
Journal of Mathematical Neuroscience (2014) 4:1
DOI 10.1186/2190-8567-4-1

RESEARCH Open Access

Large Deviations for Nonlocal Stochastic Neural Fields

Christian Kuehn ·Martin G. Riedler

Received: 22 February 2013 / Accepted: 10 June 2013 / Published online: 17 April 2014
© 2014 C. Kuehn, M.G. Riedler; licensee Springer. This is an Open Access article distributed under the
terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Abstract We study the effect of additive noise on integro-differential neural field
equations. In particular, we analyze an Amari-type model driven by a Q-Wiener pro-
cess, and focus on noise-induced transitions and escape. We argue that proving a
sharp Kramers’ law for neural fields poses substantial difficulties, but that one may
transfer techniques from stochastic partial differential equations to establish a large
deviation principle (LDP). Then we demonstrate that an efficient finite-dimensional
approximation of the stochastic neural field equation can be achieved using a Galerkin
method and that the resulting finite-dimensional rate function for the LDP can have
a multiscale structure in certain cases. These results form the starting point for an
efficient practical computation of the LDP. Our approach also provides the technical
basis for further rigorous study of noise-induced transitions in neural fields based on
Galerkin approximations.

Keywords Stochastic neural field equations · Nonlocal equations · Large deviation
principle · Galerkin approximation
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1 Introduction

Starting from the classical works ofWilson/Cowan [64] and Amari [1], there has been
considerable interest in the analysis of spatiotemporal dynamics of mesoscale models
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of neural activity. Continuummodels for neural fields often take the form of nonlinear
integro-differential equations where the integral term can be viewed as a nonlocal
interaction term; see [37] for a derivation of neural field models. Stationary states,
traveling waves, and pattern formation for neural fields have been studied extensively;
see, e.g., [20, 29] or the recent review by Bressloff [14] and references therein.

In this paper, we are going to study a stochastic neural field model. There are sev-
eral motivations for our approach. In general, it is well known that intra and interneu-
ron [27] dynamics are subject to fluctuations. Many meso or macroscale continuum
models have stochastic perturbations due to finite-size effects [38, 61]. Therefore,
there is certainly a genuine need to develop new techniques to analyze random neural
systems [50]. For stochastic neural fields, there is also the direct motivation to un-
derstand the relation between noise and short-term working memory [52] as well as
noise-induced phenomena [54] in perceptual bistability [62]. Although an eventual
goal is to match results from stochastic neural fields to actual cortex data [35], we
shall not attempt such a comparison here. However, the techniques we develop could
have the potential to make it easier to understand the relation between models and
experiments; see Sect. 10 for a more detailed discussion.

There is a relatively small amount of fairly recent work on stochastic neural fields,
which we briefly review here. Brackley and Turner [11] study a neural field with
a gain function, which has a random firing threshold. Fluctuating gain functions are
also considered by Coombes et al. [22]. Bressloff and Webber [15] analyze a stochas-
tic neural field equation with multiplicative noise while Bressloff and Wilkinson [16]
study the influence of extrinsic noise on neural fields. In all these works, the focus
is on the statistics of traveling waves such as front diffusion and the effects of noise
on the wave speed. Hutt et al. [41] study the influence of external fluctuations on
Turing bifurcation in neural fields. Kilpatrick and Ermentrout [43] are interested in
stationary bump solutions. They observe numerically a noise-induced passage to ex-
tinction as well as noise-induced switching of bump solutions and conjecture that
“a Kramers’ escape rate calculation” [43, p. 16] could be applied to stochastic neural
fields, but they do not carry out this calculation. In particular, the question is whether
one can give a precise estimate of the mean transition time between metastable states
for stochastic neural field equations; for a precise statement of the classical Kramers’
law; see Sect. 5, Eq. (32). However, to the best of our knowledge, there seems to be
no general Kramers’ law or large deviation principle (LDP) calculation available for
continuum neural field models although large deviations have been of recent inter-
est in neuroscience applications [13, 33]. It is one of the main goals of this paper to
provide the basic steps toward a general theory.

Although Kramers’ law [5] and LDPs [26, 34] are well understood for
finite-dimensional stochastic differential equations (SDEs), the work for infinite-
dimensional evolution equations is much more recent. In particular, it has been shown
very recently that one may extend Kramers’ law to certain stochastic partial dif-
ferential equations (SPDEs) [4, 6, 7] driven by space-time white noise. The work
of Berglund and Gentz [7] provides a quite general strategy how to “lift” a finite-
dimensional Kramers’ law to the SPDE setting using a Galerkin approximation due
to Blömker and Jentzen [8]. Since the transfer of PDE techniques to neural fields has
been very successful, either directly [51] or indirectly [14, 21], one may conjecture
that the same strategy also works for SPDEs and stochastic neural fields.
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In this paper, we consider a rate-based (or Amari) neural field model driven by a
Q-Wiener process W

dUt(x) =
[
−αUt(x) +

∫
B

w(x,y)f
(
Ut(y)

)
dy

]
dt + εdWt(x) (1)

for a trace-class operator Q, nonlinear gain function f , and an interaction kernel
w; the technical details and definitions are provided in Sect. 2. Observe that (1) is a
relatively general formulation of a nonlocal neural field. Hence, we expect that the
techniques developed in this paper carry over to much wider classes of neural fields
beyond (1) such as activity-based models.

