669 research outputs found

    Cloud Computing cost and energy optimization through Federated Cloud SoS

    Get PDF
    2017 Fall.Includes bibliographical references.The two most significant differentiators amongst contemporary Cloud Computing service providers have increased green energy use and datacenter resource utilization. This work addresses these two issues from a system's architectural optimization viewpoint. The proposed approach herein, allows multiple cloud providers to utilize their individual computing resources in three ways by: (1) cutting the number of datacenters needed, (2) scheduling available datacenter grid energy via aggregators to reduce costs and power outages, and lastly by (3) utilizing, where appropriate, more renewable and carbon-free energy sources. Altogether our proposed approach creates an alternative paradigm for a Federated Cloud SoS approach. The proposed paradigm employs a novel control methodology that is tuned to obtain both financial and environmental advantages. It also supports dynamic expansion and contraction of computing capabilities for handling sudden variations in service demand as well as for maximizing usage of time varying green energy supplies. Herein we analyze the core SoS requirements, concept synthesis, and functional architecture with an eye on avoiding inadvertent cascading conditions. We suggest a physical architecture that diminishes unwanted outcomes while encouraging desirable results. Finally, in our approach, the constituent cloud services retain their independent ownership, objectives, funding, and sustainability means. This work analyzes the core SoS requirements, concept synthesis, and functional architecture. It suggests a physical structure that simulates the primary SoS emergent behavior to diminish unwanted outcomes while encouraging desirable results. The report will analyze optimal computing generation methods, optimal energy utilization for computing generation as well as a procedure for building optimal datacenters using a unique hardware computing system design based on the openCompute community as an illustrative collaboration platform. Finally, the research concludes with security features cloud federation requires to support to protect its constituents, its constituents tenants and itself from security risks

    A Process Framework for Managing Quality of Service in Private Cloud

    Get PDF
    As information systems leaders tap into the global market of cloud computing-based services, they struggle to maintain consistent application performance due to lack of a process framework for managing quality of service (QoS) in the cloud. Guided by the disruptive innovation theory, the purpose of this case study was to identify a process framework for meeting the QoS requirements of private cloud service users. Private cloud implementation was explored by selecting an organization in California through purposeful sampling. Information was gathered by interviewing 23 information technology (IT) professionals, a mix of frontline engineers, managers, and leaders involved in the implementation of private cloud. Another source of data was documents such as standard operating procedures, policies, and guidelines related to private cloud implementation. Interview transcripts and documents were coded and sequentially analyzed. Three prominent themes emerged from the analysis of data: (a) end user expectations, (b) application architecture, and (c) trending analysis. The findings of this study may help IT leaders in effectively managing QoS in cloud infrastructure and deliver reliable application performance that may help in increasing customer population and profitability of organizations. This study may contribute to positive social change as information systems managers and workers can learn and apply the process framework for delivering stable and reliable cloud-hosted computer applications

    A survey on energy efficiency in information systems

    Get PDF
    Concerns about energy and sustainability are growing everyday involving a wide range of fields. Even Information Systems (ISs) are being influenced by the issue of reducing pollution and energy consumption and new fields are rising dealing with this topic. One of these fields is Green Information Technology (IT), which deals with energy efficiency with a focus on IT. Researchers have faced this problem according to several points of view. The purpose of this paper is to understand the trends and the future development of Green IT by analyzing the state-of-the-art and classifying existing approaches to understand which are the components that have an impact on energy efficiency in ISs and how this impact can be reduced. At first, we explore some guidelines that can help to understand the efficiency level of an organization and of an IS. Then, we discuss measurement and estimation of energy efficiency and identify which are the components that mainly contribute to energy waste and how it is possible to improve energy efficiency, both at the hardware and at the software level

    Computing server power modeling in a data center: survey,taxonomy and performance evaluation

