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Abstract 

This dissertation focuses primarily on the design of calibrators for the injection-locked clock 

multiplier (ILCM). ILCMs have advantage to achieve an excellent jitter performance at low cost, in 

terms of area and power consumption. The wide loop bandwidth (BW) of the injection technique could 

reject the noise of voltage-controlled oscillator (VCO), making it thus suitable for the rejection of poor 

noise of a ring-VCO and a high frequency LC-VCO. However, it is difficult to use without calibrators 

because of its sensitiveness in process-voltage-temperature (PVT) variations. In Chapter 2, 

conventional frequency calibrators are introduced and discussed. This dissertation introduces two types 

of calibrators for low-power high-frequency LC-VCO-based ILFMs in Chapter 3 and Chapter 4 and 

high-performance ring-VCO-based ILCM in Chapter 5.  

First, Chapter 3 presents a low power and compact area LC-tank-based frequency multiplier. In the 

proposed architecture, the input signals have a pulsed waveform that involves many high-order 

harmonics. Using an LC-tank that amplifies only the target harmonic component, while suppressing 

others, the output signal at the target frequency can be obtained. Since the core current flows for a very 

short duration, due to the pulsed input signals, the average power consumption can be dramatically 

reduced. Effective removal of spurious tones due to the damping of the signal is achieved using a 

limiting amplifier. In this work, a prototype frequency tripler using the proposed architecture was 

designed in a 65 nm CMOS process. The power consumption was 950 μW, and the active area was 0.08 

mm2. At a 3.12 GHz frequency, the phase noise degradation with respect to the theoretical bound was 

less than 0.5 dB. 

Second, Chapter 4 presents an ultra-low-phase-noise ILFM for millimeter wave (mm-wave) fifth-

generation (5G) transceivers. Using an ultra-low-power frequency-tracking loop (FTL), the proposed 

ILFM is able to correct the frequency drifts of the quadrature voltage-controlled oscillator of the ILFM 

in a real-time fashion. Since the FTL is monitoring the averages of phase deviations rather than detecting 

or sampling the instantaneous values, it requires only 600μW to continue to calibrate the ILFM that 

generates an mm-wave signal with an output frequency from 27 to 30 GHz. The proposed ILFM was 

fabricated in a 65-nm CMOS process. The 10-MHz phase noise of the 29.25-GHz output signal was 

−129.7 dBc/Hz, and its variations across temperatures and supply voltages were less than 2 dB. The 

integrated phase noise from 1 kHz to 100 MHz and the rms jitter were−39.1 dBc and 86 fs, respectively. 

Third, Chapter 5 presents a low-jitter, low-reference-spur ring voltage-controlled oscillator (ring 

VCO)-based ILCM. Since the proposed triple-point frequency/phase/slope calibrator (TP-FPSC) can 

accurately remove the three root causes of the frequency errors of ILCMs (i.e., frequency drift, phase 
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offset, and slope modulation), the ILCM of this work is able to achieve a low-level reference spur. In 

addition, the calibrating loop for the frequency drift of the TP-FPSC offers an additional suppression to 

the in-band phase noise of the output signal. This capability of the TP-FPSC and the naturally wide 

bandwidth of the injection-locking mechanism allows the ILCM to achieve a very low RMS jitter. The 

ILCM was fabricated in a 65-nm CMOS technology. The measured reference spur and RMS jitter were 

−72 dBc and 140 fs, respectively, both of which are the best among the state-of-the-art ILCMs. The 

active silicon area was 0.055 mm2, and the power consumption was 11.0 mW. 
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Introduction 

 

 
 Motivation 

For modern high-speed digital systems, especially mobile applications, the demand for further 

improvement in the performance of the jitter of clock signals is increasing. To date, phase-locked loop 

(PLL)-based architectures using a LC-type voltage-controlled oscillator (LC-VCO) have been used 

dominantly in many applications for generating high-performance clocks, but their low level of 

integration has hindered the effort to lower the implementation cost. Recently, multiplying delay-

locked-loop (MDLL)-based architectures [1] – [4] and a subharmonic injection-locked clock multiplier 

(ILCM)-based architectures [5] – [22] are considered as alternatives to conventional PLL-based 

architectures. Due to the phase realignment mechanism of the injection locking technique, without 

external loop, those architectures are able to generate precise clock signals with the excellent jitter 

performance. Although they use a ring-type oscillator or a high-frequency LC-VCO that provides poor 

spectral purity, the ILCM can suppress the jitter of the VCO and provides high-performance clocks. The 

ILCM is thus widely used in a mm-wave band for low-power multipliers and in a gigahertz-range for 

compact low-jitter clock multipliers.  

However, an ILCM has critical problems in that excellent performance of the RMS jitter and 

reference spur can be maintained only when the frequencies of the free-running VCO, fVCO, is 

sufficiently close to target harmonic of the injection signal, N·fREF, where fREF is the frequency of the 

reference clock and N is the target harmonic index. In general, the amount of the possible frequency 

drifts of the VCO due to process-voltage-temperature (PVT) variations is much larger than the lock 

range of the injection. If the frequency drift is out of the locking range, the ILCM will fail in the lock 

acquisition [5]. For an ILCM to stay within the lock range, fVCO can be adjusted to be close to N·fREF. 

Nonetheless, ILCMs still suffer from the high level of reference spur, caused by the periodic phase-shift 

(or deterministic jitter) of the VCO, as shown in Fig. 1.1(a), when it is injection-locked. This is because 

the level of the reference spur sharply increases as fVCO deviates from N·fREF, i.e., SpurdBc ≈ 

20log(N·|fERR|) where fERR = (fVCO − N·fREF)/(N·fREF) [6]. Fig. 1.1(b) shows, when N is 10, as α increases 

to just 0.1%, the spur-level rises exponentially by 20 dB and reaches −40 dBc. Consequently, to 

minimize not only phase noise, but also the reference spur in ILCMs, they need to be required to have 



2 
 

a very precise frequency calibrator. 

In this dissertation, we propose two designs of frequency calibrators. First, we present an ultra-low-

power frequency calibrator for mm-wave ILCMs. Despite the high frequency, the proposed frequency 

calibrator can correct the drifts of fVCO and requires low power without the use of high-frequency circuits. 

It was the first calibrator to calibrate real-time drifts of fVCO in mm-wave band with ultra-low power 

consumption of less than 1mW. Second, we present a high-performance versatile calibrator. This 

versatile calibrator can remove three major causes of fERRs, especially calibrating the slope modulation 

for the first time which is caused by the injection. Thanks to this calibrator, the ILCM achieved the 

lowest reference spur, while using a small area and little power.  
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Figure 1.1. (a) phase realignment mechanism of the injection locking technique (b) reference spur 

over fERR’s 
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 Dissertation Organization 

This dissertation focuses primarily on calibration techniques for ILCMs to generate low-jitter and 

low-reference-spur signals using a compact silicon area and low power. We introduce the calibration 

techniques in mm-wave band. Also, we analyze all causes of the frequency error that interfere with the 

accurate frequency calibration and degrade the performance of the ILCMs. This dissertation is 

organized as follows: 

Chapter 2 introduces and discuss conventional frequency calibrators for ILCMs. The advantages and 

disadvantages of each structure is explained. 

Chapter 3 presents a design of a low-power and compact open-loop ILFM. In this work, due to the 

pulsed input signals, the core current flows for a very short duration and the average power consumption 

can be dramatically reduced. In Chapter 3, design consideration on an LC tank of the multiplier and a 

differential-to-single amplifier are analyzed. We present the measurement results from a prototype chip 

fabricated in 65-nm CMOS technology.  

In Chapter 4, a PVT-robust, low-PN mm-wave band ILFM with an ultra-low-power frequency 

calibrator is presented. The reason why the frequency drifts of the VCO are critical in mm-wave bands 

is discussed. Using the noise model of the proposed ILFM, the noise contribution of each building 

blocks is analyzed. The static frequency offset due to mismatches along the signal paths of the calibrator 

is also analyzed. The implementation of this work is then explained, and we present the measurement 

results of a prototype chip fabricated in 65-nm CMOS technology. 

Chapter 5 presents a low-rms-jitter and low-reference-spur ring-VCO-based ILCM using a 

background triple-point frequency/phase/slope calibrator (TP-FPSC). The three causes of frequency 

errors and the limits of conventional calibrators are discussed. The reference spur caused by slope 

modulation was simulated and analyzed. The architecture and mechanism of the proposed TP-FPSC is 

explained. Finally, we describe the implementation of the calibrator and the VCO, and we present the 

measurements results from a prototype chip fabricated in 65-nm CMOS technology. 

Finally, Chapter 6 summarizes the proposed works and concludes this dissertation.  
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Prior ILCMs with Real-Time Frequency Calibration 

 

 
 ILCMs with a PLL-Based Frequency Calibrator 

To date, the most popular method to calibrate the free-running frequency of the VCO is to use the 

phase-locked loops (PLL). There have thus been some attempts to use the PLL-based frequency 

calibrator in ILCMs, as shown in Fig. 2.1 [7], [8], [12], [13], [23]. However, these structures have a 

serious problem with the frequency error, fERR, detection. In the conventional PLLs, when fERR exists, 

the phase error is accumulated over the N cycles of the VCO signal and this accumulated phase error is 

detected by the phase detector (PD). However, in the ILCM, the rising edge of SOUT is realigned by that 

of SREF, so this phase error of the VCO is periodically reset to zero by SINJ before the PLL detects it. as 

shown in Fig. 1.1(a). Therefore, the PLL-based calibrator is not suitable for the real-time frequency 

calibration. Even if it could detect the phase error, it is not efficient due to poor detection gain. Although 

it cannot well prevent the real-time fERR of the VCO due to temperature or voltage variations, it can 

correct static fERR due to process variations. Therefore, PLL is mainly used to bring fVCO into the lock 

range of the injection locking at the initial stage or start-up stage before the VCO is injection-locked.  

  

SREF SOUT PLL VCONT

SINJ

Pulse Gen. Timing
Control

 
 

Figure 2.1. ILCM with a conventional PLL-based frequency calibrator. 
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 ILCMs with a Frequency Calibrator Using a Replica-VCO or a 

Replica-Cell-Based Delay Line. 

To detect the real-time frequency drifts of the VCO due to temperature or voltage variations without 

the effect of injection, a replica-VCO [16] – [20] or a replica-cell-based delay line [24], [25] can be 

used, as shown in Fig. 2.2. Since the replica-VCO or the replica-delay cells are equally affected by 

voltage or temperature variations with the main-VCO in the ILCM, the free-running frequency of the 

main-VCO can be easily detected by monitoring the frequency of the replica-VCO or the delay of the 

replica-cell-based delay line. The PLL or DLL can bring frequency of the replica-VCO or delay of the 

replica-cell-based delay line to the target frequency and share the same control-voltage, VCONT, to correct 

the main-VCO’s frequency.  

These structures have three serious problems. First, the replica-VCO or this delay line are supposed 

to spend the same power consumption as the main-VCO. Second, mismatches between the main-VCO 

and replica-VCO limit the accuracy of the calibration and degrades the jitter performance and the level 

FLL

Pulse Gen.

Replica
VCO

VCONTSREF

SINJ

SOUT 

      
(a) 

 

Replica-
Delay CellsDLL

Pulse Gen.

VCONTSREF

SINJ

SOUT 

 
(b) 

 
Figure 2.2. ILCM with a frequency calibrator using a replica-VCO or a replica-cell-based delay line. 
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of the reference spur in the ILCM. Third, the noise of the replica-VCO and main-VCO are uncorrelated 

to each other; this frequency calibrator thus cannot suppress the noise of the main-VCO. Rather, shared 

control-voltage, VCONT, brings the noise of the replica-VCO into the in-band noise of the output signal 

in the ILCM. In conclusion, this structure suffers from the issues that the VCO consumes twice the 

power, while doubling the noise of the VCO. 
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 ILCMs with a Period-Detector-Based Calibrator 

The main reason why it is difficult to detect fERR in ILCM is that the phase error is reset to zero every 

reference period. However, during the intervals in which injection pulses are not injected, SOUT preserves 

the information of the VCO’s free-running period, TVCO. By comparing N-times TVCO to the period of 

SREF, TREF, fERR can be detected. Fig. 2.3 shows a period-detector-based calibrator to monitor TVCO 

without the effect of the injection [26]. As shown in Fig. 2.3(b), the period detector measures the period 

of N∙TVCO and TREF using the charge pump or TDC. Then, the comparator detects the error period, TERR 

and passes this error to the accumulator. By accumulating TERR, these structures can correct fERR of the 

injection locked VCO.  