Remark 1.1 To avoid confusion, we alert readers familiar with neural fields that the
nonlinear gain function f in (1) is sometimes also called a “rate function.” However,
we reserve “rate function” for a functional, to be denoted later by I , arising in the
context of an LDP as this convention is standard in the context of LDPs.

Our main goal in the study of (1) is to provide estimates on the mean first passage
times between metastable states. In particular, we develop the basic analytical tools
to approximate equation (1) as well as its rate function using a finite-dimensional
Galerkin approximation. By making the rate function as explicit as possible, we do
not only provide a starting point for further analytical work, but also provide a frame-
work for efficient numerical methods to analyze metastable states.

The paper is structured as follows: The motivation for (1) is given in Sect. 3 where
a formal calculation shows that a space-time white noise perturbation of the gain
function in a deterministic neural field leads to (1). In Sect. 4, we briefly describe
important features of the deterministic dynamics for (1) where ε = 0. In particular,
we collect several examples from the literature where the classical Kramers’ stabil-
ity configuration of bistable stationary states separated by an unstable state occurs
for Amari-type neural fields. In Sect. 5, we introduce the notation for Kramers’ law
and LDPs and state the main theorem on finite-dimensional rate functions. In Sect. 6,
we argue that a direct approach to Kramers’ law via “lifting” for (1) is likely to fail.
Although the Amari model has a hidden energy-type structure, we have not been
able to generalize the gradient-structure approach for SPDEs to the stochastic Amari
model. This raises doubt whether a Kramers’ escape rate calculation can actually be
carried out, i.e., whether one may express the prefactor of the mean first-passage in
the bistable case explicitly. Based on these considerations, we restrict ourselves to
just derive an LDP. In Sect. 7, the LDP is established by a direct transfer of a re-
sult known for SPDEs. The disadvantage of this approach is that the resulting rate
function is difficult to calculate, analytically or numerically, in practice. Therefore,
we establish in Sect. 8 the convergence of a suitable Galerkin approximation for (1).
Using this approximation, one may apply results about the LDP for SDEs, which
we carry out in Sect. 9. In this context, we also notice that the trace-class noise can
induce a multiscale structure of the rate function in certain cases. The last two ob-
servations lead to a tractable finite-dimensional approximation of the LDP and hence
also an associated finite-dimensional approximation for first-exit time problems. We
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conclude the paper in Sect. 10 with implications of our work and remarks about future
problems.

2 Amari-Type Models

In this study, we consider stochastic neural field models with additive noise of the
form

dUt(x) =
[
−αUt(x) +

∫
B

w(x,y)f
(
Ut(y)

)
dy

]
dt + εdWt(x) (2)

for x ∈ B ⊆ R
d , a small parameter ε > 0, and t ≥ 0, where B is bounded and closed.

In (2) the solution U models the averaged electrical potential generated by neurons at
location x in an area of the brain B. Neural field equations of the form (2) are called
Amari-type equations or a rate-based neural field models. The equation is driven
by an adapted space-time stochastic process Wt(x) on a filtered probability space
(Ω,F , (Ft )t≥0,P). The precise definition of the process W will be given below.

The parameter α > 0 is the decay rate for the potential, w : B × B → R is a ker-
nel that models the connectivity of neurons at location x to neurons at location y.
Positive values of w model excitatory connections and negative values model in-
hibitory connections. The gain function f : R → R+ relates the potential of neu-
rons to inputs into other neurons. Typically, the gain functions are chosen sigmoidal,
for example, (up to affine transformations of the argument) f (u) = (1 + e−u)−1 or
f (u) = (tanh(u)+1)/2. These examples of gain functions are bounded, infinitely of-
ten differentiable with bounded derivatives. However, throughout the paper, we only
make the standing assumption that

(H1) the gain function f is globally Lipschitz continuous on R.

We may transfer Eq. (2) into the Hilbert space setting of infinite-dimensional stochas-
tic evolution equations [23, 56] for the Hilbert space L2(B). Subsequently, brackets
〈·, ·〉 always denote the inner product on this Hilbert space. Moreover, we introduce
the following notation. Firstly, F denotes the nonlinear Nemytzkii-operator defined
from f , i.e., F(g)(x) = f (g(x)) for any function g ∈ L2(B). The condition (H1)
implies that F : L2(B) → L2(B) is a Lipschitz continuous operator. Often, spatially
continuous solutions to (2) are also of interest, and thus we note that the Nemytzkii-
operator also preserves its Lipschitz continuity on the Banach space C(B) with its
norm ‖g‖0 = supx∈B |g(x)| due to B being bounded.1 Secondly, the linear operator
K is the integral operator defined by the kernel w

Kg(x) =
∫
B

w(x,y)g(y)dy ∀g ∈ L2(B). (3)

Throughout the paper, we assume that

1We note that the boundedness assumption on the domain B in this study is only necessary when dealing
with results in the space C(B) as is the appropriate space for the LDP results. All other results in this
paper which only deal with the space L2(B), e.g., existence of solutions and convergence of the Galerkin
approximation, are also valid for unbounded spatial domains.
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(H2) the kernel w is such that K is a compact, self-adjoint operator on L2(B).

