85,946 research outputs found

    Micro computed tomography based finite element models of calcium phosphate scaffolds for bone tissue engineering

    Get PDF
    Bone is a living tissue that is able to regenerate by itself. However, when severe bone defects occur, the natural regeneration may be impaired. In these cases, bone graft substitutes can be used to induce the natural healing process. As a scaffold for tissue engineering, these bone graft substitutes have to meet specific requirements. Among others, the material must be biocompatible, biodegradable and have a porous structure to allow vascularization, cell migration and formation of new bone. Additionally, the mechanical properties of the scaffold have to resemble the ones of native tissue. The goal of this project is to create a computational model of the calcium phosphate scaffolds that are produced by rapid-prototyping by the Biomaterials, Biomechanics, and Tissue Engineering group at the Technical University of Catalonia. These models are based on finite element analysis and micro computed tomography images in order to consider the actual architecture of the scaffolds. The generated FE-models allow the computation of both local strains, which act as mechanical stimuli on attached cells, as well as the behaviour of the entire scaffold. When considering this information, the scaffold can be optimized for tissue differentiation by tuning both the scaffold architecture and the scaffold material bulk properties.Incomin

    Influential factors in nectar composition and yield in Leptospermum scoparium : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Science, Institute of Agriculture and the Environment, College of Sciences, Massey University, Palmerston North, New Zealand

    Get PDF
    Material omitted from digital version of thesis: Nickless, E. M., Anderson, C. W. N., Hamilton, G., Stephens, J. M., & Wargent, J. (2016). Soil influences on plant growth, floral density and nectar yield in three cultivars of manuka (Leptospermum scoparium). New Zealand Journal of Botany, 55(2), 100-117. doi:10.1080/0028825X.2016.1247732 ; Nickless, E. M., Holroyd, S. E., Stephens, J. M., Gordon, K. C., & Wargent, J. J. (2014). Analytical FT-Raman spectroscopy to chemotype Leptospermum scoparium and generate predictive models for screening for dihydroxyacetone levels in floral nectar. Journal of Raman Spectroscopy, 45(10), 890-894. doi:10.1002/jrs.4576 ; Nickless, E. M., Holroyd, S. E., Hamilton, G., Gordon, K. C., & Wargent, J. J. (2016). Analytical method development using FTIR-ATR and FT-Raman spectroscopy to assay fructose, sucrose, glucose and dihydroxyacetone, in Leptospermum scoparium nectar. Vibrational Spectroscopy, 84 (2016), 38-43. doi:10.1016/j.vibspec.2016.02.011Leptospermum scoparium (Mānuka) is the plant nectar source for medically bioactive honey, commercially marketed in New Zealand as Unique Mānuka Factor honey (UMF-honey). Methylglyoxal (MGO) is the unique bioactive component of UMF honey with Mānuka nectar containing significant amounts of the carbohydrate dihydroxyacetone (DHA), the chemical precursor for MGO. Anecdotal evidence and recently published data from nectar samples collected from various cultivars in natural sites or botanical gardens has indicated that the DHA and overall composition of L. scoparium nectar varies according to cultivar. The source of this variation is not clearly understood and although there is considerable literature on climatic and genetic influences on nectar composition and yield within various other plant species, there is little published work available on the influence of genetic and environmental factors on the composition and yield of nectar in L. scoparium. Of value to the commercial UMF honey industry in New Zealand is the ability to assess cultivars from breeding programs for the best potential to increase overall UMF honey yield. Predictive modelling of yields is invaluable to the developing honey industry to allow assessment of environmental influences that may affect overall yield along with seasonal influences on nectar production in Mānuka. The research in this thesis establishes the effect of various parameters on overall DHA yield from Mānuka and the beginnings of modelling influencing environmental factors. To determine influences on dihydroxyacetone (DHA) concentration and yield in the nectar of L. scoparium a number of studies were carried out. Methodologies for the collection and analysis of nectar were established. Ten different cultivars of L. scoparium with a range of genetic parentage were studied in controlled glasshouse conditions to assess phenotypic variability in terms of nectar composition and yield as well as plant growth and flowering amongst these cultivars. Significant differences in plant growth and flowering habits were observed amongst the ten cultivars, significant differences in nectar yield and nectar composition with regard to DHA yield were also observed. DHA yields ranged from 2714-7459 mg of DHA/kilogram normalised to 80 oBRIX, with total nectar sugar yields ranging between 0.7 and 4.8 mg amongst the ten cultivars studied. Preliminary research into the effect of temperature, radiation and humidity on nectar composition and yield were also undertaken. Effects of soil composition on these same parameters were researched with a subset of three of the ten cultivars grown on ten different soil types. Plant relative growth rates, dry weights and total plant height were measured throughout a 15 month glasshouse trial. Plant growth, flowering phenology, floral density, nectar yield and DHA composition data was gathered. Soils were analysed for various macronutrient and micronutrient levels and these parameters were modelled against plant data to determine which soil components were influencing plant parameters of interest. Soil type was shown to have no significant effect on DHA concentrations in nectar but results did show that soil type had a significant effect on flowering density amongst the three L. scoparium cultivars studied in the trial. Results from regression analysis of soil chemistry against measured plant parameters indicate that a fertiliser regime has the potential to increase nectar yields due to increased flower numbers. Multivariate analysis using partial least squares regression of soil composition data against plant parameters of value showed that soil components; phosphorus, sulphate, ferric and chloride were commonly shown to influence plant parameters measured. Analytical spectroscopy was investigated as a method to chemotype L. scoparium cultivars and also as a method for quantifying nectar components sucrose, glucose, fructose and DHA. Nectar composition was analysed using high pressure liquid chromatography (HPLC) and compared with fourier transform Raman spectroscopy (FT-Raman) and attenuated total reflectance infrared spectroscopy (ATR-FTIR) analytical spectroscopy methods. FT-Raman spectroscopy was shown to be useful in chemotyping cultivars and in addition proved to be a useful analytical method to predict DHA yield using leaf material from L. scoparium plants from the ten cultivars. FT-Raman and ATR-FTIR proved to be relatively accurate techniques to quantify L. scoparium nectar components DHA, fructose, glucose and sucrose, compared with HPLC methods which use extensive preparation techniques. R-squared values were very good for all nectar components measured excepting the sucrose model at R2 = 0.77. The R2 for the FT-Raman predictions of DHA against HPLC data are very good at 0.85. FTIR prediction data against HPLC data was also good at 0.86 R2. Overall an accurate model is possible for quantifying DHA concentrations in nectar using both FTIR-ATR and FT-Raman spectroscopy. Overall results show that various factors need to be considered when assessing plants for commercial use in the (UMF) Mānuka honey industry within New Zealand. Due to their large impact on overall nectar yield; floral density and plant growth rate parameters are the two key factors of value for commercial assessment of Mānuka cultivars. This research also highlights the importance of assessing not just DHA concentration in deducing cultivar value, but overall nectar yield. These key features must be explored when assessing L. scoparium plants within breeding programs, prior to selection for large-scale field production of high UMF Mānuka honey

