency can be obtained. Since the core current flows for a very short duration, due to the pulsed input signals, the average power consumption can be dramatically reduced. Effective removal of spurious tones due to the damping of the signal is achieved using a limiting amplifier. In this work, a prototype frequency tripler using the proposed architecture was designed in a 65 nm CMOS process. The power consumption was 950 ??W, and the active area was 0.08 mm2. At a 3.12 GHz frequency, the phase noise degradation with respect to the theoretical bound was less than 0.5 dB. Second, Chapter 4 presents an ultra-low-phase-noise ILFM for millimeter wave (mm-wave) fifth-generation (5G) transceivers. Using an ultra-low-power frequency-tracking loop (FTL), the proposed ILFM is able to correct the frequency drifts of the quadrature voltage-controlled oscillator of the ILFM in a real-time fashion. Since the FTL is monitoring the averages of phase deviations rather than detecting or sampling the instantaneous values, it requires only 600??W to continue to calibrate the ILFM that generates an mm-wave signal with an output frequency from 27 to 30 GHz. The proposed ILFM was fabricated in a 65-nm CMOS process. The 10-MHz phase noise of the 29.25-GHz output signal was ???129.7 dBc/Hz, and its variations across temperatures and supply voltages were less than 2 dB. The integrated phase noise from 1 kHz to 100 MHz and the rms jitter were???39.1 dBc and 86 fs, respectively. Third, Chapter 5 presents a low-jitter, low-reference-spur ring voltage-controlled oscillator (ring VCO)-based ILCM. Since the proposed triple-point frequency/phase/slope calibrator (TP-FPSC) can accurately remove the three root causes of the frequency errors of ILCMs (i.e., frequency drift, phase offset, and slope modulation), the ILCM of this work is able to achieve a low-level reference spur. In addition, the calibrating loop for the frequency drift of the TP-FPSC offers an additional suppression to the in-band phase noise of the output signal. This capability of the TP-FPSC and the naturally wide bandwidth of the injection-locking mechanism allows the ILCM to achieve a very low RMS jitter. The ILCM was fabricated in a 65-nm CMOS technology. The measured reference spur and RMS jitter were ???72 dBc and 140 fs, respectively, both of which are the best among the state-of-the-art ILCMs. The active silicon area was 0.055 mm2, and the power consumption was 11.0 mW.clos

    SPATIAL TRANSFORMATION PATTERN DUE TO COMMERCIAL ACTIVITY IN KAMPONG HOUSE

    Get PDF
    ABSTRACT Kampung houses are houses in kampung area of the city. Kampung House oftenly transformed into others use as urban dynamics. One of the transfomation is related to the commercial activities addition by the house owner. It make house with full private space become into mixused house with more public spaces or completely changed into full public commercial building. This study investigate the spatial transformation pattern of the kampung houses due to their commercial activities addition. Site observations, interviews and questionnaires were performed to study the spatial transformation. This study found that in kampung houses, the spatial transformation pattern was depend on type of commercial activities and owner perceptions, and there are several steps of the spatial transformation related the commercial activity addition. Keywords: spatial transformation pattern; commercial activity; owner perception, kampung house; adaptabilit

    High Energy Physics

    Get PDF
    This grant covered an umbrella program of research in high-­‐energy particle physics at Southern Methodist University during the period 2004-­‐2013. The experimental program evolved during that time. At its early stages it included research on the CLEO experiment at CESR (Coan, Stroynowski, Ye), D0 experiment at Tevatron (Kehoe), preparation for the BTEV experiment at Fermilab (Coan) and construction and commissioning of the Liquid Argon Calorimeter for the ATLAS experiment at LHC (Stroynowski, Ye). In the last three years the program concentrated on the ATLAS experiment at LHC (Kehoe, Sekula, Stroynowski, Ye), D0 experiment at Tevatron (Kehoe) and NOvA experiment at Fermilab (Coan). Professor Sekula had a short-­‐term independent grant for which he is submitting a separate report. The theoretical physics program included work on non-­‐perturbative methods in the light cone representation (McCartor (deceased)), lattice calculations (Hornbostel), and determination of parton distribution functions (Olness). A summary of the accomplishments emphasizing results from the past three years is provided separately for each of the tasks
    corecore