    Full text link
    Data centers are large scale, energy-hungry infrastructure serving the increasing computational demands as the world is becoming more connected in smart cities. The emergence of advanced technologies such as cloud-based services, internet of things (IoT) and big data analytics has augmented the growth of global data centers, leading to high energy consumption. This upsurge in energy consumption of the data centers not only incurs the issue of surging high cost (operational and maintenance) but also has an adverse effect on the environment. Dynamic power management in a data center environment requires the cognizance of the correlation between the system and hardware level performance counters and the power consumption. Power consumption modeling exhibits this correlation and is crucial in designing energy-efficient optimization strategies based on resource utilization. Several works in power modeling are proposed and used in the literature. However, these power models have been evaluated using different benchmarking applications, power measurement techniques and error calculation formula on different machines. In this work, we present a taxonomy and evaluation of 24 software-based power models using a unified environment, benchmarking applications, power measurement technique and error formula, with the aim of achieving an objective comparison. We use different servers architectures to assess the impact of heterogeneity on the models' comparison. The performance analysis of these models is elaborated in the paper

    Data center resilience assessment : storage, networking and security.

    Get PDF
    Data centers (DC) are the core of the national cyber infrastructure. With the incredible growth of critical data volumes in financial institutions, government organizations, and global companies, data centers are becoming larger and more distributed posing more challenges for operational continuity in the presence of experienced cyber attackers and occasional natural disasters. The main objective of this research work is to present a new methodology for data center resilience assessment, this methodology consists of: • Define Data center resilience requirements. • Devise a high level metric for data center resilience. • Design and develop a tool to validate and the metric. Since computer networks are an important component in the data center architecture, this research work was extended to investigate computer network resilience enhancement opportunities within the area of routing protocols, redundancy, and server load to minimize the network down time and increase the time period of resisting attacks. Data center resilience assessment is a complex process as it involves several aspects such as: policies for emergencies, recovery plans, variation in data center operational roles, hosted/processed data types and data center architectures. However, in this dissertation, storage, networking and security are emphasized. The need for resilience assessment emerged due to the gap in existing reliability, availability, and serviceability (RAS) measures. Resilience as an evaluation metric leads to better proactive perspective in system design and management. The proposed Data center resilience assessment portal (DC-RAP) is designed to easily integrate various operational scenarios. DC-RAP features a user friendly interface to assess the resilience in terms of performance analysis and speed recovery by collecting the following information: time to detect attacks, time to resist, time to fail and recovery time. Several set of experiments were performed, results obtained from investigating the impact of routing protocols, server load balancing algorithms on network resilience, showed that using particular routing protocol or server load balancing algorithm can enhance network resilience level in terms of minimizing the downtime and ensure speed recovery. Also experimental results for investigating the use social network analysis (SNA) for identifying important router in computer network showed that the SNA was successful in identifying important routers. This important router list can be used to redundant those routers to ensure high level of resilience. Finally, experimental results for testing and validating the data center resilience assessment methodology using the DC-RAP showed the ability of the methodology quantify data center resilience in terms of providing steady performance, minimal recovery time and maximum resistance-attacks time. The main contributions of this work can be summarized as follows: • A methodology for evaluation data center resilience has been developed. • Implemented a Data Center Resilience Assessment Portal (D$-RAP) for resilience evaluations. • Investigated the usage of Social Network Analysis to Improve the computer network resilience

    Power Modeling and Resource Optimization in Virtualized Environments

    Get PDF
    The provisioning of on-demand cloud services has revolutionized the IT industry. This emerging paradigm has drastically increased the growth of data centers (DCs) worldwide. Consequently, this rising number of DCs is contributing to a large amount of world total power consumption. This has directed the attention of researchers and service providers to investigate a power-aware solution for the deployment and management of these systems and networks. However, these solutions could be bene\ufb01cial only if derived from a precisely estimated power consumption at run-time. Accuracy in power estimation is a challenge in virtualized environments due to the lack of certainty of actual resources consumed by virtualized entities and of their impact on applications\u2019 performance. The heterogeneous cloud, composed of multi-tenancy architecture, has also raised several management challenges for both service providers and their clients. Task scheduling and resource allocation in such a system are considered as an NP-hard problem. The inappropriate allocation of resources causes the under-utilization of servers, hence reducing throughput and energy e\ufb03ciency. In this context, the cloud framework needs an e\ufb00ective management solution to maximize the use of available resources and capacity, and also to reduce the impact of their carbon footprint on the environment with reduced power consumption. This thesis addresses the issues of power measurement and resource utilization in virtualized environments as two primary objectives. At \ufb01rst, a survey on prior work of server power modeling and methods in virtualization architectures is carried out. This helps investigate the key challenges that elude the precision of power estimation when dealing with virtualized entities. A di\ufb00erent systematic approach is then presented to improve the prediction accuracy in these networks, considering the resource abstraction at di\ufb00erent architectural levels. Resource usage monitoring at the host and guest helps in identifying the di\ufb00erence in performance between the two. Using virtual Performance Monitoring Counters (vPMCs) at a guest level provides detailed information that helps in improving the prediction accuracy and can be further used for resource optimization, consolidation and load balancing. Later, the research also targets the critical issue of optimal resource utilization in cloud computing. This study seeks a generic, robust but simple approach to deal with resource allocation in cloud computing and networking. The inappropriate scheduling in the cloud causes under- and over- utilization of resources which in turn increases the power consumption and also degrades the system performance. This work \ufb01rst addresses some of the major challenges related to task scheduling in heterogeneous systems. After a critical analysis of existing approaches, this thesis presents a rather simple scheduling scheme based on the combination of heuristic solutions. Improved resource utilization with reduced processing time can be achieved using the proposed energy-e\ufb03cient scheduling algorithm