We note that an integral operator is self-adjoint if and only if the kernel is symmetric,
i.e., w(x,y) = w(y,x) for all x, y ∈ B. A sufficient condition for the compactness of
K is, e.g., ‖w‖L2(B×B) < ∞ in which case the operator is called a Hilbert–Schmidt
operator. Since B is bounded, the continuity of the kernel w on B × B implies the
compactness of K considered an integral operator on C(B).

Then we rewrite Eq. (2) as an Hilbert space-valued stochastic evolution equation

dUt = [−αUt + KF(Ut )
]
dt + εdWt , (4)

where W is an L2(B)-valued stochastic process. Interpreting the original equation in
this form, we now give a definition of the noise process assuming that

(H3) W is a Q-Wiener process on L2(B), where the covariance operator Q is a
nonnegative, symmetric trace class operator on L2(B).

For a detailed explanation of a Hilbert space-valued Q-Wiener process and its co-
variance operator, we refer to, e.g., [23, 56]. As the operator Q is nonnegative, sym-
metric, and of trace class there exists an orthonormal basis of L2(B) consisting of
eigenfunctions vi and corresponding non-negative real eigenvalues λ2i , which satisfy∑∞

i=1 λ2i < ∞ . It then holds that the Q-Wiener process W satisfies

Wt =
∞∑
i=1

λiβ
i
t vi, (5)

where βi are a sequence of independent scalar Wiener processes (cf. [56, Propo-
sition 2.1.10]). The series (5) converges in the mean-square on C([0, T ],L2(B)).
Furthermore, a straightforward adaptation of the proof of [56, Proposition 2.1.10]
shows that convergence in the mean-square also holds in the space C([0, T ],C(B))

for every T > 0 if vi ∈ C(B) for all i (corresponding to nonzero eigenvalues) and
supx∈B |∑∞

i=1 λ2i vi(x)2| < ∞.
The existence and uniqueness of mild solutions to (4) with trace class noise for

given initial condition U0 ∈ L2(B) is guaranteed under the Lipschitz condition on f ,
cf. [23], and we can write the solution in its mild form

Ut = e−αtU0 +
∫ t

0
e−α(t−s)KF(Us)ds +

∫ t

0
e−α(t−s)dWs. (6)

The solution possesses a modification in C([0, T ],L2(B)) and from now on we al-
ways identify the solution (6) with its continuous modification. It is worthwhile to
note that for cylindrical Wiener processes—and thus in particular space-time white
noise—there does not exist a solution to (4). This contrasts with other well-studied
infinite-dimensional stochastic evolution equations, e.g., the stochastic heat equation.
Due to the representation of the solution (6), it follows that a solution can only be
as spatially regular as the stochastic convolution

∫ t

0 e
−α(t−s)dWs . In the present case,

the semigroup generated by the linear operator is not smoothing in contrast to, e.g.,
the semigroup generated by the Laplacian in the heat equation. Thus, the stochastic
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convolution is only as smooth as the noise which for space-time white noise is not
even a well-defined function. To be more specific, for cylindrical Wiener noise, the
series representation of the stochastic convolution (cf. see Eq. (8) below) does not
converge in a suitable probabilistic sense.

We next aim to strengthen the spatial regularity of the solution (6), which will
be required later on. According to [23, Theorem 7.10] the solution (6) is a continu-
ous process taking values in the Banach space C(B) if the initial condition satisfies
u0 ∈ C(B), the linear part in the drift of (4) generates a strongly continuous semi-
group onC(B), the nonlinear termKF is globally Lipschitz continuous on C(B), and
finally, if the stochastic convolution is a continuous process taking values in C(B).
It is easily seen that the first conditions are satisfied and sufficient conditions for the
latter property are given in the following lemma.

Lemma 2.1 Assume that the orthonormal basis functions vi are Lipschitz continuous
with Lipschitz constants Li such that

sup
x∈B

∣∣∣∣∣
∞∑
i=1

λ2i vi(x)2

∣∣∣∣∣< ∞, sup
x∈B

∣∣∣∣∣
∞∑
i=1

λ2i L
2ρ
i

∣∣vi(x)
∣∣2(1−ρ)

∣∣∣∣∣< ∞ (7)

for a ρ ∈ (0,1). Then the process

O(x, t) :=
∫ t

0
e−α(t−s)dWs(x) =

∞∑
i=1

λi

∫ t

0
e−α(t−s)dβi

svi(x) (8)

possesses a modification with γ -Hölder continuous paths in R+ × B for all γ ∈
(0, ρ/2).