These structures have two issues. First, measuring the period is very vulnerable to noise because the 

ACCPeriod 
detector

Pulse Gen.

SREF

SINJ

SOUT Comp

      
(a) 

 

SINJ

SOUT

Period
detector

SREF

TVCO

N∙TVCO TREF

Comp ++ − 

TREF

TERR
 

(b) 
 

Figure 2.3. (a) ILCM with a period-detector-based calibrator. (b) Timing diagram. 
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detector must be turned on for a long time. To measure the period of the VCO precisely, the noise of 

the period detector should be lower than that of the VCO. If not, according to the noise transfer function, 

the noise of the detector degrades in-band noise of the ILCM. To lower the noise, the detector must use 

more power than the VCO during measuring periods. Second, since TERR is very small compared to TREF, 

the detection gain of the frequency error is small. For example, the charge-pump-based period detector 

always have a constant voltage value corresponding to TREF. However, the voltage value corresponding 

to TERR is small compared to the constant voltage value. To get a high detection gain, the current in the 

charge pump needs to be increased, which is difficult because of the voltage headroom. This small 

detection gain makes these structures more susceptible to the noise of the loop components.  



9 
 

 ILCMs with a Frequency Calibrator Detecting Phase Shift  

As shown in Fig. 1.1, when fERR exists, the phase is shifted in proportion to fERR by SINJ. It would be 

nice if this phase shift, ∆ϕshift, could be detected simply, but as mentioned in Chapter 1, it is difficult to 

do so due to the phase reset. To overcome this issue, recently, there have been many efforts to develop 

new architectures for the frequency calibration [6], [27] – [31], which use the time-to-digital converter 

(TDC) [6], pulse-gating technique [27], [28], or delay cells [29] – [31] to detect ∆ϕshift.  

Phase-shift-detector-based calibrators have two general advantages. First, the in-band VCO noise at 

low frequency offset such as flicker noise can be further suppressed. As the gate length of the transistor 

gets smaller and flicker noise worsens, this noise reduction effect is very efficient for producing low-

jitter clocks. Second, the detection gain of the frequency error and phase error is large, since the phase 

shift includes error information accumulated during N VCO cycles. This large detection gain reduces 

the noise contribution of the loop components at SOUT, thus reducing the power consumption of the 

calibrator. However, these architectures still contain disadvantages, which are discussed in this 

subsection.  
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2.4.1. Phase-Shift Detector Using a TDC 

Fig. 2.4 shows a frequency calibrator that used a TDC to detect fERR [6]. As shown in Fig. 2.4(b), the 

TDC measures free-running period of the VCO, TVCO, and the injection-altered period, TVCO + ∆. The 

correlator compares TVCO to TVCO + ∆ and generates the error signal ∆. By accumulating ∆, this calibrator 

can detect real-time fERR.  

These structures have two issues. First, to measure the period of the VCO, the TDC has to be turned 

on for a long time and becomes vulnerable to noise of the TDC. Second, there is a trade-off between 

the resolution and the power consumption in the TDC. In conclusion, since this phase-shift-detector 

requires a lot of power to lower the noise of the TDC and increase the resolution of the TDC, it did not 

achieve good figure of merit (FoM) considering the noise performance and power consumption.  

ACCCorrTDC

Pulse Gen.

SREF

SINJ

SOUT 

      
(a) 

 

SINJ

SOUT

TDC

SREF

TVCO TVCO+Δ 

TVCO TVCO+Δ 

Corr Δ 
++ − 

 
(b) 

 
Figure 2.4. (a) ILCM with a TDC-based frequency calibrator. (b) Timing diagram. 
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2.4.2. Phase-Shift Detector Using a Pulse Gating Technique  

Fig. 2.5 shows a frequency calibrator using a pulse gating technique to detect fERR [27], [28]. As 

shown in Fig. 2.5(a), the pulse generator generates an injection pulse signal from rising edge of SREF 

depending on a gating signal, PGATE. In Fig. 2.5(b), we see how this calibrator detects the phase shift, 

∆ϕshift, using the gated pulse signal. When the injection pulse is gated, the accumulated phase error of 

the VCO is not realigned and preserves the phase error, and the PD can thereby detect ∆ϕshift and 

frequency error.  

These structures have two problems. First, the VCO’s noise reduction effect due to calibrator is 

decreased because the calibration is possible only when the injection pulse is gated, not every time. 

Since the bandwidth of the fERR and phase error calibration is slow, this calibrator does not effectively 

remove flicker noise of the VCO. However, frequently gating the injection pulse to widen the bandwidth 

of the calibration, the effect of the injection will be reduced, and the overall noise also may worsen. 

Second, the periodical gating of injection could generate in-band spurs, which degrade the noise 

performance of the ILCM.  

LF
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SOUT PD
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Gated Pulse

Δϕshift 
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ϕOUT
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Gated Pulse

Δϕshift 

 
(b) 

 
Figure 2.5. (a) ILCM with a pulse gating frequency calibrator. (b) Timing diagram. 



12 
 

2.4.3. Phase-Shift Detector Using Delay Cells 

Fig. 2.6 shows a frequency calibrator using delay cells to detect fERR [29] – [31]. As shown in Fig. 

2.6(a), the delay cells delay SOUT by the free-running period of the VCO, TVCO, and generate a delayed 

signal of SOUT, SOUT_D. As shown in Fig. 2.6(b), since the delay cells receive and delay the signal of the 

VCO before injection, they can preserve the intrinsic phase information of the VCO without the effect 

of the injection. Then, the PD compares the phase difference between SOUT and SOUT_D, and ∆ϕshift can 

be detected. Since this method can detect fERR with the simple structure, it requires low power and small 

silicon area. In addition, the calibrator can detect ∆ϕshift at each reference period, so the bandwidth of 

the frequency calibration can be wide enough to suppress the flicker noise of the VCO. However, the 

accuracy of the ∆ϕshift detection could be degraded by the delay error of delay cells and the input offset 

of the PD, so the additional offset calibration is crucial.   
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ϕOUT_D
 

(b) 
 

Figure 2.6. (a) ILCM with a frequency calibrator using delay cells. (b) Timing diagram. 
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An Ultra-Low Power and Compact LC-Tank-Based Frequency 

Tripler 

 
 

 Motivation 

Generating a low phase noise, high frequency signal is one of the most important tasks in designing 

a modern electronic system. Especially for mobile applications, low-cost implementation, in terms of 

power consumption and silicon area, must be the primary goal. An open-loop frequency tripler is a good 

candidate for meeting these design goals without the need for the loop-building blocks of a phase-locked 

loop (PLL) or a delay-locked loop (DLL)-based architecture. To date, many frequency triplers have 

been reported [32] – [35]. References [32], [33] presented architectures that use a current-reused 

subharmonic mixer, but they must have input signals with four quadrature-phases. In the architectures 

of [34], [35], shown in Fig. 3.1(a), the signal at the second order harmonic frequency was extracted by 

the shunt-peaking inductor, and it was mixed with the original signal. However, they included multiple 

area-hungry inductors. Furthermore, [32] – [35] are unsuitable for low-power applications since the 

transistors in mixers must keep consuming static power due to their sinusoidal inputs. 

In this work, we propose a new ultra-low power and compact open-loop frequency multiplier, as 

shown in Fig. 3.1(b). In the proposed architecture, input signals have a pulsed waveform with a narrow 

pulse width that includes many high-order harmonics of the reference frequency, fREF. When the 

resonant frequency of the LC-tank, fLC, is tuned close to a specific harmonic, the signal component at 

that harmonic frequency is amplified, while other components are filtered out. Thus, by changing fLC 

any different multiplication factors, Ns, can be obtained. The use of an LC-tank as a load to select the 

target harmonic was presented in frequency doublers [36], [37]. However, as they used differential 

sinusoidal inputs, only the second harmonic component was available for amplification; moreover, no 

odd-order harmonics could be present at all. In addition, in the proposed architecture, due to the pulsed 

input signals that briefly turn on the input transistors, the core current flows for a very short duration. 

Thus, the average power consumption can be dramatically reduced. The proposed architecture also has 

──────────────────────────────────────────────────────────────────── 

* © 2016 IEEE. Part of this chapter is reprinted, with permission, from S. Yoo, S. Choi, T. Seong, and J. Choi, “An Ultra-
Low Power and Compact LC-Tank-Based Frequency Tripler Using Pulsed Input Signals,” in IEEE Microwave and Wireless 
Components Letters (MWCL), vol. 26, no. 2, pp. 140-142, February 2016. 
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small silicon area, since it includes only one inductor. In this work, a prototype frequency tripler was 

designed in a 65 nm CMOS technology. Depending on the selection of fLC, the proposed architecture 

can be implemented as a frequency multiplier with an arbitrary multiplication factor. 

  

 
 
 

 
(a) 

 

 
(b) 

 
Figure 3.1. Frequency triplers: (a) conventional self-mixing architecture [35] (b) proposed 

architecture 
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 Circuit Designs 

Fig. 3.2 shows the overall architecture of the proposed frequency multiplier, consisting of a pulse 

generator, an LC-tank with the input transistors, M7 and M8, and a differential-to-single (D-to-S) 

amplifier. The mechanism of the proposed architecture can be easily understood in the time domain as 

follows. From the reference clock, the pulse generator produces narrow differential pulses, which 

continue to turn on and off M7 and M8. When M7 and M8 are turned on briefly by the pulsed input signals 

in every reference period, the LC-tank receives energy differentially through the closed paths from the 

supply and the ground. When M7 and M8 are turned off, the commuting current in the LC-tank generates 

the output signals. If the loss of the tank were ideally zero, this signal would be sustained permanently. 

However, due to the finite parallel resistance of the LC-tank and the leakages of M7 and M8, the 

amplitude of the signal decays. Thus, to prevent the amplitude of the signal from being diminished, the 

CT of the tank must be periodically recharged. The decay of the differential magnitude of the output 

voltages, (VO+ − VO−), can be estimated from the impulse response of the LC-tank, h(t), as 

 

 h(t) = 
1

CT
∙ exp�-

πfLC
Q

⋅t� ⋅ �cos �π�4 - 1 Q2⁄ ⋅fLC⋅t�  - 
sin�π�4 - 1 Q2⁄ ⋅fLC⋅t�

�4Q2 - 1
� 

   (1) 
 

 
(b) 

 
Figure 3.2. Overall architecture of the proposed LC-based frequency multiplier using a pulsed input 

signal 
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where Q, and fLC are the loaded Q-factor and the LC-resonant frequency, respectively. Fig. 3.3 shows 

the waveforms of the convolution of h(t) and a rectangular pulse with a pulse width of 1/2fLC and an 

amplitude of 0.9 V, when the fLC is 3.12 GHz and Q is varied from 10 to 30. When Q is 30, the decay of 

the amplitude is slow since the time constant of h(t) is large, but it becomes gradually steeper as Q 

decreases. This is because the energy stored in the LC-tank dissipates faster as the tank loss increases. 

Thus, if the Q of the tank is maximized, the frequency of the recharging process can be reduced, which 

implies that a high multiplication number is possible. Fig. 3.3 also shows the differential output voltage, 

(VO+ − VO−), from the transient simulation with Q of 15, which is matched precisely to the theoretical 

estimation, based on (1). 

In the proposed architecture, the excessive damping of the amplitude of the output signal can be 

prevented by a periodical recharging process. However, a significant periodic amplitude modulation 

(AM) is still problematic. Along with the phase modulation (PM), due to the difference between the 

frequencies of the LC-tank and the target harmonic of the reference clock [1], the amplitude modulation 

(AM) as shown in Fig. 3.3 could increase the level of the reference spur. To remove the AM component, 

the LC-tank is followed by the D-to-S amplifier, which amplifies VO+ and VO− in order to be clipped to 

the supply voltage [38]. Fig. 3.4 shows the level of the reference spur at the output of the resonator, 

(VO+ − VO−), and the D-to-S amplifier, VOUT, when Q varies from 4 to 20. As shown in Fig. 3.4, the 

level of the spur was suppressed significantly by the D-to-S amplifier that eliminated the AM 

disturbance. Even if the AM disturbance can be suppressed by the D-to-S amplifier, the swings of VO+ 

 
 

Figure 3.3. Waveforms of the output of the proposed architecture with a different Q from (1) and 
simulations 
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and VO− that are too small demand that the D-to-S amplifier consume large power. As shown in Fig. 