    Enhancement of K+ conductance improves in vitro the contraction force of skeletal muscle in hypokalemic periodic paralysis

    Get PDF
    An abnormal ratio between Na+ and K+ conductances seems to be the cause for the depolarization and paralysis of skeletal muscle in primary hypokalemic periodic paralysis. Recently we have shown that the k+ channel opener cromakalim hyperpolarizes mammalian skeletal muscle fibers. Now we have studied the effects of this drug on the twitch force of muscle biopsies from normal and diseased human skeletal muscle. Cromakalim had little effect on the twitch force of normal muscle whereas it strongly improved the contraction force of fibers from patients suffering from hypokalemic periodic paralysis. Recordings of intracellular K+ and Cl- activities in human muscle and isolated rat soleus muscle support the view that cromakalim enhances the membrane K+ conductance (gK+). These data indicate that K+ channel openers may have a beneficial effect in primary hypokalemic periodic paralysis

    Convulsant actions of 4-aminopyridine on the guinea-pig olfactory cortex slice

    Get PDF
    The effects of bath-applied 4-aminopyridine on neurones and extracellular potassium and calcium concentrations were recorded in slices of guinea-pig olfactory cortex. Neurones were orthodromically activated by stimulating the lateral olfactory tract. 4-Aminopyridine (3–10 μM) had the following effects: (1) an increase in the frequency and amplitude of spontaneous postsynaptic potentials: (2) a prolongation and oscillatory behaviour or orthodromically evoked postsynaptic potentials; (3) induction of spontaneous or stimulus-evoked seizure-type discharges which were accompanied by large rises in extracellular potassium and falls in calcium concentration; (4) a prolongation of the lateral olfactory tract population fibre spike. Prior to paroxysmal depolarization, membrane potential, input resistance and soma spike duration were unaffected. In the seconds before seizure discharges, a late hyperpolarizing potential (evoked by orthodromic stimulation) was reduced in amplitude or abolished. Diphenylhydantoin (50 μM) or magnesium ions (5 mM) prevented paroxysmal activity. Our results whow that 4-aminopyridine can produce seizure-type discharges in a brain slice preparation. The role of increased spontaneous potentials and possible loss of synaptic inhibition as causal factors for such discharges is discussed

    Methods for Analysing Endothelial Cell Shape and Behaviour in Relation to the Focal Nature of Atherosclerosis