Proof We prove the lemma applying the Kolmogorov–Centsov theorem (cf. [23, The-
orem 3.3 and Theorem 3.4]). Throughout the proof, C is some finite constant, which
may change from line to line, but is independent of x, y ∈ B and t, s ≥ 0. We start
showing that the processO is Hölder continuous in the mean-square in each direction.
As vi are assumed continuous these are pointwise uniquely given and each O(t, x)

is for fixed x ∈ B and t ≥ 0 a Gaussian random variable due to
∑∞

i=1 λ2i vi(x)2 < ∞.
Hence, for all 0≤ s ≤ t and all x, y ∈ B, we obtain

E
∣∣O(x, t) − O(y, t)

∣∣2 =
∞∑
i=1

λ2i

∫ t

0
e−2α(t−s)ds

∣∣vi(x) − vi(y)
∣∣2

≤ C sup
z∈B

∣∣∣∣∣
∞∑
i=1

λ2i L
2ρ
i

∣∣vi(z)
∣∣2(1−ρ)

∣∣∣∣∣|x − y|ρ

using

∣∣vi(x) − vi(y)
∣∣2 ≤ L

2ρ
i |x − y|ρ |x − y|ρ(∣∣vi(x)

∣∣+ ∣∣vi(y)
∣∣)2(1−ρ)
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for every ρ ∈ [0,1] and |x − y|ρ ≤ diam(B)ρ . Next, for the temporal regularity we
obtain

E
∣∣O(x, t) − O(x, s)

∣∣2
=

∞∑
i=1

λ2i vi(x)2
∫ t

s

e−2α(t−r)dr +
∞∑
i=1

λ2i vi(x)2
∫ s

0

∣∣e−α(t−r) − e−α(s−r)
∣∣2dr

=
∞∑
i=1

λ2i vi(x)2
(
1− e−α(t−s)

2α

)

+
∞∑
i=1

λ2i vi(x)2
(

(1− e−α(t−s))2 − (e−αt − e−αs)2

2α

)
.

As the exponential function on the negative half-axis is Hölder continuous for every
ρ ∈ [0,1], it holds

E
∣∣O(x, t) − O(x, s)

∣∣2 ≤ Cρ

∞∑
i=1

λ2i vi(x)2|t − s|ρ.

Thus, overall Jensen’s inequality yields E|O(x, t) − O(y, s)|2 ≤ Cρ(|x − y|2 +
|t − s|2)ρ/2. Since the difference O(x, t) − O(y, s) is centered Gaussian, it further
holds that

E
∣∣O(x, t) − O(y, s)

∣∣2m ≤ Cρ,m

(|t − s|2 + |x − y|2)mρ/2 ∀m ∈ N.

Now, the Kolmogorov–Centsov theorem implies the statement of the lemma. �

We present an example to illustrate the type of noise we are generally interested
in. Further motivation is provided in Sect. 3.

Example 2.1 Consider the neural field equation on a d-dimensional cube B =
[0,2π]d with noise based on trigonometric basis functions of L2([0,2π]d). This type
of noise is almost ubiquitous in applications as for the stochastic heat equations the
basis functions can be chosen such that the usual (Dirichlet, Neumann or periodic)
boundary conditions are preserved. For the example of noise preserving homoge-
neous Neumann boundary conditions, the basis functions are

vi(x) =
d∏

k=1

eik (xk), (9)

where x = (x1, . . . , xd), i = (i1, . . . , ik) is a multi-index in N
d and the functions eik

are given by

eik (xk) =
⎧⎨
⎩

1√
2π

, ik = 0,
1√
π
cos(ikxk/2), ik ≥ 1.
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The functions vi are for all i ∈ N
d pointwise bounded by π−d/2 and Lipschitz con-

tinuous with Lipschitz constants given by Li = π−d/2|i| (cf. [8, Lemma 5.3]). Next,
we construct a trace class Wiener process from these basis functions. A particular im-
portant example of spatiotemporal noise is smooth noise with exponentially decaying
spatial correlation length [15, 36, 43], i.e.,

EWt(x)Ws(y) = min{t, s} 1

(2ξ)d
exp

(
−π

4

|x − y|2
ξ2

)
+ correction on the boundary (10)

for a parameter ξ > 0 modeling the spatial correlation length. Note that for ξ → 0 this
noise process approximates space-time white noise. Following [60], we can calculate
under the assumption that ξ  2π the coefficients λ2i such that the Q-Wiener process
(5) possesses the correlation function (10) and obtain

λ2i = exp

(−ξ2|i|2
4π

)
. (11)

Now, it is easy to see that for this choice of eigenvalues the noise is of trace class and
moreover the additional conditions of Lemma 2.1 are satisfied: As the functions vi

are bounded, we obtain

sup
x∈B

∣∣∣∣∣
∞∑

i∈Nd

λ2i vi(x)2

∣∣∣∣∣ ≤ π−d + π−d

∞∑
N=1

∑
i∈{0,...,N}d\{0,...,N−1}d

exp

(−ξ2|i|2
4π

)

≤ π−d + π−d

∞∑
N=0

exp

(−ξ2N2

4π

)
2N−1

< ∞
and the second condition of (7) is satisfied as

sup
x∈B

∣∣∣∣∑
i=Nd

λ2i L
2ρ
i

∣∣vi(x)
∣∣2(1−ρ)

∣∣∣∣ ≤ π−d
∞∑

N=1

∑
i∈{0,...,N}d\{0,...,N−1}d

exp

(−ξ2|i|2
4π

)
|i|2ρ

≤ π−d
√

d

∞∑
N=0

exp

(−ξ2N2

4π

)
N2ρ2N−1

< ∞.