3.3, when Q is 15, a reasonable value for an on-chip LC-tank, the amplitude of the fourth peak is reduced 

to 53.3% of that of the first (or the highest) peak. To guarantee safe operation while also minimizing 

the power consumption of the D-to-S amplifier, we fixed the frequency multiplication number, N, at 3 

in this work. However, by relaxing the power budget or the requirement for spurious tones, N can be 

extended to a higher value. In this work, LT, CT, and Q values of the tank were 2 nH, 1.4 pF, and 15 at 

3 GHz, respectively. With a Q of 15, the reference spur can be minimized to less than −40 dBc, as shown 

in Fig. 3.4. 

  

 
 

Figure 3.4. Reference spurs at the outputs of the LC-resonator and the D-to-S amplifier, (VO+ – VO–) 
and VOUT, respectively 
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 Measurement Results 

The prototype frequency tripler using the proposed LC-tank-based frequency multiplier was 

fabricated in a TSMC 65 nm CMOS process. A test chip was mounted on a test board, and received the 

reference clock from a signal generator, Holzworth HS9002A. To measure output-signal performance, 

a spectrum analyzer, Agilent PXA N9030A, and a phase noise analyzer, Agilent E5052B, were used. In 

measurement, the proposed frequency tripler consumed 950μW from a 0.9-V supply voltage, where the 

tank core consumed only 600μW. As shown in Fig. 3.5, the frequency tripler occupied an active area of 

0.08 mm2.  

 
 

Figure 3.5. Chip micrograph of the proposed frequency tripler 

 
 

Figure 3.6. Measured spectrum of the 3.12 GHz output signal of the proposed frequency tripler 
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Fig. 3.6 shows the measured spectrum of the output signal with a 3.12 GHz frequency, which is the 

third harmonic of the 1.04 GHz reference frequency. As shown in the spectrum in Fig. 3.6, the level of 

the reference spur was −37 dBc. Fig. 3.7 shows the measured and the simulated levels of the reference 

spur when the reference clock frequency, fREF, was swept. The spur level was minimized when the third 

harmonic of fREF was close to the resonant frequency of the LC-tank, but it increased as fREF deviated. 

 
 

 
 

Figure 3.7. Measured and simulated reference spur level with respect to the input reference clock 
frequency 

 

 
 

Figure 3.8. Measured phase noise of the 3.12 GHz output signal and the 1.04 GHz reference clock. 
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Fig. 3.8 shows the measured phase noises of the reference clock and the output signal with a 1.04 

GHz and a 3.12 GHz frequency, respectively. The phase noise of the output signal at the 1MHz offset 

was −127.8 dBc/Hz, and the jitter, integrated from 1 kHz to 20 MHz, was 110 fs. The difference between 

the two phase-noise curves was very close to 9.5 dB (20·log 3dB), which is the theoretical bound. Table 

1 compares the proposed work with state-of-the-art frequency triplers [32] – [35]. The proposed work 

had lowest power consumption, while restricting the degradation of phase noise from the theoretical 

boundary, PNDEG, to less than 0.5 dB. In addition, the proposed frequency tripler had the smallest silicon 

area with one inductor.  

 
  

Table 1. Comparison with State-of-the-Art Frequency Triplers 
 

 [32] [33] [34] [35] This work 

Process (CMOS) 180 nm 180 nm 180 nm 180 nm 65 nm 

Output freq. (GHz) 3.0 21.0 21.83 19.5 3.12 

PNDEG@1MHz (dB)* < 0.5 < 0.5 < 1.0 < 0.5 < 0.5 

Ref. spur (dBc) −26 −16 −18 −29 −37 

PDC (mW) 68 7.5 8.1 18.8 0.95 

Active area (mm2) 0.42 0.36 0.39 0.84 0.08 
 

* PNDEG @1MHZ = PNTRIPLER(1MHz) − 20∙log(3) − PNREF(1MHz) 
** Power consumption of the frequency tripler only 
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 Discussion 

In this work, we proposed a low power, compact area LC-tank-based frequency multiplier. By using 

input signals with a pulsed waveform to minimize the duration of the core current flow, the proposed 

architecture was able to reduce power consumption dramatically. With the LC-tank having a resonant 

frequency close to the target frequency, the signal component of the target harmonic was effectively 

amplified while other components were suppressed. AM spurs, caused by the damping of the signal due 

to the tank loss, were removed using the D-to-S amplifier. The proposed frequency tripler had a low 

power consumption of less than 1 mW and a compact silicon area of 0.08 mm2. It also achieved excellent 

phase noise performance; the deviation from the theoretical bound was less than 0.5 dB. 
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A Low-IPN mm-Wave  

Injection-Locked Frequency Multiplier for 5G 

 

 

 Motivation 

Fifth-generation (5G) wireless systems have attracted attention as the next-generation cellular 

standard because they provide super-fast communication speeds. To meet the requirement of high data 

rates, RF transceivers for the 5G standard must satisfy an extremely low error vector magnitude (EVM) 

specification over a very wide bandwidth in a millimeter wave (mm-wave) frequency band. From this 

demand, one of the fundamental challenges in the design of a 5G transceiver is to generate an ultra-

low-phase-noise local oscillator (LO) signal to suppress integrated phase noise (IPN) over a wide 

bandwidth. For example, to satisfy the EVM requirements of high-order modulations, such as 16 

quadrature amplitude modulation (QAM) and 64 QAM, the IPN of an LO signal should be reduced to 

less than −30 dB at mm-wave frequencies [39] – [42]. Moreover, LO-signal generators also must 

provide quadrature signals with a very small I/Q mismatch. 

The most straightforward architecture that can be used to generate the required LO signals is a high-

frequency phase-locked loop (PLL) that directly generates mm-wave signals [43] – [47]. However, this 

architecture is not such a good solution in terms of its power consumption and phase noise. First, to 

synthesize a high-frequency signal in mm-wave bands, the PLL must involve power-hungry frequency 

dividers that operate at the target frequencies. Using typical CMOS technologies, it is difficult to design 

a frequency divider that operates at a high frequency, such as more than 30 GHz. Even if the design 

itself were possible, it would require a great amount of power to suppress the elevation of a noise floor. 

Second, also with respect to phase noise, a PLL that directly generates mm-wave signals is not an 

effective solution. According to [48], when the phase noises of recent CMOS PLLs with different output 

frequencies are normalized, the PLLs that have output frequencies around 3–5 GHz have much better 

performance with respect to phase noise than PLLs that have output frequencies greater than 10 GHz. 

──────────────────────────────────────────────────────────────────── 

* © 2018 IEEE. Part of this chapter is reprinted, with permission, from S. Yoo, S. Choi, J. Kim, H. Yoon, Y. Lee, and  
J. Choi, “Low-Integrated-Phase-Noise 27–30-GHz Injection-Locked Frequency Multiplier With an Ultra-Low-Power 
Frequency-Tracking Loop for mm-Wave-Band 5G Transceivers,” in IEEE J. Solid-State Circuits, vol. 53, no. 2, pp. 375-388, 
February 2018. 
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One of the major reasons why this occurs is that the LC-tank of a voltage-controlled oscillator (VCO) 

does not have a sufficiently high quality factor (Q-factor) at mm-wave frequencies. This degradation of 

the overall Q-factor is mainly because of the significant decrease in the Q-factor of capacitive 

components in the LC-tank, caused at high frequencies [49], [50]. As above, if we consider power 

consumption and phase noise, it is obvious that a more efficient way to generate an mm-wave-band LO 

signal is to obtain an output frequency in the range of 3–5 GHz from a PLL and increase it to a higher 

frequency using a low-noise frequency multiplier. 

Fig. 4.1 shows the architecture proposed to generate LO signals for multi-standard, multi-band 

cellular transceivers. The proposed LO generator consists of a gigahertz-range PLL, an mm-wave-band, 

quadrature, and injection-locked frequency multiplier (ILFM). Since a gigahertz-range PLL can 

generate an output signal with a good phase-noise performance, if the following ILFM multiplies the 

frequency of the signal without degrading the noise performance, the proposed LO generator must be 

able to achieve sufficiently low IPN that satisfies the stringent requirement of the 5G standard. Another 

important advantage of the proposed architecture is that it can support the backward compatibility. Fig.  

4.1 shows that a gigahertz-range PLL can be used to support conventional cellular frequency bands, i.e., 

0.7–2.7 GHz [51], [52], when they are designed to have output frequencies between 2.8 and 5.4 GHz. 

The key building block of the proposed multi-standard LO generator in Fig. 4.1 is a low-phase-noise 

mm-wave-band quadrature ILFM. However, the inherent design challenge of an ILFM is the 

 

 
 

Figure 4.1. LO generation with a gigahertz-range PLL and a cascaded mm-wave ILFM for multi-
band and multi-standard cellular communications. 
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vulnerability of its operation and phase noise to process–voltage–temperature (PVT) variations [28], 

[29], [53], [54]. The normal operation of an ILFM with a low phase noise is available only when the 

free-running frequency of the VCO fVCO is sufficiently close to the target frequency N·fINJ where N and 

fINJ are the multiplication factor and the injection frequency, respectively. In other words, the deviation 

of fVCO from N·fINJ, fDEV, should be kept small with respect to the lock range of the ILFM fL. The 

vulnerability is more problematic for an mm-wave ILFM, where fL is the typically restricted to less than 

3% of fVCO [55] – [57]. To alleviate this problem, the mm-wave ILFM in [58] uses a technique to extend 

the lock range, but it involves increases in power consumption and design complexity. In recent years, 

there have been many efforts to design frequency-tracking loop (FTL) architectures [15], [17], [19], 

[20], [25], [56], [57] that continue to adjust fVCO so that it remains close to N·fINJ in a real-time fashion. 

However, these architectures still have practical problems, so they are inadequate for use for an mm-

wave ILFM that must provide extremely low phase noise. The prior FTL architectures and their 

problems are discussed in Section 4.2. To multiply frequencies into an mm-wave band, the cascaded 

PLL in [59] uses a sub-sampling PLL (SSPLL) instead of an ILFM. However, the SSPLL requires a 

large amount of power due to the use of a sample-and-hold phase detector and a voltage-to-current 

converter, which operates at the frequency of the precedent PLL, i.e., around 7 GHz. 

In this work, we present an mm-wave-band ILFM that can continue to provide ultra-low-phase-noise 

quadrature output signals, irrespective of PVT variations [60]. By monitoring the distortions between 

the output phases of the injection-locked quadrature VCO (QVCO) of the ILFM that are caused when 

fVCO deviates from the target frequency, the proposed FTL can correct the drifts of fVCO and continuously 

suppress phase noise without the loss of the injection lock. The FTL monitors the averages of the phase 

deviations rather than detecting or sampling the instantaneous values, so it only operates at a very low 

frequency. Since it does not use any high-frequency circuits, the FTL should have ultra-low-power 

consumption. 

The rest of this Chapter is organized as follows. Section 4.2 shows why the drifts of fVCO are critical 

in mm-wave bands and presents the limits of prior FTLs. In Section 4.3, the concept and the design of 

the proposed FTL and ILFM are presented. Section 4.4 describes the analysis of the phase noise and the 

static frequency offset due to the mismatches along the signal paths of the FTL. Experimental results 

and conclusions are presented in Sections 4.5 and 4.6, respectively. 
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 Limits of Prior Frequency-Tracking-Loop Architectures for mm-

Wave ILFMs 

As aforementioned, the degradation of the phase noise of an ILFM due to PVT variations becomes 

more severe as fVCO increases. Fig. 4.2(a) shows the results of the simulation of the maximum fDEV(%) 

of a free-running LC-VCO according to frequency drifts due to temperature variations. It also shows 

fL(%) of the same VCO, when a 2.25-GHz signal is injected. According to N from 3 to 17, the inductance 

of the LC-tank was scaled to maintain the same Q-factor (Qind) despite the change in fVCO. Fig. 4.2(a) 

shows the maximum fDEV for the temperature range of −30 °C to 120 °C increases gradually as N 

increases. This is due to the increase in the contribution of the PVT-sensitive parasitic capacitances of 

the core transistors when fVCO is defined. Contrary to the increase in fDEV, fL continues to decrease as N 

increases. This is because the effective current of the injection signal’s Nth harmonic component 

decreases with respect to the VCO’s current, thereby reducing the strength of the injection [61], [62]. 

