97,065 research outputs found

    Large Deviations for Nonlocal Stochastic Neural Fields

    Get PDF
    We study the effect of additive noise on integro-differential neural field equations. In particular, we analyze an Amari-type model driven by a QQ-Wiener process and focus on noise-induced transitions and escape. We argue that proving a sharp Kramers' law for neural fields poses substanial difficulties but that one may transfer techniques from stochastic partial differential equations to establish a large deviation principle (LDP). Then we demonstrate that an efficient finite-dimensional approximation of the stochastic neural field equation can be achieved using a Galerkin method and that the resulting finite-dimensional rate function for the LDP can have a multi-scale structure in certain cases. These results form the starting point for an efficient practical computation of the LDP. Our approach also provides the technical basis for further rigorous study of noise-induced transitions in neural fields based on Galerkin approximations.Comment: 29 page

    Burgers Turbulence

    Full text link
    The last decades witnessed a renewal of interest in the Burgers equation. Much activities focused on extensions of the original one-dimensional pressureless model introduced in the thirties by the Dutch scientist J.M. Burgers, and more precisely on the problem of Burgers turbulence, that is the study of the solutions to the one- or multi-dimensional Burgers equation with random initial conditions or random forcing. Such work was frequently motivated by new emerging applications of Burgers model to statistical physics, cosmology, and fluid dynamics. Also Burgers turbulence appeared as one of the simplest instances of a nonlinear system out of equilibrium. The study of random Lagrangian systems, of stochastic partial differential equations and their invariant measures, the theory of dynamical systems, the applications of field theory to the understanding of dissipative anomalies and of multiscaling in hydrodynamic turbulence have benefited significantly from progress in Burgers turbulence. The aim of this review is to give a unified view of selected work stemming from these rather diverse disciplines.Comment: Review Article, 49 pages, 43 figure

    Parametric estimation of complex mixed models based on meta-model approach

    Full text link
    Complex biological processes are usually experimented along time among a collection of individuals. Longitudinal data are then available and the statistical challenge is to better understand the underlying biological mechanisms. The standard statistical approach is mixed-effects model, with regression functions that are now highly-developed to describe precisely the biological processes (solutions of multi-dimensional ordinary differential equations or of partial differential equation). When there is no analytical solution, a classical estimation approach relies on the coupling of a stochastic version of the EM algorithm (SAEM) with a MCMC algorithm. This procedure needs many evaluations of the regression function which is clearly prohibitive when a time-consuming solver is used for computing it. In this work a meta-model relying on a Gaussian process emulator is proposed to replace this regression function. The new source of uncertainty due to this approximation can be incorporated in the model which leads to what is called a mixed meta-model. A control on the distance between the maximum likelihood estimates in this mixed meta-model and the maximum likelihood estimates obtained with the exact mixed model is guaranteed. Eventually, numerical simulations are performed to illustrate the efficiency of this approach

    The Gaussian approximation for multi-color generalized Friedman's urn model

    Full text link
    The Friedman's urn model is a popular urn model which is widely used in many disciplines. In particular, it is extensively used in treatment allocation schemes in clinical trials. In this paper, we prove that both the urn composition process and the allocation proportion process can be approximated by a multi-dimensional Gaussian process almost surely for a multi-color generalized Friedman's urn model with non-homogeneous generating matrices. The Gaussian process is a solution of a stochastic differential equation. This Gaussian approximation together with the properties of the Gaussian process is important for the understanding of the behavior of the urn process and is also useful for statistical inferences. As an application, we obtain the asymptotic properties including the asymptotic normality and the law of the iterated logarithm for a multi-color generalized Friedman's urn model as well as the randomized-play-the-winner rule as a special case

    Interacting multi-class transmissions in large stochastic networks

    Get PDF
    The mean-field limit of a Markovian model describing the interaction of several classes of permanent connections in a network is analyzed. Each of the connections has a self-adaptive behavior in that its transmission rate along its route depends on the level of congestion of the nodes of the route. Since several classes of connections going through the nodes of the network are considered, an original mean-field result in a multi-class context is established. It is shown that, as the number of connections goes to infinity, the behavior of the different classes of connections can be represented by the solution of an unusual nonlinear stochastic differential equation depending not only on the sample paths of the process, but also on its distribution. Existence and uniqueness results for the solutions of these equations are derived. Properties of their invariant distributions are investigated and it is shown that, under some natural assumptions, they are determined by the solutions of a fixed-point equation in a finite-dimensional space.Comment: Published in at http://dx.doi.org/10.1214/09-AAP614 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Network inference in a stochastic multi-population neural mass model via approximate Bayesian computation