3 Gain Function Perturbation

Another motivation for the considered additive noise neural field equations stems
from a (formal) perturbation of the gain function f with space-time white noise.
Let Ẇ denote space time white noise and consider the randomly perturbed Amari
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equation

∂tU(x, t) = −αU(x, t) +
∫
B

w(x,y)
(
f
(
U(y, t)

)+ εẆ(y, t)
)
dy. (12)

Recall that, by assumption (H2), the integral operator K defined by the kernel w is
a self-adjoint compact operator. Thus, the spectral theorem implies that K possess
only real eigenvalues λi , i ∈ N, and the corresponding eigenfunctions vi form an
orthonormal basis of L2(B). If additionally we assume that

(H4) K is a Hilbert–Schmidt operator on L2(B), that is, ‖w‖L2(B×B) < ∞,

then the eigenvalues satisfy
∑∞

i=1 λ2i < ∞. Hence, K possesses the series represen-
tation

Kg =
∞∑
i=1

λi〈g, vi〉vi ∀g ∈ L2(B)

which yields for the perturbed equation (12) the representation

∂tU(x, t) = −αU(x, t) +
∞∑
i=1

λi

(∫
B

f
(
U(y, t)

)
vi(y)dy + ε

〈
Ẇ(t, ·), vi

〉)
vi(x).

Next, note that the random variables β̇i
t = 〈Ẇ(·, t), vi〉 form a sequence of indepen-

dent scalar white noise processes in time. Therefore, the perturbed equation becomes

∂tU(x, t) = −αU(x, t) +
∫
B

w(x,y)f
(
U(y, t)

)
dy + ε

∞∑
i=1

λiβ̇
i
t vi(x).

Rewriting this equation in the usual notation of stochastic differential equations we
obtain

dUt (x) =
[
−αUt(x) +

∫
B

w(x,y)f
(
Ut(y)

)
dy

]
dt + εdWt(x), (13)

where

Wt(x) =
∞∑
i=1

λiβ
i
t vi(x)

is a trace-class Wiener process on the Hilbert space L2(B). Note, when comparing to
(5) here the coefficients λi may be negative, however, as −βi is also a Wiener process
this slight inconsistency can be neglected.

We next want to discuss spatial continuity of the solution to this equation with its
particular noise structure. It is clear that this should translate into smoothing condi-
tions of the kernel w. Due to Lemma 2.1, it is sufficient to establish conditions (7):
First, it holds that

∞∑
i=1

λ2i vi(x)2 =
∞∑
i=1

(∫
B

w(x,y)vi(y)dy

)2

=
∞∑
i=1

〈
w(x, ·), vi

〉2 = ∥∥w(x, ·)∥∥2
L2(B)
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due to Parseval’s identity. Hence, the first condition of (7) becomes

sup
x∈B

∥∥w(x, ·)∥∥
L2(B)

< ∞. (14)

Next, the basis functions are continuous if the kernel w(x,y) is continuous in x and
as the minimal Lipschitz constant is given by the supremum on the derivatives we
obtain

Li = sup
x∈B

∣∣∣∣ 1λi

∇x

∫
B

w(x,y)vi(y)dy

∣∣∣∣≤ 1

|λi | supx∈B

∥∥∇xw(x, ·)∥∥
L2(B)

due to the Cauchy–Schwarz inequality. Therefore, the second condition in (7) is sat-
isfied if

sup
x∈B

∥∥∇xw(x, ·)∥∥
L2(B)

< ∞ and

∞∑
i=1

|λi |2(1−ρ)
∣∣vi(x)

∣∣2(1−ρ) ≤ M ∀x ∈ B
(15)

for a ρ ∈ (0,1) and a M < ∞. The condition (14) and the first part of (15) are easily
checked but for the second part of (15) usually theoretical results on the speed of
decay of the eigenvalues have to be obtained. We note that (15) is certainly satisfied
with ρ = 1/2 if K is a trace class operator and the eigenfunctions are pointwise
bounded independently of i; see, e.g., Example 2.1.

4 Deterministic Dynamics

The classical deterministic Amari model, obtained for ε = 0 in (2), is

∂tU(x, t) = −αU(x, t) +
∫
B

w(x,y)f
(
U(y, t)

)
dy. (16)

where B ⊆ R
d . Note that we may allow B to be unbounded for the deterministic

case as solutions of (16) do exist in this case [55]. Suppose there exists a stationary
solution U∗ = U∗(x) of (16). To determine the stability of U∗ consider U(x, t) =
U∗(x) + ψ(x, t). Substituting into (16) and Taylor-expanding around U∗ yields the
linearized problem

∂tψ(x, t) = −αψ(x, t) +
∫
B

w(x,y)(Df )
(
U∗(y)

)
ψ(y, t)dy. (17)

Hence, the standard ansatz ψ(x, t) = ψ0(x)eμt leads to the eigenvalue problem

(μ + α)︸ ︷︷ ︸
=:η

ψ0(x) =
∫
B

w(x,y)(Df )
(
U∗(y)

)
ψ0(y)dy := (Lψ0)(x) or

Lψ0 = ηψ0.

(18)
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The linear stability condition μ < 0 is equivalent to η < α where η ∈ spec(L). The
stability analysis can be reduced to the understanding of the operator L. However,
this is a highly nontrivial problem as the behavior depends upon B, U∗(x), w(x,y),
and f (u).