Consequently, the increase in fDEV along with the decrease in fL for a larger N makes the performance 

of an ILFM more vulnerable to environmental variations. Fig. 4.2(b) shows the changes of the 10-MHz 

phase noise with respect to fDEV for different N’s. The noise data were obtained from the same VCOs 

and the injection signal used in Fig. 4.2(a), and the graphs were plotted by MATLAB using the equation 

of the theoretical phase noise of an ILFM in [63]. As shown in Fig. 4.2(b), when fDEV is relatively small 

with respect to fL, the level of the phase noise approaches the theoretical minimum boundary, i.e., 

20·logN above the phase noise of the injection signal. However, as fDEV approaches fL due to drifts of 

fVCO, the phase noise is degraded significantly, and, finally, the lock is released. This problem becomes 

more severe as N increases, i.e., a possible fDEV increases even greater than fL, when N is more than 13. 

Thus, to ensure the robust operation with a low phase noise irrespective of environmental variations, an 

mm-wave ILFM must be equipped with a dedicated FTL that can continue to correct the frequency of 

the VCO during real-time frequency drifts. 
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(a) 

 

 
(b) 

 

Figure 4.2. (a) Lock range fL(%) and maximum deviation of the free-running frequency fDEV(%) over 
temperature of an LC-VCO injected by a 2.25-GHz tone, when the target harmonic factor N is 

changed. (b) Degradations of the10-MHz phase noise with respect to fDEV for different N’s. 
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For calibrating fVCO over PVT variations, many FTLs have been reported for ILFMs [15], [17], [19], 

[20], [25], [56], [57]. However, to detect the information of fDEV, each architecture in those conventional 

FTLs has used building blocks operating at fVCO. Since the power consumption of these circuits is 

supposed to grow proportionally as fVCO increases, conventional FTLs are not suitable for mm-wave 

ILFMs. Fig. 4.3(a) shows a replica-VCO-based FTL using a replica-VCO that has the same control 

voltage as the main VCO [17], [19], [20]. In this architecture, the replica-VCO is not injection locked; 

thus, a frequency-locked loop (FLL) can continue to detect and correct any drifts in its frequency. Then, 

by sharing the control voltage of the FLL, the fVCO of the injection-locked VCO can stay close to the 

target frequency. This calibration method has an advantage in that it can operate regardless of whether 

the VCO is injection locked or not. However, the critical problem of this architecture when it is used 

for an mm-wave ILFM is that the replica-VCO has to consume the same amount of power as the main 

VCO. As a variation, the architecture in [25] uses a delay-locked loop (DLL) consisting of replica-delay 

cells to track the drifts of fVCO, but the DLL also must use the same amount of power as the VCO. Fig. 

4.3(b) shows the time-to-digital converter (TDC)-based architecture that uses TDC to detect the 

instantaneous phase shift of the output of the VCO at the moment a pulse is injected from the reference 

clock [15]. Although these FTLs are popular for calibrating frequency drifts at gigahertz-range 

frequencies, they should not be used at mm-wave frequencies, at which circuits, such as frequency 

dividers and TDCs, use excessive power. The ILFM in [56], shown in Fig. 4.3(c), is targeted for 

generating the output signals at an mm-wave frequency, but since a mixer and dividers, operating at 

high frequencies, are included, the FLL consumes a large amount of power, more than 60 mW. To over-

come the problem of excessive power usage of the calibrating circuits for mm-wave ILFMs, the 

architecture in [57] presents an FTL using an envelope detector, as shown in Fig. 4.3(d). Based on the 

observation that the envelope of the output of the VCO becomes constant when the injection lock is 

acquired, but it fluctuates when the lock is not acquired, this FTL can determine whether injection 

locking has been acquired or not. Since this architecture is supposed to track the change of the envelope, 

much slower than the change of the output of the VCO, it can be designed only using building circuits 

that operate at low frequencies; thus, low-power calibration is available even for an mm-wave ILFM. 

However, tracking of the envelope provides hardly any additional information after the injection lock 

is acquired. Thus, while this architecture can be used to overcome the static change of fVCO across 

process corners, it cannot be used to correct real-time drifts of fVCO from the target frequency due to 

temperature changes or to prevent the degradation of phase noise. 
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Figure 4.3. ILFMs with different FTLs using (a) a replica-VCO; (b) a TDC; (c) a mixer; (d) an 

envelope detector. 
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 Proposed ILFM With an Ultra-Low-Power FTL Using the Averages 

of the Phase Deviations 

4.3.1. Overall Architecture 

Fig. 4.4(a) shows the proposed ILFM, which consists a quadrature generator, QVCO, pulse 

generators (PGs), coarse frequency selector (CFS), and low-power FTL. Since an on-chip PLL was not 

designed in this work, an external RF-signal generator or external PLL is used to provide input signals 

to the quadrature generator. The PGs receive the quadrature signals and generate the injection pulses, 

i.e., INJ_I+, INJ_I−, INJ_Q+, and INJ_Q−, where the frequency is fINJ. These pulses are injected to the 
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Figure 4.4. (a) Conceptual diagram of the cascaded architecture of an mm-wave LO generator. (b) 

Principle of the proposed frequency-tracking loop (FTL). 
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gates of the injection transistors, where the drains are connected to the outputs of the QVCO. When an 

injection pulse enters the gate, the corresponding output the QVCO is pulled down, leading to 

instantaneous phase realignment. Fig. 4.4(b) shows the principle of the proposed FTL, which uses the 

relationship between the phases of INJ_I+, OUT_Q+, and OUT_Q−. At the moment when INJ_I+ is 

injected, the phase of OUT_I+ is realigned momentarily. However, OUT_Q+ and OUT_Q− still 

maintain their intrinsic phases independent of INJ_I+, since the coupling strength between the two 

VCOs of the QVCO is much less than the phase-realigning strength of the injection pulses. Thus, if fVCO 

deviates from N·fINJ, the quadrature relationship between the outputs of the QVCO is distorted 

instantaneously, i.e., INJ_I+ becomes closer to either OUT_Q+ or OUT_Q−. This distortion can be 

detected by comparing the overlapped area of INJ_I+ with OUT_Q+ and that with OUT_Q−; the 

difference between the two areas is proportional to the difference between fVCO and N·fINJ. In this paper, 

the information of the areas is obtained as voltages, i.e., VAQ+ and VAQ−, by multiplying INJ_I+ by 

OUT_Q+ and by multiplying INJ_I+ by OUT_Q−, respectively. As shown in Case 1 in Fig. 4.4(b), in 

which fVCO is higher than N·fINJ, VAQ+ should be lower than VAQ− since INJ_I+ is closer to OUT_Q− 

than it is to OUT_Q+. Then, the control voltage VTUNE decreases to lower fVCO. When fVCO is lower, as 

shown in Case 2, VAQ+ is higher than VAQ−, and, thus, VTUNE must increase to adjust fVCO to be higher.   

Fig. 4.5(a) and (b) shows the overall architecture and the conceptual transient behavior of the 

proposed FTL, respectively. When the coarse tuning is done by the CFS, the FTL starts continuous 

tracking of the frequency in order to monitor the average phase deviations. In the FTL, OUT_Q+ and 

OUT_Q− are transferred to the low-pass RC-filters through the NMOS switches, which are closed 

during the pulsewidth of INJ_I+. Since the effective bandwidth of the low-pass filters fLPF (including 

the effect of the NMOS switches) is much lower than fINJ, VAQ+ and VAQ− almost become dc voltages, 

implying the average values of the overlapped areas of OUT_Q+ and OUT_Q−, respectively. The series 

resistors in the RC-filters also have the role of preventing the reduction of the tank-Q of the VCO by 

the capacitors of the filters, while the switches are turned ON. The following V-to-I amplifier generates 

the current IAQ depending on the difference between VAQ+ and VAQ−. As IAQ charges or discharges the 

loop capacitor, VTUNE is controlled to adjust fVCO to be very close to N·fINJ. Since any drifts of fVCO in 

steady-state operation would cause mismatches between VAQ+ and VAQ−, the FTL can keep correcting 

fVCO without the loss of injection locking. The loop bandwidth of the FTL was approximately 2 MHz, 

whereas the fL of the ILFM was 200 MHz. Since the loop bandwidth of the FTL is much less than fL, 

the stability of the system can be ensured without any conflicts between two frequency-control 

mechanisms. To correct the frequency of a multi-phase ring VCO, the multi-phase generator in [64] 

uses a similar method. However, it uses the relationship between the output phases of the VCO 

themselves using a quadrature mixer, while the proposed FTL uses the relationship of the phases of the 

injection signal and the signals of the VCO. Due to this difference, the proposed FTL can achieve a 
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much higher loop gain, when it is used for an ILFM having a large N. In addition, to drive the quadrature 

mixer operating at fVCO, the buffers need a relatively large power in [64]. 

 

 

  

 
(a) 

 

 
(b) 

 
Figure 4.5. Proposed mm-wave ILFM with the ultra-low power FTL. (a) Overall architecture. (b) 

Conceptual timing diagram. 
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4.3.2. V-to-I Amplifier and the QVCO 

Fig. 4.6(a) shows the schematics of the V-to-I amplifier of the FTL that consists of two stages. The 

first stage acts as a level shifter to shift up the operating points of the inputs, VAQ+ and VAQ−, from the 

level of the voltage of the precedent RC-filters. The second stage, based on an operational 

transconductance amplifier, has a cascode active load to enhance the gain and reduce mismatches in the 

currents. The inter-digitation technique is used in the layout of each transistor pair to improve the 

differentially. As shown in Fig. 4.6(b), the QVCO is composed of two CMOS-type VCOs. Along with 

the pairs of NMOS and PMOS gm-transistors, each VCO also has additional pairs of NMOS switches; 

one pair is for coupling the two VCOs, and the other is for applying the injection pulses from the 

reference clock. As in the foregoing discussion, the fundamental operation principle of the proposed 

FTL is to  detect the instantaneous distortion of the quadrature relationship between OUT_I+ (or 

OUT_I−) and OUT_Q+ (or OUT_Q−) of the QVCO at the moment when the injection pulse is applied 

to OUT_I+ (or OUT_I−). This operation is based on the assumption that only the phase of OUT_I+ (or 

OUT_I−) is realigned instantaneously by the injection pulse, whereas OUT_Q+ (or OUT_Q−) 

maintains its intrinsic phase according to fVCO. Therefore, to improve the efficiency of the detecting 

operation, the phase-realigning strength of the injection pulses must be greater than the strength of the 

internal coupling within the QVCO. To satisfy this condition, the ratio of the size of the NMOS switches 

for the injection to that for the coupling was designed to be nine to one. Despite the relatively weak 

coupling within the QVCO, the 3-sigma value of the quadrature error of the QVCO in this work was 

1.8°, according to the Monte-Carlo simulation. Each VCO includes six-bit binary-weighted metal–

oxide–metal capacitors and a varactor to adjust fVCO. The six-bit capacitor bank is controlled by 

COAR<5:0> from the CFS in the coarse-tuning step. In the frequency-tracking mode, the varactor is 

adjusted continuously by VTUNE, which is generated from the FTL. 
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Figure 4.6. Schematics of (a) V-to-I amplifier and (b) QVCO 
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4.3.3. Quadrature Generator, the Pulse Generator, and the Switched RC-

filters 

To realize the complete concept, as shown in Fig. 4.4(a), an on-chip PLL generating 3–5-GHz signals 

should be designed together with the proposed ILFM. Then, a simple divide-by-2 divider could easily 

generate quadrature signals from the differential signals of the PLL. However, in this work, since only 

the proposed mm-wave ILFM was implemented as a prototype, no internal differential signals were 

available. Thus, the quadrature generator is based on a divide-by-4 divider, receiving an input signal 

with a frequency of 4fINJ from an external signal generator, and it consumes 2.2 mW. A quadrature error 

in the injection signals could lead to that in the output signals of the QVCO, which is more severe as N 

increases. However, this effect is significantly alleviated by the coupling within the QVCO. This is 

because although the coupling strength of the QVCO is weaker than the injection strength, it corrects 

the quadrature relationship of the output signals for a much longer time. According to the simulation, a 

1°-quadrature error in the injection signals caused a 2.1°-quadrature error in the output signals. This 

value can be further reduced by increasing the coupling strength of the QVCO at the expense of a slow 

operation of the FTL. 

Each of the four PGs consists of three inverters and a NAND gate. The width of the injection pulses 

PW was designed to be 15 ps, but it could change between 12 and 22 ps according to corner and 

temperature simulations. PW is an important factor to define the conversion gain Kθ2V from the phase 

error of the VCO’s signal to the dc voltage of VAQ+ (or VAQ−). From simulations to observe a change in 

the voltage of VAQ+ (or VAQ−) due to a phase error, Kθ2V’s were 0.39, 0.3, and 0.2 V/rad, when PW’s 

were 12, 15, and 22 ps, respectively. 