    Full text link
    In this article, we propose a 6N-dimensional stochastic differential equation (SDE), modelling the activity of N coupled populations of neurons in the brain. This equation extends the Jansen and Rit neural mass model, which has been introduced to describe human electroencephalography (EEG) rhythms, in particular signals with epileptic activity. Our contributions are threefold: First, we introduce this stochastic N-population model and construct a reliable and efficient numerical method for its simulation, extending a splitting procedure for one neural population. Second, we present a modified Sequential Monte Carlo Approximate Bayesian Computation (SMC-ABC) algorithm to infer both the continuous and the discrete model parameters, the latter describing the coupling directions within the network. The proposed algorithm further develops a previous reference-table acceptance rejection ABC method, initially proposed for the inference of one neural population. On the one hand, the considered SMC-ABC approach reduces the computational cost due to the basic acceptance-rejection scheme. On the other hand, it is designed to account for both marginal and coupled interacting dynamics, allowing to identify the directed connectivity structure. Third, we illustrate the derived algorithm on both simulated data and real multi-channel EEG data, aiming to infer the brain's connectivity structure during epileptic seizure. The proposed algorithm may be used for parameter and network estimation in other multi-dimensional coupled SDEs for which a suitable numerical simulation method can be derived.Comment: 28 pages, 11 figure

    Multi-index Stochastic Collocation convergence rates for random PDEs with parametric regularity

    Full text link
    We analyze the recent Multi-index Stochastic Collocation (MISC) method for computing statistics of the solution of a partial differential equation (PDEs) with random data, where the random coefficient is parametrized by means of a countable sequence of terms in a suitable expansion. MISC is a combination technique based on mixed differences of spatial approximations and quadratures over the space of random data and, naturally, the error analysis uses the joint regularity of the solution with respect to both the variables in the physical domain and parametric variables. In MISC, the number of problem solutions performed at each discretization level is not determined by balancing the spatial and stochastic components of the error, but rather by suitably extending the knapsack-problem approach employed in the construction of the quasi-optimal sparse-grids and Multi-index Monte Carlo methods. We use a greedy optimization procedure to select the most effective mixed differences to include in the MISC estimator. We apply our theoretical estimates to a linear elliptic PDEs in which the log-diffusion coefficient is modeled as a random field, with a covariance similar to a Mat\'ern model, whose realizations have spatial regularity determined by a scalar parameter. We conduct a complexity analysis based on a summability argument showing algebraic rates of convergence with respect to the overall computational work. The rate of convergence depends on the smoothness parameter, the physical dimensionality and the efficiency of the linear solver. Numerical experiments show the effectiveness of MISC in this infinite-dimensional setting compared with the Multi-index Monte Carlo method and compare the convergence rate against the rates predicted in our theoretical analysis

    Parametric estimation of complex mixed models based on meta-model approach

    Get PDF
    International audienceComplex biological processes are usually experimented along time among a collection of individuals. Longitudinal data are then available and the statistical challenge is to better understand the underlying biological mechanisms. The standard statistical approach is mixed-effects model, with regression functions that are now highly-developed to describe precisely the biological processes (solutions of multi-dimensional ordinary differential equations or of partial differential equation). When there is no analytical solution, a classical estimation approach relies on the coupling of a stochastic version of the EM algorithm (SAEM) with a MCMC algorithm. This procedure needs many evaluations of the regression function which is clearly prohibitive when a time-consuming solver is used for computing it. In this work a meta-model relying on a Gaussian process emulator is proposed to replace this regression function. The new source of uncertainty due to this approximation can be incorporated in the model which leads to what is called a mixed meta-model. A control on the distance between the maximum likelihood estimates in this mixed meta-model and the maximum likelihood estimates obtained with the exact mixed model is guaranteed. Eventually, numerical simulations are performed to illustrate the efficiency of this approach
    corecore