An LDP and Kramers’ law are of particular interest in the case of bistability.
Therefore, we point out that there are many situations where (16) does have three
stationary solutions: U∗±(x), which are stable and U∗

0 (x) which is unstable. The fol-
lowing three examples make this claim more precise.

Example 4.1 The first example is presented by Ermentrout and McLeod [29]. Let
B = R, w(x,y) = w(|x − y|), α = 1 and assume that 0 ≤ U(x, t) ≤ 1. Furthermore,
suppose that f ∈ C1([0,1],R) with f ′ > 0 and

f̃ (U) := −U + f (U) (19)

has precisely three zeros U = 0, a,1 with 0 < a < 1. The additional conditions
f ′(0) < 1 and f ′(1) < 1 guarantee stability of the stationary solutions U = 0 and
U = 1. As an even more explicit assumption [29, p. 463], one may consider a Dirac
δ-distribution for w in (16), which yields

∂tU(x, t) = −U(x, t) + F
(
U(x, t)

)
. (20)

Suppose there are precisely three solutions for U = F(U) given by U = 0, a,1 with
0 < a < 1. If F ′(0) < 1, F ′(1) < 1 and F ′(a) > 1 then (20) has an unstable stationary
solution between the two stable stationary solutions.

Example 4.2 An even more concrete example is given by Guo and Chow [39, 40].
They assume B = R, w(x,y) = w(x − y), α = 1 and fix two functions

f (u) = [
b(u − ub) + 1

]
H(u − ub), w(x) = Ae−a|x| − e|x|

where H(·) is the Heaviside function and b, a, A, and ub are parameters. Depending
on parameter values, one may obtain three constant stationary solutions exhibiting
bistability as expected from Example 4.1. However, there are also parameter values
so that three stationary pulses exhibiting bistability exist.

Note that the choice B = R is not essential to obtain two deterministically-stable
stationary states U∗±(x) and one deterministically-unstable stationary state U∗

0 (x).
The important aspect is that certain algebraic equations, such as U = f (U) and U =
F(U) in Example 4.1, have the correct number of solutions. Furthermore, one has to
make sure that the sign of the nonlinearity f is chosen correctly to obtain the desired
deterministic stability results for the stationary solutions. Hence, we expect that a
similar situation also holds for bounded domains; see also [63].

Examples 4.1–4.2 are typical for many similar cases with x ∈ R or x ∈ R
2. Many

results on existence and stability of stationary solutions are available; see, e.g., [1, 46,
51, 52], and references therein.
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Example 4.3 As a higher-dimensional example, one may consider the work by Jin,
Liang, and Peng [42] who assume that w(x,y) = w(x − y), α = 1, B = R

d , and

Z∞ =
∫
Rd

w(x)dx < ∞, κZ∞ > 1,

where κ is the Lipschitz constant of f ∈ C1(Rd,R). Furthermore, suppose f ′ is
uniformly continuous and

f ′(U)Z∞ < 1 for U ∈ (−∞,U1) ∪ (U2,∞),

f ′(U)Z∞ = 1 for U ∈ {U1,U2},
f ′(U)Z∞ > 1 for U ∈ (U1,U2),

for U1 < 0 < U2. Then [42, Proposition 11] the conditions

−U1 + f (U1)Z∞ < 0 and − U2 + f (U2)Z∞ > 0

yield three stationary solutions U∗+, U∗− and U∗
0 . The solutions U∗± are stable and

satisfy U∗− ≤ 0 and U∗+ > 0. The solution U∗
0 is unstable.

Although we only focus on stationary solutions, it is important to remark that the
techniques developed here could—in principle—also be applied to traveling waves
U(x, t) = U(x − st) for s > 0. The existence and stability of traveling waves for
(16) has been investigated for many different situations; see, e.g. [12, 14, 21, 29],
and references therein. However, it seems reasonable to restrict ourselves here to the
stationary case as even for this simpler case an LDP and Kramers’ law are not yet
well understood.

5 Large Deviations and Kramers’ Law

Here, we briefly introduce the background and notation for LDPs and Kramers’ law
needed through the remaining part of the paper; see [26, 34] for more details. Con-
sider a topological space X with Borel σ -algebra BX . A mapping I : X → [0,∞]
is called a good rate function if it is lower semicontinuous and the level set {h :
I (h) ≤ α} is compact for each α ∈ [0,∞). Sometimes the term action functional
is used instead of rate function. Consider a family {με} of probability measures on
(X ,BX ). The measures {με} satisfy an LDP with good rate function I if

− inf
Γ o

I ≤ lim inf
ε→0

ε2 lnμε(Γ ) ≤ lim sup
ε→0

ε2 lnμε(Γ ) ≤ − inf
Γ̄

I (21)

holds for any measurable set Γ ⊂ X ; often infima over the interior Γ o and closure
Γ̄ coincide so that lim inf and limsup coincide at a common limit. One of the most
classical cases is the application of (21) to finite-dimensional SDEs

dut = g(ut )dt + εG(ut )dβt (22)
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where ut ∈ R
N , g : RN → R

N , G : RN → R
N×k , βt = (β1

t , . . . , βk
t )T is a vector

of k independent Brownian motions and we shall assume that the initial condition
u0 ∈ R

N is deterministic. If we want to emphasize that ut depends on ε, we shall also
use the notation uε

t . The topological space is chosen as a path space

X := C0
([0, T ],RN

)= {
φ ∈ C

([0, T ],RN
) : φ(0) = u0

}
.