For the switched RC-filters, the resistance and the capacitance are approximately 2.1 kΩ and 100 fF, 

respectively. The NMOS switches used low threshold voltage devices, and the width and the length of 

the switches were designed to be 370 and 60 nm, respectively. To match capacitive loadings to the 

VCOs, dummy NMOS switches were also used for the outputs of VCO_I. Since the on-resistance of 

the NMOS switches was approximately 1.6 kΩ, the series resistors of the RC-filters were designed to 

have a resistance of 0.5 kΩ. The charge injection or sharing due to the switching of the RC-filters could 

cause undesired periodic phase shifts in the outputs of the VCO. However, from the simulation results, 

the phase shift due to this effect is almost negligible compared to other non-ideal factors, such as the 

quadrature error of the QVCO. This is because the size of the NMOS switches is very small, and the 

resistance of the switched RC-filters is large enough to suppress the charge sharing. Since the switched 

RC-filters are connected to the differential outputs of the VCO, the effects of delivered charges can be 

canceled out due to the nature of the differential signaling.  
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4.3.4. Coarse Frequency Selector 

Fig. 4.7(a) and (b) shows the schematics and the conceptual timing diagram of the CFS [63]. As 

shown in Fig. 4.7(a), the CFS consists of a window generator, an accumulator, and a calibration checker. 

Initially, fVCO is set to the maximum value with the lowest value of COAR<5:0>. As shown in Fig. 

4.7(b), the window generator provides a window signal, where its length corresponds to the difference 

between fVCO and N·fINJ. Every time when a window signal is generated, the calibration checker 

compares the length of the window signal with the reference time, i.e., 14.2 ns, generated by a five-bit 

counter. Then, if the length of the window is less than the reference time, the accumulator increases the 

value of COAR<5:0> by one, which decreases fVCO. This process is iterated until the difference between 
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(b) 

 
Figure 4.7. (a) Schematics of the CFS. (b) Conceptual timing diagram of the CFS. 
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fVCO and N·fINJ is sufficiently reduced, and, thus, Calib_done goes high. The frequency resolution of the 

CFS is fixed at approximately one third of the lock range. Since the CFS was designed to detect the 

difference between fVCO and N·fINJ using a D-flip-flop, DFF1, without the help of a frequency divider, it 

must suffer from a limited capture range. However, in this work, only one specific N is targeted for a 

given fINJ to generate the output frequency around 30 GHz; thus, this CFS circuit is sufficient to initialize 

fVCO before the operation of the continuous FTL. 

 

  



38 
 

 Analysis of Phase Noise and Static Frequency Offset 

4.4.1. Phase Noise of the Proposed ILFM 

Fig. 4.8 shows the noise model of the proposed ILFM. The units of the gains of the VCO, KVCO, the 

switched RC-filter, Hθ2V, and the V-to-I amplifier, Gm, are [rad/s/V], [V/rad], and [A/V], respectively. N 

is the multiplication factor, and CL is the value of the loop capacitance followed by the V-to-I amplifier.  

The symbol θINJ is the output-referred phase error of the injection clock, and θVCO,I and θVCO,Q are the  

output-referred phase errors of the two VCOs of the QVCO. The terms vn,SRC
2�������  and in,V2I

2������  are the  

output-referred voltage noise of the switched RC-filter and the output-referred current noise of the V-

to-I amplifier, respectively. The phase realignment by the injection clock can be modeled by the 

following three transfer functions: 
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Figure 4.8. Noise model of the proposed mm-wave ILFM. 
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where TINJ represents the period of injection clock and β is the phase realign factor that indicates the 

strength of the phase correction by the injection clock [7], ranging from zero to one. The transfer 

function of HUP(jω) in (1) represents the up-conversion of the injection signal noise to the output. In 

Fig. 4.8, θOUT,I represents the phase error of OUT_I+ (or OUT_I−), when its phase is realigned by INJ_I+ 

(or INJ_I−), and θOUT,Q represents the phase error of OUT_Q+ (or OUT_Q−), when its phase is realigned  

by INJ_Q+ (or INJ_Q−). The transfer functions of HRL_I(jω) in (2) and HRL_Q(jω) in (3) represent the 

effects of the phase realignment of the θOUT,I and θOUT,Q by the corresponding injection pulses, 

respectively. Since the phase of OUT_Q+ (or OUT_Q−) lags behind that of OUT_I+ (or OUT_I−) by a 

90°, HRL_Q(jω) in (3) includes the term of exp(−jωTINJ/4), different from HRL_I(jω) in (2). From the noise 

model in Fig. 4.8, the open-loop transfer function LG(jω) can be obtained as 

 

)(1)(2)( RL_Q
VCO

L
mθ2V ω

ωω
ωω jH

j
K

Cj
GjHjLG ⋅⋅⋅⋅⋅= ,  

1
)(

LPF

θ2V
θ2V +

=
ωω

ω
j

K
jH ,     (4) 

 

where ωLPF is the effective bandwidth of the low-pass filters in radian. Using (1) – (4), the noise transfer 

functions (NTFs) to the output θOUT,I from the noise sources can be obtained as: 
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In (5) – (7), HINJ(jω), HVCO_I(jω), and HVCO_Q(jω) represent the NTFs of the injection clock, the VCO_I, 

and the VCO_Q, respectively. Similarly, in (8) and (9), HV2I(jω) and HSRC(jω) are the NTFs of the V-

to-I amplifier and the switched RC-filter, respectively. The NTFs of the building blocks, (5) – (9), are 
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(b) 

 
Figure 4.9. NTFs of building blocks based on (5) – (9). (b) Estimated phase noise from the noise 

model. 
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plotted in Fig. 4.9(a). For the NTFs, KVCO, ωLPF, Gm, CL, and N are 800 MHz/V, 2π·25 Mrad/s, 150μA/V, 

10 pF, and 13, respectively. The injection frequency is 2.25 GHz and β is 0.3. (The value of β can be 

obtained by measuring the phase shift of the output signal of the VCO by that of the injection signal 

through simulations, as explained in [7].) These NTFs are also used to estimate the total phase noise of 

the ILFM and the noise contribution of each building block. In Fig. 9(b), the phase noise of each 

building block at the output is plotted by passing the noise data through the corresponding NTF. The 

noise data of the injection clock are from measurements, and those of other circuits are from post-layout 

simulations. Fig. 4.9(b) shows that the total phase noise is dominated by the noise of the injection clock. 

The noise from the building blocks of the FTL does not make any considerable contribution to the total 

phase noise; thus, the proposed ILFM is able to achieve ultra-low phase noise, which is very close to 

the theoretical minimum.  
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4.4.2. Static Frequency Offset by Mismatch Effects in the FTL 

As mentioned in Section 4.2, if the frequency error increases significantly with respect to the lock 

range, the performance of phase noise should be degraded. The fundamental mechanism of the proposed 

FTL for detecting the error in the frequency is to compare the relative phases of the differential output 

signals of a VCO with respect to the injection pulse. Therefore, if there were a mismatch between the 

two parallel lines, through which the differential outputs of the VCO proceed to the comparator, the 

precision of the FTL would be degraded severely. Fig. 4.10 shows the linear model, representing the 

effects of various mismatch factors from the QVCO to the V-to-I amplifier. In the modeling of the 

QVCO part, φSO represents the static phase offset of the VCO output from the ideal position, 

corresponding to the static frequency offset of the VCO, fSO, with respect to the target frequency. When 

the injection pulse is applied to the VCO, φSO is supposed to extend by N/β [7]. This effect is included 

as the last term in the model of the QVCO. According to the model in Fig. 10, fSO is determined mainly 

by the following three factors: 1) the quadrature phase mismatch of the QVCO ΔφQVCO; 2) the mismatch 

between the pair of the switched RC-filters ΔVSRC; and 3) the up/down current mismatch of the V-to-I 

amplifier ΔIV2I. Considering the input-referred value and using these three error factors, fSO can be 

represented as: 
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Based on the results of Monte-Carlo simulations, the 3-sigma values of ΔφQVCO, ΔVSRC, and ΔIV2I are 

 

 
 

Figure 4.10. Linear model of static frequency offset due to mismatch effect of FTL. 
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approximately 0.01π, 8 mV, and 3.6 μA, respectively. Considering the worst-case values of Kθ2V and 

Gm, i.e., 0.2 V/rad and 150 μA/V, the largest contribution to fSO comes from the up/down current 

mismatch of the V-to-I amplifier, and it is followed by the mismatch effect of the switched RC-filters. 

When fVCO and N are 29.25 GHz and 13, respectively, according to (10), the worst-case value of fSO is   

24.9 MHz, which is approximately 0.085% of fVCO. Since fSO is small compared to the lock range, which 

is larger than 200 MHz, it is concluded the degradation of the phase noise of the ILFM due to this 

mismatch effect is almost negligible. The level of the reference spur caused by this mismatch can be 

calculated from the equation, SpurdBc ≈ 20 log(N·| fSO / fOUT |) [15]. According to this equation, the 

largest level of the reference spur is −39.1 dBc. 
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 Experimental Results 

The proposed mm-wave ILFM was fabricated in a 65-nmCMOS technology, and the active area was 

0.11 mm2, as shown in Fig. 4.11(a). According to the table in Fig. 4.11(b), the total power consumption 

of this paper was 24.3 mW, but the proposed ultra-low-power FTL consumed only 600μW. Using the 

injection clock with a frequency between 2 and 2.4 GHz, the proposed ILFM is capable of generating 

the output frequency from 27.4 to 30.8 GHz. Fig. 4.12 shows the spectrum and the phase noise, 

measured using a spectrum analyzer, Agilent PXA N9030A. To achieve sufficient output power for the 

accurate measurement of phase noise, fOUT was reduced to fDIV3 by the on-chip divide-by-3 test divider. 

In this measurement, the frequency of the output signal (or fOUT) was 29.25 GHz, when N was 13, and 

the injection frequency (or fINJ) was 2.25 GHz. Fig. 4.12 also shows the phase noises of the output of 

the test divide-by-3 divider (fDIV3 = 9.75 GHz) and the injection signal. The injection signal was 

generated from a signal generator, Agilent N5183A. The difference between the levels of phase noises 

of the output and the injection signals is very close to the theoretical value, i.e., 20 log(fDIV3/fINJ) up to 

100 MHz, implying the noise added by the ILFM is extremely small. From the measurement data at the 

output of the test divide-by-3 divider, the noise of the original output signal at fOUT of 29.25 GHz can 

be restored to the phase noise of −129.7 dBc/Hz at 10-MHz offset and the IPN from 1 kHz to 100 MHz 

of −39.1 dBc. Even when the FTL was turned OFF, no noticeable differences were observed. To verify 

Power Consumption (mW)

QVCO 17.5

PGs 4.0

Quad. Gen. 2.2

FTL (V-to-I Amp.) 0.6

Total 24.3

(a)                                    (b) 

Figure 4.11. (a) Die photograph. (b) Power-breakdown table. 



45 
 

the validity of the noise model, presented in Section 4.4, the estimated phase noise from this noise 

model also was plotted together in Fig. 4.12. The data of phase noises of the injection clock and the 

free-running VCO were obtained from the measurements, while the data of the noises of the switched 

RC-filter and the V-to-I amplifier were from the post-layout simulations. The estimated phase noise 

from the noise model shows a good agreement with the measurement result. The level of the reference 

spur shown in Fig. 4.12 is relatively high, compared to the estimated value in the analysis of Section 

4.4. This is because the minimum level of the spur that could be measured was restricted by external 

causes, such as the direct couplings of the injection signal to the output path. Since the strength of a 

high-frequency output signal decreases along the inverter chain of the test buffer, the coupling of the 

injection signal to the test buffer through the substrate or the power line could be a major cause. Fig. 

4.13 shows the spectrum and the phase noise of the output signal with fOUT of 30 GHz, when fINJ was 2 

GHz, and N was 15. From the phase noise measured at fDIV3 of 10 GHz after the on-chip divide-by-3 

test divider, the 10-MHz phase noise and the IPN at fOUT of 30 GHz can be estimated as −127.9 dBc/Hz 

and −38.6 dBc, respectively. 