    Nas nuvens ou fora delas, eis a questĂŁo

    Get PDF
    Mestrado em Sistemas de InformaçãoO proposito desta dissertação é contribuir no sentido de uma melhor compreensão sobre a decisão de ir ou não ir para uma solução na cloud quando uma organização é confrontada com a necessidade de criar ou expandir um sistema de informação. Isto é feito recorrendo à identificação de factores técnicos e económicos que devem ser tomados em conta quando planeamos uma nova solução e desenvolver um framework para ajudar os decisores. Os seguintes aspetos são considerados: • Definição de um modelo de referência genérico para funcionalidades de um Sistemas de Informação. • Identificação de algumas métricas básicas para caracterizar performance e custos de Sistemas de Informação. • Analise e caracterização de Sistemas de Informação on-premises: Arquiteturas Elementos de custo Questões de Performance • Analise e caracterização de Sistemas de Informação Cloud: Topologias Estruturas de custo Questões de Performance • Estabelecimento de framework de comparação para a cloud versus on-premises • Casos de uso comparando soluções na cloud e on-premises; • Produção de guidelines (focadas no caso das clouds publicas) Para ilustrar o procedimento, são usados dois business cases, ambos com duas abordagens: uma dedicada aos Profissionais de IT (abordagem técnica), outra aos Gestores/Decisores (abordagem económica).The purpose of this dissertation is to contribute towards a better understanding about the decision to go or not to go for cloud solutions when an organization is confronted with the need to create or enlarge an information system. This is done resorting to the identification of technical and economic factors that must be taken into account when planning a new solution and developing a framework to help decision makers. The following aspects are considered: • Definition of a generic reference model for Information systems functionalities. • Identification of some basic metrics characterizing information systems performance. • Analysis and characterization of on-premisis information systems: Architectures Cost elements Performance issues • Analysis and characetrization of cloud information systems. Typology Cost structures Performance issues • Establishment of a comparison framework for cloud versus on-premises solutions as possible instances of information systems. • Use cases comparing cloud and on-premises solutions. • Production of guidelines (focus on public cloud case) To illustrate the procedure, two business cases are used, both with two approaches: one dedicated to IT Professionals (Technical approach), other to Managers/Decision Makers (Economic approach)