To state the next result, we also need the Sobolev space

HN
1 := {

φ : [0, T ] → R
N : φ absolutely continuous, φ′ ∈ L2, φ(0) = 0

}
. (23)

Furthermore, we are going to assume that the diffusion matrixD(u) := G(u)T G(u) ∈
R

N×N is positive definite.

Theorem 5.1 ([26, 34]) The SDE (22) satisfies the LDP (21) given by

− inf
Γ o

I ≤ lim inf
ε→0

ε2 lnP
((

uε
t

)
t∈[0,T ] ∈ Γ

)
≤ lim sup

ε→0
ε2 lnP

((
uε

t

)
t∈[0,T ] ∈ Γ

)≤ − inf
Γ̄

I (24)

for any measurable set of paths Γ ⊂ X with good rate function

I (φ) = I[0,T ](φ)

=
{

1
2

∫ T

0 (φ′
t − g(φt ))

T D(φt )
−1(φ′

t − g(φt ))dt, if φ ∈ u0 + HN
1 ,

+∞, otherwise.
(25)

An important application of the LDP (24) is the so-called first-exit problem. Sup-
pose that ut starts near a stable equilibrium u∗ ∈ D ⊂ R

N of the deterministic system
given by setting ε = 0 in (22), where D is a bounded domain with smooth boundary.
Define the first-exit time

τ ε
D := inf

{
t > 0 : uε

t /∈D
}
. (26)

To formalize the application of the LDP, define the mapping

Z(u, v; s) := inf
{
I (φ) : φ ∈ C

([0, s],RN
)
, φ0 = u,φs = v

}
(27)

which is the cost for a path starting at u to reach v in time s. Next, assume that D̄ is
properly contained inside the (deterministic) basin of attraction of u∗. Then one can
show [34, Theorem 4.1, p. 124] that

lim
ε→0

ε2 lnP
(
τ ε
D ≤ t |u = u0

)= inf
{
Z(u, v; s) : s ∈ [0, t], v /∈D

}
. (28)

To get more precise information on the exit distribution, one defines the function

Z
(
u∗, v

)= inf
t>0

Z
(
u∗, v; t)
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which is called the quasipotential for u∗. It is natural to minimize the quasipotential
over ∂D and define

Z̄ := inf
v∈∂D

Z
(
u∗, v

)
.

Theorem 5.2 ([34, Theorem 4.2, p. 127], [26, Theorem 5.7.11]) For all initial con-
ditions u ∈D and all δ > 0, the following two limits hold:

lim
ε→0

P
(
e(Z̄−δ)/ε2 < τε

D < e(Z̄+δ)/ε2 |u0 = u∗) = 1, (29)

lim
ε→0

ε2 lnE
[
τ ε
D|u0 = u∗] = Z̄. (30)

If the SDE (22) has a gradient structure with identity diffusion matrix, i.e.,

g(u) = −∇V (u) for V :RN → R, and G(u) = Id ∈ R
N×N (31)

then one can show [34, Sect. 4.3] that the quasipotential is given by Z(u∗, v) =
2(V (v) − V (u∗)). If the potential has precisely two local minima u∗± and a saddle
point u∗

s with N − 1 stable directions so that the Hessian ∇2V (u∗
s ) has eigenvalues

ρ1
(
u∗

s

)
< 0 < ρ2

(
u∗

s

)
< · · · < ρN

(
u∗

s

)
then one can even refine Theorem 5.2. Suppose u0 = u∗− then the mean first passage
time to u∗+ satisfies

E
[
inf
{
t > 0 : ∥∥ut − u∗+

∥∥
2 ≤ δ

}]
∼ 2π

|ρ1(u∗
s )|

√
|det(∇2V (u∗

s ))|
det(∇2V (u∗−))

e2(V (u∗
s )−V (u∗−))/ε2 (32)

where ‖ · ‖2 denotes the usual Euclidean norm in RN . The formula (32) is also known
as Kramers’ law [5] or Arrhenius–Eyring–Kramers’ law [2, 31, 45]. Note that the key
differences with the general LDP (29) for the first-exit problem are that (32) yields a
precise prefactor for the exponential transition time and uses the explicit form of the
good rate function for gradient systems. It is interesting to note that a rigorous proof
of (32) has only been obtained quite recently [9, 10].