 
 

Figure 4.12. Measured spectrum and phase noise of the output signal with 29.25 GHz (fINJ = 2.25 
GHz, N = 13) with estimated phase noise from the noise model in Section 4.4. 
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In Fig. 4.14(a) and (b), the variations of the phase noise were measured, when the temperature and 

the supply voltage were changed from 20 °C to 100 °C and from 0.9 to 1.35 V, respectively. The phase 

noises were also measured at the output of the divide-by-3 divider (fDIV3 = 9.75 GHz), to which the 

29.25-GHz output signal transferred. When the FTL was turned OFF, as the temperature and the supply 

voltage changed, fVCO deviated gradually from the target frequency. When the drift of fVCO approached 

fL, which was around 200 MHz, the performance of the phase noise was degraded rapidly. When the 

FTL was turned ON, on the other hand, fVCO was adjusted continuously by the proposed FTL; thus, the 

degradation of phase noise was tightly regulated to less than 2 dB, irrespective of the changes of the 

temperature and the supply voltage. The tracking range was measured by changing fINJ, until the FTL 

could not track the drifts of fVCO and the injection lock was released. The measured tracking range was 

greater than 1 GHz. Fig. 4.15(a) shows the variations of spot noises at offsets of 10 and 100 MHz, 

measured from five different chips, while the temperature was changed from 20 °C to 100 °C. In the 

measurements, N was fixed at 13 with fINJ and fDIV3 of 2.25 and 9.75 GHz, respectively. Across 

temperatures, the phase noises were regulated stably in all test chips, implying the proposed FTL 

 
 

Figure 4.13. Measured spectrum and phase noise of the output signal with 30.0 GHz (fINJ = 2.0 GHz, 
N = 15). 
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operated properly in different samples. Fig. 4.15(b) shows the variation of the phase noises at the same 

offsets, when fOUT was swept by changing fINJ. To sweep fOUT from 27.4 to 30.8 GHz, fINJ changed from 

2.10 to 2.37 GHz, respectively, while N was fixed as 13. According to Table 2 that compares the 

performances of this work with those of state-of-the-art mm-wave ILFMs, the ILFM in this work 

achieved the lowest IPN and rms jitter, irrespective of PVT-variations, although the FTL consumed only 

600μW. 
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(a) 

 

 
(b) 

 
Figure 4.14. Measured phase noise at the frequency of 9.75 GHz (29.25 GHz /3) over (a) 

temperatures and (b) supply-voltages, when the FTL was on or off. 
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(a) 

 

 
(b) 

 
Figure 4.15. Measured phase noise at fDIV3 across (a) temperatures for five different chips and (b) 

output frequencies from 27.4 to 30.8 GHz (fINJ changed with a fixed N of 13). 
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Table 2. Performance Comparison with State-of-the-Art mm-Wave ILFMs 
 

 This work JSSC’15 [48] JSSC’13 [56] ISSCC’16 [57] 

Process 65 nm CMOS 40 nm CMOS 65 nm CMOS 130 nm CMOS 

Cal. method 
Real-time cal. 

Phase-dev. averaging 
Yes 

No calibration 
No 

Mixer-based 
Yes 

Envelope detecting 
No 

Injection freq., fINJ 2.0 – 2.4 GHz 2.16 GHz 17.9 – 21.7 GHz 8.8 – 10 GHz 

Output freq., fOUT 27.4 – 30.8 GHz 58.0 – 63.0 GHz 58.1 – 65.0 GHz 26.5 – 29.7 GHz 

1MHz PN 
@fOUT 

−115.6 dBc/Hz* 
@29.25 GHz  

−104.0 dBc/Hz  
@58.32 GHz 

−95.7 dBc/Hz  
@61.56 GHz 

−106.8 dBc/Hz  
@26.54 GHz 

10MHz PN 
@fOUT 

−129.7 dBc/Hz* 
@29.25 GHz 

−109.0 dBc/Hz  
@58.32 GHz 

−117.2 dBc/Hz  
@61.56 GHz 

−118.9 dBc/Hz  
@26.54 GHz 

IPN/ JitterRMS 

@fOUT 
[Integ. Range] 

(JitterRMS @fINJ) 

−39.1 dBc*/ 86 fs 
@29.25 GHz  

[1 kHz–100 MHz] 
(76.8 fs @2.25 GHz) 

−10.2 dBc/ 1.2 ps 
@58.32 GHz  

[1 kHz – 100 MHz] 
(1.09 ps @2.16 GHz) 

7.5 dBc/ 8.7 ps  
@61.56 GHz  

[1 kHz – 40 MHz] 
(NA) 

−33.8 dBc/ 174 fs 
@26.54 GHz  

[100 kHz – 100 MHz] 
(135.8 fs @8.85 GHz) 

Tot. power/Cal. only 24.3 mW/ 600 μW 32 mW/ NA NA**/ 65 mW 23.2 mW/ 2.4 mW 

Active area 0.11 mm2 0.07 mm2 1.52 mm2 *** 0.09 mm2 

* Restored from the PN measured at 9.75 GHz (or 29.25 GHz/3) through the test divide-by-3 divider 
** No reported power consumption of the ILFM only (total power including 20 GHz PLL is 137 mW)    
*** ILFM only 
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 Discussion 

In this paper, we presented a PVT-insensitive and low-phase-noise mm-wave ILFM that used the 

proposed ultra-low-power FTL, which was capable of calibrating real-time frequency drifts. By 

monitoring the instantaneous distortion between the quadrature phases of the QVCO, caused when the 

frequency of the VCO deviates from the target frequency, the FTL can continuously track and correct 

the drifts of the frequency of the VCO due to environmental variations. Therefore, it can tightly regulate 

the degradation of phase noise. Since the proposed FTL monitors the averages of phase deviations rather 

than samples the instantaneous values, it uses only 600 μW to keep calibrating the mm-wave ILFM. 

The ILFM generated the output signal with a frequency ranging from 27.4 to 30.8 GHz. The 10-MHz 

phase noise of the 29.25-GHz output signal was −129.7 dBc/Hz, and its variations across temperatures 

and supply voltages were less than 2 dB. The IPN integrated from1 kHz to 100 MHz and the rms jitter 

were −39.1 dBc and 86 fs, respectively. 
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A Low-Jitter and Low-Reference-Spur Ring-VCO-Based 

Injection-Locked Clock Multiplier Using a Triple-Point 

Background Calibrator 

 

 

 Motivation 

Continuous increases in the data rates of either wireline or wireless communication system are 

requiring further improvement in the jitter performance of clock signals. To date, conventional phase-

locked-loop (PLL) architectures that use an LC-type, voltage-controlled oscillator (LC-VCO) have been 

used the most extensively in practical applications [65] – [75]. However, the most critical problem of 

these LC-VCO-based PLLs is their large silicon areas since they use many passive components, such 

as an inductor in the LC tank and capacitors in the loop filter. This problem of conventional LC-VCO-

based PLLs has prevented modern system-on-chips (SoCs) from efficiently using silicon in deep-sub-

micron technologies. To overcome this limit, a ring-VCO-based injection-locked clock multiplier 

(ILCM) is now considered to be an alternative solution. (In the broad sense that the jitter of the VCO is 

removed periodically by the reference clock, a multiplying delay-locked loop also can be categorized 

as a type of ILCM). In ILCMs, the phase (or timing) of the output edges of a free-running VCO is 

corrected naturally by reference signals that are injected periodically [5]. This phase-realignment 

mechanism of an ILCM is capable of creating a much higher cutoff frequency of the noise transfer function 

(NTF) of the VCO compared to conventional PLLs, thereby resulting in much greater suppression of the 

jitter of ring VCOs [7]. 

Despite the superiority of ILCMs in the reduction of the jitter of ring VCOs, they have a critical 

problem. This problem occurs because the phase-realignment mechanism of ILCMs has no capability 

of frequency correction even though it does have the capability of phase correction [76]. Thus, when 

the free-running frequency of the VCO, fVCO, drifts from the target frequency, N·fREF, (where N and fREF 

are the target harmonic index and the frequency of the reference clock, respectively), the performances 

of the RMS jitter and reference spur can be degraded significantly. The impact of this problem is more 

severe in the degradation of the reference spur than in the degradation of the RMS jitter, so even a slight 

error in fVCO could result in a significant increase in the reference spur, according to [26]: 
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Ref. Spur (dBc) ≈ 20log(N∙| fERR(%)|),                         (1) 

 

where fERR is the frequency deviation of fVCO from the target frequency, N·fREF. With plotting (1) with 

respect to fERR, Fig. 5.1 shows that the level of the reference spur increases steeply as the amount of fERR 

grows. When N is ten, only 0.1%-fERR of the VCO causes a reference spur of −40 dBc. Moreover, since 

the level of the reference spur is supposed to increase in proportion to N, it is very difficult to reduce 

the level of the spur sufficiently for a high N, e.g., to be less than −60 dBc.  

 

To address this problem, ILCMs must be equipped with a dedicated calibrator that can correct fVCO 

continuously in the background. Recently, various architectures of the calibration have been developed, 

and, thus, many ILCMs have achieved a very low jitter and the excellent figure of merit of jitter (FoMJIT) 

[25] – [31], [77] – [81]. Nevertheless, to date, none of them has succeeded in reducing the level of the 

reference spur to a level comparable to that of PLLs. This is because conventional calibrators have not 

considered all causes of the generation of the frequency errors of ILCMs, fERRs (Two other causes hinder 

the precise calibration of the frequency calibrator). Therefore, to minimize the level of the reference 

spur as well as the RMS jitter, a background calibrator for ILCMs should be not only precise but also 

versatile so that it can accurately remove all three root causes of fERRs: 1) frequency drift due to voltage 

and temperature fluctuations, 2) phase offset due to any systematic errors of calibrators, and 3) slope 

modulation due to the periodic injection of a reference signal. The orthogonal mechanisms of the 

generation of these three causes of fERR and the limits in the capability of conventional calibrators are 

explained in detail in Section 5.2. 

 

fERR (%)
0

20dB

20log ( (= 0.01%

40dB
= 0.1%

= 1%

N· fERR

R
ef

. s
pu

r| N
=1

0 (
dB

c)

-20

-40

-60

fERR

fERR

fERR

| |
 

 
Figure 5.1 Level of reference spur with respect to fERR. 
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In Chapter 5, we propose a ring-VCO-based ILCM that can achieve both a low RMS jitter and low 

reference spur with a background triple-point frequency/phase/slope calibrator (TP-FPSC) [82]. It can 

remove all three causes generating fERRs accurately since the proposed TP-FPSC provides three 

orthogonal mechanisms of calibrations, and thus, the ILCM becomes capable of minimizing the level 

of the reference spur. In addition, a calibration loop of the frequency drift is designed to have a wide 

bandwidth, which helps to further suppress the flicker noise of the ring VCO and to achieve an even 

lower RMS jitter. 

The rest of this paper is organized as follows. Section 5.2 discuss the three root causes of frequency 

errors and the limits of conventional calibrators. Section 5.3 presents the architecture and the 

mechanism of the ILCM using the proposed TP-FPSC. Section 5.4 presents the building blocks of the 

ILCM. Section 5.5 presents the experimental results, and Section 5.6 presents the conclusions that were 

made based on this work.   
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 Analysis on Frequency Error Generation Mechanisms of Root Causes 

and Limits of Conventional Calibrators 

5.2.1. Three Root Causes of Frequency Errors and Limits of Conventional 

Calibrators 

Fig. 5.2 shows the three root causes of fERR in an ILCM. The first root cause of fERR is the frequency 

drift, fDF, that occurs when fVCO deviates from N·fREF due to variations in the supply or the temperature. 

Figs. 5.3(a) and (b) represent the effect of fDF in the ILCM and how conventional calibrators, such as 

the one in [29], correct it. Fig. 5.3(a) shows the conceptual block diagram of an ILCM that receives the 

injection signal, SINJ, from the reference clock, SREF. While there are many other prior calibrators that 

can remove fDF (the frequency drift), Fig. 5.3(a) was drawn based on the most general architectures, i.e., 

those that used a delay line after the VCO, as presented in [29]. In Fig. 5.3(a), ϕOUT[k] represents the kth 

phase of the output signal, SOUT, where 1 ≤ k ≤ N. When k = 1, the injection occurs, realigning ϕOUT. 

Under the assumption that SOUT is delayed exactly by the amount of the VCO period, TVCO, at the output 

of the delay line, ϕOUT_D[k], the phase detector (PD) of the calibrator can detect fDF by comparing the 

phase difference between ϕOUT[k] and ϕOUT_D[k]. Fig. 5.3(b) shows that, when fDF exists, the phase error 

of SOUT accumulates over the N cycles of the VCO’s signal before the rising edge of SOUT is realigned 

by that of SINJ. At the moment of the injection (k = 1), the phase error of ϕOUT[k] is cleared by the 

injection, while ϕOUT_D[k] still retains the previous phase error of ϕOUT[k]. Thus, by observing ϕPD[1], 

which is the phase difference between ϕOUT[1] and ϕOUT_D[1], the information of fDF can be detected. 