    Get PDF
    The aim of this thesis is to develop automated methods for the analysis of the spatial patterns, and the functional behaviour of endothelial cells, viewed under microscopy, with applications to the understanding of atherosclerosis. Initially, a radial search approach to segmentation was attempted in order to trace the cell and nuclei boundaries using a maximum likelihood algorithm; it was found inadequate to detect the weak cell boundaries present in the available data. A parametric cell shape model was then introduced to fit an equivalent ellipse to the cell boundary by matching phase-invariant orientation fields of the image and a candidate cell shape. This approach succeeded on good quality images, but failed on images with weak cell boundaries. Finally, a support vector machines based method, relying on a rich set of visual features, and a small but high quality training dataset, was found to work well on large numbers of cells even in the presence of strong intensity variations and imaging noise. Using the segmentation results, several standard shear-stress dependent parameters of cell morphology were studied, and evidence for similar behaviour in some cell shape parameters was obtained in in-vivo cells and their nuclei. Nuclear and cell orientations around immature and mature aortas were broadly similar, suggesting that the pattern of flow direction near the wall stayed approximately constant with age. The relation was less strong for the cell and nuclear length-to-width ratios. Two novel shape analysis approaches were attempted to find other properties of cell shape which could be used to annotate or characterise patterns, since a wide variability in cell and nuclear shapes was observed which did not appear to fit the standard parameterisations. Although no firm conclusions can yet be drawn, the work lays the foundation for future studies of cell morphology. To draw inferences about patterns in the functional response of cells to flow, which may play a role in the progression of disease, single-cell analysis was performed using calcium sensitive florescence probes. Calcium transient rates were found to change with flow, but more importantly, local patterns of synchronisation in multi-cellular groups were discernable and appear to change with flow. The patterns suggest a new functional mechanism in flow-mediation of cell-cell calcium signalling

    My career in molecular biology

    Get PDF
    Norman Davidson's training as a physical chemist led him to make key early contributions to the chemistry of DNA. He described the details of DNA denaturation and renaturation, concepts that still form the basis for understanding hybridization. He also applied the single-molecule resolution of the electron microscope to describing the chemistry of circular DNA, mapping specific genes, and characterizing heteroduplexes. The latter became a dominant tool for the study of nucleic acids and contributed to our knowledge of transcription, polyadenylation, and retroviral structure. The advent of cDNA cloning and restriction enzymes enabled Davidson to describe the diversity of Drosophila actin genes and to isolate the gene encoding cAMP phosphodiesterase. Davidson then turned his attention to neuroscience and participated in cDNA cloning, oocyte expression, and structure-function studies of nicotinic acetylcholine receptors, voltage-gated sodium channels, a GABA transporter, a G protein-gated potassium channel, and calcium channels. His interests also extended to synaptic plasticity, and he helped to define the role of neuronal nitric oxide synthase and of trkB receptors. His final experiments concerned the role of protein kinase A in long-term potentiation. (The abstract was written posthumously by a colleague.

    Florida marine biotechnology: research, development and training capabilities to advance science and commerce

    Get PDF
    The level of activity and interest in “marine biotechnology” among Florida university faculty and allied laboratory scientists is reported in this document. The information will be used to (1) promote networking and collaboration in research and education, (2) inform industry of possible academic partners, (3) identify contacts interested in potential new sources of funding, and (4) assist development of funding for a statewide marine biotechnology research, training and development program. This document is the first of its kind. Institutions of higher learning were given the opportunity to contribute both an overview of campus capabilities and individual faculty Expressions of Scientific Interest. They are listed in the table of contents. (104pp.

    A low-voltage activated, transient calcium current is responsible for the time-dependent depolarizing inward rectification of rat neocortical neurons in vitro

    Get PDF
    Intracellular recordings were obtained from rat neocortical neurons in vitro. The current-voltage-relationship of the neuronal membrane was investigated using current- and single-electrode-voltage-clamp techniques. Within the potential range up to 25 mV positive to the resting membrane potential (RMP: –75 to –80 mV) the steady state slope resistance increased with depolarization (i.e. steady state inward rectification in depolarizing direction). Replacement of extracellular NaCl with an equimolar amount of choline chloride resulted in the conversion of the steady state inward rectification to an outward rectification, suggesting the presence of a voltage-dependent, persistent sodium current which generated the steady state inward rectification of these neurons. Intracellularly injected outward current pulses with just subthreshold intensities elicited a transient depolarizing potential which invariably triggered the first action potential upon an increase in current strength. Single-electrode-voltage-clamp measurements reveled that this depolarizing potential was produced by a transient calcium current activated at membrane potentials 15–20 mV positive to the RMP and that this current was responsible for the time-dependent increase in the magnitude of the inward rectification in depolarizing direction in rat neocortical neurons. It may be that, together with the persistent sodium current, this calcium current regulates the excitability of these neurons via the adjustment of the action potential threshold
    • …
    corecore