    Security in Cloud Computing: Evaluation and Integration

    Get PDF
    Au cours de la dernière décennie, le paradigme du Cloud Computing a révolutionné la manière dont nous percevons les services de la Technologie de l’Information (TI). Celui-ci nous a donné l’opportunité de répondre à la demande constamment croissante liée aux besoins informatiques des usagers en introduisant la notion d’externalisation des services et des données. Les consommateurs du Cloud ont généralement accès, sur demande, à un large éventail bien réparti d’infrastructures de TI offrant une pléthore de services. Ils sont à même de configurer dynamiquement les ressources du Cloud en fonction des exigences de leurs applications, sans toutefois devenir partie intégrante de l’infrastructure du Cloud. Cela leur permet d’atteindre un degré optimal d’utilisation des ressources tout en réduisant leurs coûts d’investissement en TI. Toutefois, la migration des services au Cloud intensifie malgré elle les menaces existantes à la sécurité des TI et en crée de nouvelles qui sont intrinsèques à l’architecture du Cloud Computing. C’est pourquoi il existe un réel besoin d’évaluation des risques liés à la sécurité du Cloud durant le procédé de la sélection et du déploiement des services. Au cours des dernières années, l’impact d’une efficace gestion de la satisfaction des besoins en sécurité des services a été pris avec un sérieux croissant de la part des fournisseurs et des consommateurs. Toutefois, l’intégration réussie de l’élément de sécurité dans les opérations de la gestion des ressources du Cloud ne requiert pas seulement une recherche méthodique, mais aussi une modélisation méticuleuse des exigences du Cloud en termes de sécurité. C’est en considérant ces facteurs que nous adressons dans cette thèse les défis liés à l’évaluation de la sécurité et à son intégration dans les environnements indépendants et interconnectés du Cloud Computing. D’une part, nous sommes motivés à offrir aux consommateurs du Cloud un ensemble de méthodes qui leur permettront d’optimiser la sécurité de leurs services et, d’autre part, nous offrons aux fournisseurs un éventail de stratégies qui leur permettront de mieux sécuriser leurs services d’hébergements du Cloud. L’originalité de cette thèse porte sur deux aspects : 1) la description innovatrice des exigences des applications du Cloud relativement à la sécurité ; et 2) la conception de modèles mathématiques rigoureux qui intègrent le facteur de sécurité dans les problèmes traditionnels du déploiement des applications, d’approvisionnement des ressources et de la gestion de la charge de travail au coeur des infrastructures actuelles du Cloud Computing. Le travail au sein de cette thèse est réalisé en trois phases.----------ABSTRACT: Over the past decade, the Cloud Computing paradigm has revolutionized the way we envision IT services. It has provided an opportunity to respond to the ever increasing computing needs of the users by introducing the notion of service and data outsourcing. Cloud consumers usually have online and on-demand access to a large and distributed IT infrastructure providing a plethora of services. They can dynamically configure and scale the Cloud resources according to the requirements of their applications without becoming part of the Cloud infrastructure, which allows them to reduce their IT investment cost and achieve optimal resource utilization. However, the migration of services to the Cloud increases the vulnerability to existing IT security threats and creates new ones that are intrinsic to the Cloud Computing architecture, thus the need for a thorough assessment of Cloud security risks during the process of service selection and deployment. Recently, the impact of effective management of service security satisfaction has been taken with greater seriousness by the Cloud Service Providers (CSP) and stakeholders. Nevertheless, the successful integration of the security element into the Cloud resource management operations does not only require methodical research, but also necessitates the meticulous modeling of the Cloud security requirements. To this end, we address throughout this thesis the challenges to security evaluation and integration in independent and interconnected Cloud Computing environments. We are interested in providing the Cloud consumers with a set of methods that allow them to optimize the security of their services and the CSPs with a set of strategies that enable them to provide security-aware Cloud-based service hosting. The originality of this thesis lies within two aspects: 1) the innovative description of the Cloud applications’ security requirements, which paved the way for an effective quantification and evaluation of the security of Cloud infrastructures; and 2) the design of rigorous mathematical models that integrate the security factor into the traditional problems of application deployment, resource provisioning, and workload management within current Cloud Computing infrastructures. The work in this thesis is carried out in three phases

    Resource Management in Large-scale Systems

    Get PDF
    The focus of this thesis is resource management in large-scale systems. Our primary concerns are energy management and practical principles for self-organization and self-management. The main contributions of our work are: 1. Models. We proposed several models for different aspects of resource management, e.g., energy-aware load balancing and application scaling for the cloud ecosystem, hierarchical architecture model for self-organizing and self-manageable systems and a new cloud delivery model based on auction-driven self-organization approach. 2. Algorithms. We also proposed several different algorithms for the models described above. Algorithms such as coalition formation, combinatorial auctions and clustering algorithm for scale-free organizations of scale-free networks. 3. Evaluation. Eventually we conducted different evaluations for the proposed models and algorithms in order to verify them. All the simulations reported in this thesis had been carried out on different instances and services of Amazon Web Services (AWS). All of these modules will be discussed in detail in the following chapters respectively
    • …
    corecore