This first cause of fERR (i.e., fDF) has been addressed by many conventional calibrators in [25] – [31], 

[77] – [81], although each of them used a different method, e.g., delay lines [25], [29], a time-to-digital 

converter (TDC) [15], and replica VCOs [19], [20], [78]. However, these frequency calibrators failed 

to completely remove fDF because they had practical issues that limited the accuracy of the calibration, 

such as the mismatches of the delay cells in a delay line and the input offsets of a PD [25], [29], the 
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Figure 5.2. Three causes of the frequency error in ILCMs. 
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limited resolution of the TDC [15], and the mismatches of replica VCOs and signal paths [19], [20], 

[78]. These systematic errors of the conventional frequency calibrators leave a remaining fERR, which 

generates the second cause, i.e., the phase offset, ϕOS. Figs. 5.4(a) and (b) show how ϕOS can generate 

fERR even when no fDF exists. Specifically, in the case of using the calibrator in [29], the error in the 

delay time of the delay line, which is also varied due to supply and temperature variations, and the input 

offsets of the PD cause ϕOS. Then, as shown in Fig. 5.4(b), this ϕOS generates a constant phase error in 

ϕPD[k]. In this case, the calibrator reacts as if this phase error were generated due to fDF, even though it 

actually was caused by ϕOS. Due to this confusion, the calibrator will tune fVCO to reduce the phase error, 

and the end result will be the generation of fERR. 
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Figure 5.3. (a) First cause of fERR in ILCMs, i.e., frequency drift; (b) mechanism of the generation of 

fERR due to frequency drift. 
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Figure 5.4. (a) Second of fERR, i.e., phase offset, in conventional frequency calibrators; (b) 
mechanisms of fERR generation due to phase offset. 
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Figure 5.5. (a) Third causes of fERR, i.e., slope modulation, in conventional frequency calibrators; (b) 

mechanisms of fERR generation due to slope modulation. 
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Figure 5.6. Conventional frequency calibrators for removing fDF & ϕOS based on (a) DTC; and (b) 
DCDL. 
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More advanced ILCMs have been presented recently to remove fERR due to ϕOS as well. Fig. 5.5(a) 

shows the ILCM in [30] used an additional calibrating circuit to remove ϕOS, i.e., a digital-to-time 

converter (DTC). Fig. 5.5(b) shows the ILCM in [31] used an additional digitally-controlled delay line 

(DCDL) to remove ϕOS due to the input offsets of the PD and the mismatches between the two parallel 

signal paths. Despite the additional calibration efforts, they failed to reduce the reference spurs 

sufficiently e.g. less than −65 dBc. This is because, to date, none of the ILCMs has taken into 

consideration the third cause, i.e., the slope modulation of the edges of the output signal, that occurs 

due to the periodic injection of reference signals. Figs. 5.6(a) and (c) show how the slope modulation 

generates fERR. (We assumed that there is no fERR due to either fDF or ϕOS.) When the injection of SINJ is 

strong, the slope of the rising edges of SOUT, i.e., SLINJ, could be steeper than that of the original edges, 

i.e., SLNO-INJ, by ΔSL. These steeper rising edges due to this slope modulation cause the positions of 

subsequent rising edges to be shifted forward, ultimately causing the phase error in ϕPD[1]. Then, the 

calibrator would try again to adjust fVCO to remove the error in ϕPD[1], which generates fERR and, 

eventually, prevents the ILCMs from achieving the minimum level of the reference spur.   
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5.2.2. How Slope Modulation Generates Phase Error and thus Frequency 

Error 

Figs. 5.7(a) and (b) show how phase error is generated by the slope modulation in ILCMs. Fig. 5.7(a) 

shows that SINJ with a variable SLINJ is injected to a ring VCO consisting of five delay cells, each of 

which has a unit delay, τ0. Fig. 5.7(b) shows that the change in SLINJ changes the propagation delay of 

an inverter chain [83]. When SLINJ is the same as SLNO-INJ, the total delay time after passing four delay 

cells is 4τ0 at SO,5, since the injection of SINJ does not change the delay of the second inverter, D2, (i.e., 

still τ0). However, when SLINJ is greater than SLNO-INJ, the magnitude of the current of D2 increases as 

the slope of the entering edge of SO,1 is steeper, making the falling edge of SO,2 fall faster. Thus, due to 

the reduction of the delay of D2, the total delay time of the inverter chain becomes less than 4τ0. On the 

contrary, when SLINJ is less than SLNO-INJ, the reduced current of D2 makes the falling edge slower and 

extends the delay. As a result, the total propagation delay becomes more than 4τ0. In summary, as shown 

in Fig. 5.7(b), even though the change in the slope of the inverters fades at SO,5 after passing through an 

inverter chain, the change in the propagation delay remains as a static phase shift. 

Fig. 5.8(a) shows the simulation result of the amount of the phase shift over the different ratios of 

SLINJ to SLNO-INJ. In this simulation, fDF and ϕOS were assumed to be zero (i.e., only the effect of the slope 
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Figure 5.7. Mechanism of the slope modulation generating phase shift in SOUT (a) five-stage ring 
VCO having the injection of SINJ; (b) difference in slopes fades after a chain of inverters, but the 

phase shift remains. 
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modulation was considered), and fREF and fVCO were 100 MHz and 2.4 GHz, respectively. According to 

the simulation, the absolute value of the phase shift increased almost linearly as the ratio of SLINJ to 

SLNO-INJ deviated from one, and this result corresponded well with the analysis in [83]. The black dotted 

line in Fig. 5.8(b) shows the simulation result of the level of the reference spur when the same conditions 

as Fig. 4(a) were applied without the use of any calibrators. As the ratio of SLINJ to SLNO-INJ deviated 

from one, the level of the reference spur increased, following a logarithmic line. In Fig. 4(b), the red 

dotted line represents the level of the reference spur when a conventional calibrator that can remove fDF 

and ϕOS was used to remove ΔSL. Paradoxically, according to the simulation result, when a conventional 

calibrator was used, the level of the reference spur increased even more significantly. When the ratio of 

SLINJ to SLNO-INJ changed from 0.99 to 0.75, the degradation in the reference spur was more than 25 dB. 

This result occurred because the use of a conventional frequency calibrator generated a significant fERR 

when the phase shift due to the slope modulation existed. Since the conventional calibrator tried to 

remove the phase shift due to the slope modulation by adjusting fVCO (as shown in Fig. 5.6(b)), instead 

it generated an fERR, resulting in a significant increase in the reference spur. This result strongly 
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Figure 5.8. (a) Simulated phase shifts due to the slope modulation assuming neither fDF nor ϕOS 

without any calibrators; (b) simulated reference spur with a calibrator removing fDF and ϕOS (red) or 
without any calibrators (black). 
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supported the claim that, to solve the problem of the reference spur fundamentally, ILCMs must be 

equipped with a more versatile calibrator that can correct the slope modulation as well as the frequency 

drift and the phase offset.  
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 ILCM Using the Proposed Background TP-FPSC 

5.3.1. Overall Architecture of the ILCM with the Background TP-FPSC 

To remove the all three root causes of fERR, i.e., the frequency drift, the phase offset, and the slope 

modulation, we proposed the TP-FPSC. By including a slope controller, the TP-FPSC can keep 

adjusting the slope of the edges of SINJ so that all edges of SOUT can maintain the same slope in any 

conditions. Since the slope of the edges of SINJ is adjusted such that the injection does not cause any 

phase distortions, the slope controller can address any other minor causes of phase errors that are related 

to the injection of SINJ, such as charge injection, clock feedthrough, and substrate coupling, which cannot 

have been corrected by conventional calibrators. 

Fig. 5.9 shows the overall architecture of the proposed ILCM, designed with a five-stage ring VCO. 

To ensure low reference spur as well as low RMS jitter, it is equipped with the proposed TP-FPSC (in 

blue background), which consists of a voltage-controlled delay line (VCDL), a bang-bang PD (BBPD), 

a multi-control-voltage (VC) generator (MVG), and the slope controller. The TP-FPSC generates three 

independent VCs, each of which is delivered to a different target circuit and used for one of the three 

orthogonal calibration mechanisms. First, VC1 is used for the VCO to make fVCO close to N·fREF, thereby 

removing the frequency drift. Second, VC2 is used for the VCDL, which generates SVCDL by delaying 

SOUT by τVCDL. According to VC2, τVCDL is adjusted to be near 2TVCO, where TVCO is the reciprocal of fVCO. 

During this process, the phase offset from any systematic errors, such as the input offsets of the PD and 

the mismatches between the two signal paths to the PD, also can be cancelled. Third, most importantly, 

VC3 is used for the slope controller to equalize the slopes of SOUT, either when SINJ is injected or not, so 

that the slope modulation is eliminated.  
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Figure 5.9. Overall architecture of the proposed ILCM with the triple-point frequency/phase/slope 
calibrator (TP-FPSC). 
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Fig. 5.10 shows that the TP-FPSC uses one bang-bang PD (BBPD) to extract all information required 

for the three orthogonal calibrations. The PD detects the phase difference, ϕPD, between the two input 

signals, i.e., SOUT and SVCDL. Then, it provides the MVG with its one-bit output, PDOUT, having the 

polarity information of ϕPD. The MVG includes three D-flip-flops (DFFs) to sample PDOUT from the PD 

sequentially at different timings, so that three sets of independent information can be extracted from the 

same output, i.e., PDOUT. In the timing diagram in Fig. 5.10, FEk (1 ≤ k ≤ N) represents the kth falling 

edge of SOUT after the injection of SINJ. Following this notation, PDOUT is sampled sequentially at FE1, 

FE4, and FE2 by the three DFFs of the MVG, generating three corresponding one-bit error codes, DER1, 

DER2, and DER3, respectively. Each of these three error codes, DERj, enters the jth analog accumulator (A-

ACC) and determines whether charges will be sourced to or extracted from the loop capacitor CLj. 

Finally, all three VCjs are updated concurrently during a short pulse, PSUD, which is created from FE5 

by the pulser. Whereas, to achieve a high resolution, typical digital accumulators require a large number 

of bits or a delta-sigma modulator (DSM), the proposed A-ACC easily can enhance the resolution just 

by decreasing the pulse width of PSUD. Different from conventional charge pumps, the pulse width of 

PSUD is fixed so that the digital information from the BBPD is accumulated in CLj in a discrete manner. 
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Figure 5.10. Implementation of TP-FPSC. 
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5.3.2. Three Error Detection Mechanisms of the TP-FPSC 
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Figs. 5.11(a) – (c) show how these three causes of fERR, i.e., the frequency drift, the phase offset, and 

the slope modulation, can be detected at PDOUT. For easy understanding by simplifying situations, the 

value of N is assumed to be five. We also assume each case of Figs. 5.11(a) – (c) includes only a single 

cause at a time. This latter assumption is valid, since the three causes of fERR are orthogonal one another. 

First, Fig. 5.11(a) shows how the frequency drift can be detected, when fVCO is higher than N·fREF so that 

fERR is positive, whereas τVCDL is 2TVCO and SLINJ is equal to SNO-INJ. In this case, the effect of the 

frequency drift of fVCO appears in ϕPD, when the first rising edges of SOUT and SVCDL or the second rising 

edges of SOUT and SVCDL are compared by the PD. This is because SVCDL is the 2TVCO-delayed version of 

SOUT since τVCDL is fixed at 2TVCO. In the implementation, we used FE1 to sample PDOUT, which generates 

DER1. Second, Fig. 5.11(b) shows the detection of the phase offsets, when τVCDL is larger than 2TVCO 

while fERR is zero and SLINJ is equal to SNO-INJ. In this situation, since τVCDL is deviated from 2TVCO due 

to any static errors of the frequency calibrator, ϕPD becomes constant for all rising edges of SOUT and 

SVCDL. In this work, we used FE4 to sample PDOUT, which generates DER2. Third, Fig. 5.11(c) shows 

how the slope modulation can be detected, when SLINJ differs from SNO-INJ. After the two foregoing 

calibrations are done, fERR is not completely removed due to the slope modulation. The effect of this 

slope modulation is detected by sampling PDOUT by FE2. PDOUT sampled by FE2 also could include a 

little information of the frequency drift. However, since the frequency calibration was designed to have 
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Figure 5.11. Three causes detection mechanisms of the TP-FPSC; (a) frequency drift, (b) phase offset, 
and (c) slope modulation. 
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a much wider bandwidth, (which is discussed later in Section 5.3.3) the frequency drift is supposed to 

be removed earlier by VC1; thus, we consider that almost all phase error at PDOUT at the moment of FE2 

is due to the slope modulation. As mentioned at the beginning of Section 5.3.1, this mechanism also can 

detect any phase errors, occurring due to the injection of SINJ, such as charge injection, clock feedthrough, 

and substrate coupling.  
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5.3.3. Settling Behaviors of Three Calibrations of the TP-FPSC 

In the timing diagrams in Fig. 5.11(a) – (c), for easy explanation, we assume each of the three cause 

to be singled out. However, their effects would be mingled one another in real situations, and the three 

calibrations would proceed concurrently. Fig. 5.12 shows the simulation results of the settling of the 

three control voltages. To secure the stability, we designed differently each bandwidths of the three 

calibrating loops, resulting in different settling speeds of VC1, VC2, and VC3. Since the frequency 

calibration has the largest loop bandwidth, VC1 settles the first. At this moment, SOUT already can have 

an ultra-low jitter, but it cannot have a low reference spur yet, because the other two root causes of fERR 

still remain. Since the phase-offset calibration has the second largest bandwidth, VC2 settles the next. 

VC3 settles the last since the slope calibration has the smallest bandwidth. After the settlement of VC3, 

finally, the ILCM can achieve both a low reference spur and a low jitter. The bandwidth of the frequency 

calibration was designed to be ten times larger than that of the phase-offset calibration. The bandwidth 

of the slope calibration was designed to be one tenth of that of the phase-offset calibration. Since the 

bandwidths of the three calibrating loops were designed such different, the proposed architecture can 

secure the stability. As shown in Fig. 5.12, the frequency calibration finishes in less than 10 μs so that 

the ILCM can start generating the accurate output frequency very shortly. 
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Figure 5.12. The settling behaviors of three control voltages in the TP-FPSC. 
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 Design of Sub-Building Blocks: Slope Controller, VCO, and VCDL 

Fig. 5.13(a) shows the schematics of the slope controller. The slope controller consists of three 

current-starved inverters, a NAND gate, and simple inverters, and it can control the slope of SINJ simply 

by adjusting the bias voltage, VC3, of the tail transistors of the three current-starved inverters. The delay 

between SREF and SINJ, which is generated by the slope controller is very small, thereby causing just 

negligible impact on RMS jitter. Fig. 5. 13(b) shows the ring VCO following the slope controller 

consists of five-stage delay cells, each of which has a capacitor bank, CBANK1, digitally controlled by 

COARSE1 and a varactor, CVAR1, continuously adjusted by VC1 from the TP-FPSC. Each delay cell is 

based on an inverter having two input ports, INVCO and ININJ, either of which is activated according 

to control signals entering two ports, ENVCO and ENINJ. As shown in Fig. 5.13(b), for the first delay 

cell of the VCO, its INVCO and ININJ ports are connected to the output of the last delay cell and SINJ, 

respectively. However, for other four delay cells, ININJ port is fixed at ‘1’, whereas INVCO port is 

connected to its previous delay cell. Therefore, these four delay cells always receive the output signals 

of their previous delay cells as the inputs, and, for doing this, their ENVCO and ENINJ ports are also 

fixed at ‘0’ and ‘1’, respectively. As shown in timing diagram of Fig. 5.13(a), the two control signals, 

i.e., WIN and WINb, for activating either of the two input ports of the first delay cell are generated by 

the slope controller using SA and SB. Since SA and SB are generated before and after SINJ, respectively, 

they can enclose SINJ safely irrespective of PVT-variations. When WIN = 0 and WINb = 1, the first delay 

cell receives the output of the previous delay cell; thus, the VCO is free-running. On the other hand, 

when WIN = 1 and WINb = 0, the delay cell receives SINJ, of which the slope has been already adjusted 

by the slope controller to be the same as that of the output signal of the free-running VCO. Fig. 5.13(c) 

shows the schematics of the VCDL consisting of an inverter chain. To change the amount of delay, a 

capacitor bank, CBANK2, at the output of each inverter is controlled by COARSE2 and a varactor, CVAR2, 

is adjusted by VC2. The buffer was used to reduce the loading and coupling effects to the VCO from the 

VCDL. 
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Figure 5.13. Schematics of (a) slope controller, (b) VCO, and (c) VCDL. 
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 Experimental Results 

Fig. 5.14(a) shows the micrograph of this ILCM, fabricated in a 65-nm CMOS technology. The active 

area of the ILCM was 0.055 mm2. Fig. 5.14(b) shows that the total power consumption was 11.0 mW 

from a 1.1-V supply; the ring VCO, the VCDL, and other building circuits (including the PG, the BBPD, 

and the MVG) consumed 7.5, 3.0, and 0.5 mW, respectively. Figs. 5.15(a) – (c) show the measured 

spectrums of the 2.4-GHz output signal of the ILCM (fREF = 100 MHz and N = 24) for different 

configurations of the proposed TP-FPSC. First, Fig. 5.15(a) shows the spectrum, when all three 

functions of the TP-FPSC were completely turned off. (The frequency of the VCO was manually 

adjusted to achieve the injection locking.) In this situation, the output signal of the ILCM were prone 

to all three causes of the frequency error; thus, the measured level of the reference spur was high as 

approximately −33 dBc. Second, Fig. 5.15(b) shows the spectrum, when two functions of the TP-FPSC, 

i.e., frequency calibration and the phase-offset calibration, were turned on, so the level of the reference

spur was decreased to −64 dBc. Finally, when all three functions including the slope calibration were 

turned on, all three root causes of the frequency error were removed, and the level of the reference spur 

was reduced to −72 dBc, as shown in Fig. 5.15(c). Fig. 5.15(d) shows the measured spectrum of the 

2.5-GHz output signal, when all three functions of the TP-FPSC were turned on. The level of the 

reference spur was −72.9 dBc. Fig. 5.16 show the levels of the reference spur across different output 

frequencies measured from five different chips. To sweep output frequency, N changed from 22 to 25, 

while fREF was fixed as 100 MHz. These measurement results show that the levels of the reference spurs 
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Figure 5.14. (a) Die photograph. (b) Power-breakdown table. 
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were constantly regulated to less than −70 dBc over different output frequencies and five different chips. 
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Figs. 5.17(a) and (b) show the measured phase noises of the output signal at 2.4 and 2.5 GHz, 

respectively, when the 100-MHz reference clock was used. Since the injection-locking mechanism had 

a very wide bandwidth, when the reference clock was injected, the phase noises of the ring VCO were 

suppressed greatly at both frequencies. When the TP-FPSC was turned on, the wide bandwidth of the 

frequency calibration provided an additional suppression to the in-band phase noise of the VCO, so that 

the ILCM was able to achieve an ultra-low jitter. The RMS jitters, integrated from 10 kHz to 30 MHz, 

were approximately 136 fs at both frequencies, i.e., 2.4 and 2.5 GHz. At both output frequencies 

commonly, the spot noises at 100 kHz and 1 MHz were −122 and −129 dBc/Hz, respectively. Fig. 5.18 

shows that this low-jitter performance was maintained robustly across the output frequencies ranging 

from 2.2 to 2.5 GHz in all five different chips. 
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Figure 5.16. Variations of reference spurs over output frequencies in five different sample chips. 
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Figure 5.15. Measured spectrum of the output signal with a frequency of 2.4 GHz, when (a) TP-

FPSC was turned off, (b) fDF and ϕOS calibrations were turned on, but ΔSL calibration was turned off, 
(c) TP-FPSC was fully turned on. (d) Measured spectrum of the output signal with 2.5 GHz. 
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Figure 5.17. Measured phase noise, when the TP-FPSC was turned on and off at (a) 2.4 GHz and; (b) 

2.5 GHz. 
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Figure 5.18. Variations of integrated RMS-jitter over output frequencies in five different sample 
chips. 
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76 
 

  

 

Table 3 C
om

parison w
ith R

ing-V
C

O
-B

ased IL
C

M
s 

 

 



77 
 

In Table 3, the performance of the proposed ILCM was compared with those of state-of-the-art ring-

VCO-based ILCMs equipped with calibrators that were able to correct only the frequency drift or both 

the frequency drift and the phase offset to maintain the performance of the RMS jitter and the reference 

spur. The comparison table shows that the ILCM in this work can achieve not only the lowest RMS 

jitter but also the lowest reference spur by using the proposed TP-FPSC; thus, it achieved the excellent 

FoMJIT. The performance of this ILCM with the TP-FPSC is more conspicuous in the FoMJIT2, in which 

the noise power of the reference spur (outside the integration range) is included to calculate the RMS 

jitter. Having a much lower reference spur than others, this work achieved the FoMJIT2 that is at least 3 

dB better than other ILCMs. Table 3 shows that this work also achieved the best FoMREF [84], in which 

FoMJIT is normalized to the value of fREF. The benchmarking of the state-of-the-art ring-VCO-based 

ILCMs in Fig. 5.19 shows that this work is the first ring-VCO-based ILCM that concurrently has the 

reference spur less than −70 dBc and the FoMJIT lower than −245 dB. 
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 Discussion 

In this work, we presented a low-jitter and ultra-low reference spur ring-VCO-based ILCM. Using 

the TP-FPSC that can remove all three major causes generating the frequency errors, i.e., the frequency 

drift, the phase offset, and the slope modulation, the ILCM in this work can achieve a very low reference 

spur as well as an ultra-low RMS jitter. In addition, the calibration loop of the frequency drift was 

designed to have a wide bandwidth, which helps to further suppress the flicker noise of the ring VCO. 

The measured reference spur and RMS jitter of the 2.4-GHz output signal were −72 dBc and 136 fs, 

respectively, and their variations across output frequencies for five different samples were tightly 

regulated by the TP-FPSC. Consequently, the ILCM in this work can achieve and maintain both low 

reference spur and low RMS-jitter, while using a small amount of power and a compact silicon area. 
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Conclusion 

This dissertation has focused mainly on the design of a frequency calibrator for the injection-locked 

frequency multiplier. Conventional calibrators were introduced, and the pros and cons of each 

calibrators were discussed in Chapter 2. 

Chapter 3 presented a low power, compact area LC-tank-based frequency multiplier. By using input 

signals with a pulsed waveform to minimize the duration of the core current flow, the proposed 

architecture was able to reduce power consumption dramatically. With the LC-tank having a resonant 

frequency close to the target frequency, the signal component of the target harmonic was effectively 

amplified while other components were suppressed. AM spurs, caused by the damping of the signal due 

to the tank loss, were removed using the D-to-S amplifier. The proposed frequency tripler had a low 

power consumption of less than 1 mW and a compact silicon area of 0.08 mm2. It also achieved excellent 

phase noise performance; the deviation from the theoretical bound was less than 0.5 dB. 

In Chapter 4, we presented a PVT-insensitive and low-phase-noise mm-wave ILFM that used the 

proposed ultra-low-power FTL, which was capable of calibrating real-time frequency drifts. By 

monitoring the instantaneous distortion between the quadrature phases of the QVCO, caused when the 

frequency of the VCO deviates from the target frequency, the FTL can continuously track and correct 

the drifts of the frequency of the VCO due to environmental variations. Therefore, it can tightly regulate 

the degradation of phase noise. Since the proposed FTL monitors the averages of phase deviations rather 

than samples the instantaneous values, it uses only 600 μW to keep calibrating the mm-wave ILFM. 

The ILFM generated the output signal with a frequency ranging from 27.4 to 30.8 GHz. The 10-MHz 

phase noise of the 29.25-GHz output signal was −129.7 dBc/Hz, and its variations across temperatures 

and supply voltages were less than 2 dB. The IPN integrated from1 kHz to 100 MHz and the rms jitter 

were −39.1 dBc and 86 fs, respectively. 

Chapter 5 presented a low-jitter and ultra-low reference spur ring-VCO-based ILCM. Using the TP-

FPSC that can remove all three major causes generating the frequency errors, i.e., the frequency drift, 

the phase offset, and the slope modulation, the ILCM in this work can achieve a very low reference spur 

as well as an ultra-low RMS jitter. In addition, the calibration loop of the frequency drift was designed 

to have a wide bandwidth, which helps to further suppress the flicker noise of the ring VCO. The 
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measured reference spur and RMS jitter of the 2.4-GHz output signal were −72 dBc and 136 fs, 

respectively, and their variations across output frequencies for five different samples were tightly 

regulated by the TP-FPSC. Consequently, the ILCM in this work can achieve and maintain both low 

reference spur and low RMS-jitter, while using a small amount of power and a compact silicon area.  
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