6 Gradient Structures in Infinite Dimensions

The finite-dimensional Kramers’ formula (32) applies to SDEs (22) with a gradient-
structure g(u) = −∇V (u) where V : RN → R is the potential. A generalization of
Kramers’ law has been carried over to the infinite-dimensional case of SPDEs given
by

dU = [
ΔU − h′(U)

]
dt + εdW(x, t) (33)
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for U = U(x, t), x ∈ B̃ ⊂ R, B̃ a bounded interval, h ∈ Ck(R,R) for suitably large
k ∈ N and W(x, t) denotes space-time white noise and either Dirichlet or Neumann
boundary conditions are used [4, 6, 7]. A crucial reason why this generalization works
is that the SPDE (33) has a gradient-type structure [32] given by the energy functional

V [U ] :=
∫
B̃

[
1

2
U ′(x)2 + h

(
U(x)

)]
dx. (34)

More precisely, when ε = 0 one obtains from (33) a PDE, say with Dirichlet boundary
conditions,

dU = [
ΔU − h′(U)

]
dt, U(x) = 0 on ∂B̃ (35)

for a given sufficiently smooth initial condition U(x,0) = U0(x) ∈ Ck(R,R). Stan-
dard parabolic regularity [30, Sect. 7.1] implies that solutions U of (35) lie in the
Sobolev spaces Hk

0 (B̃). Computing the Gâteaux derivative in this space yields

∇zV [U ] =
∫
B̃

[−U ′′(x) + h′(U(x)
)]

z(x)dx. (36)

The Gâteaux derivative is equal to the Fréchet derivative ∇V = DV by a standard
continuity result [25, p. 47]. Hence, (36) shows that the stationary solutions of (35)
are critical points of the gradient functional V . Since the gradient structure of the
deterministic PDE (35) is a key structure to obtain a Kramers’-type estimate for the
SPDE (33), we would like to check whether there is an analogue available for the
deterministic Amari model (16).

We shall assume for simplicity that f ∈ BC1(R) for the calculations in this section.
Although this is a slightly stronger assumption than (H1), we shall see below that
even with this assumption we are not able to obtain an immediate generalization of
(36). Using a direct modification of the results in [55], it follows that the deterministic
Amari model (16) has solutions U(x, t) in the Hölder space BCα(B) × BCα([0, T ])
for α ∈ (0,1] and B ⊂ R

d is the usual domain we use for the Amari model. Now
consider the analogous naive guess to (36) given by

V [U ] :=
∫
B

[
α

2
U(x)2 −

∫
B

∫ U(y)

0
f (r)w(x, y)drdy

]
dx. (37)

Computing the derivative in BCα(B) yields

∇zV [U ] = lim
δ→0

1

δ

(
V [U + δz] − V [U ]),

=
∫
B

[
αU(x)z(x) −

∫
B

f
(
U(y)

)
w(x,y)z(y)dy

]
dx. (38)

Therefore, setting ∇zV [U ] = 0 is not equivalent to the solution of the stationary
problem

−αU(x) +
∫
B

w(x,y)f
(
U(y)

)
dy = 0.
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Due to the presence of the different terms z(x) and z(y) in (38), one may guess that
the modified functional

V [U ] :=
∫
B

[
α

2
U(x)2 − 1

2

∫
B

f
(
U(y)

)
f
(
U(x)

)
w(x,y)dy

]
dx (39)

could work. However, another direct computation shows that

∇zV [U ] =
∫
B

[
αU(x)z(x)dx

]− 1

2

[∫
B

∫
B

f
(
U(x)

)
Df

(
U(y)

)
w(x,y)z(y)dydx

]

− 1

2

[∫
B

∫
B

f
(
U(y)

)
Df

(
U(x)

)
w(x,y)z(x)dydx

]
= α〈U,z〉 − 〈

KF(U),Df (U)z
〉
.

Hence, f and its derivative Df both appear instead of the desired formulation; by a
similar computation one can show that replacing f (u(·)) in (39) by

∫ u

0 f (r)dr fails
as well. Hence, there does not seem to be a natural generalization for the guess for the
gradient functional (34). However, one has to consider possible coordinate changes.
The idea to apply a preliminary transformation has been discussed, e.g., in [28, p. 2]
and [51, p. 488]. Assume that

f −1 =: g exists and g′ �= 0. (40)

Define P(x, t) := f (U(x, t)) as the mean action-potential generating rate so that
U = g(P ). Observe that

∂tP (y, t) = 1

g′(P (x, t))

[
−αg

(
P(x, t)

)+
∫
B

w(x,y)P (y, t)dy

]
. (41)

For this equation, the problem observed in (39) should disappear as the integral only
contains linear terms. One may define an energy-type functional

E[P ] :=
∫
B

[∫ P(x)

0
αg(r)dr − 1

2

∫
B

w(x,y)P (y)P (x)dy

]
dx.

Calculating the derivative yields

∇QE[P ] = lim
δ→0

1

δ

(
E[P + δQ] − E[P ])

=
∫
B

αg
(
P(x)

)
Q(x)dx

− 1

2

∫
B

∫
B

w(x,y)
{
P(y)Q(x) + P(x)Q(y)

}
dydx

= 〈
αg(P ),Q

〉− 〈∫
B

w(x,y)P (y)dy,Q

〉
.
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This shows that there is hidden energy-type flow structure in the Amari model for the
assumptions (40) so that

∂tP (x, t) = − 1

g′(P (x, t))
∇E

[
P(x, t)

]
. (42)

However, even with this variable transformation, there seems to be little hope to de-
rive a precise Kramers’ rule for the stochastic Amari model (2) by generalizing the
approach for SPDE systems [4, 6, 7]. The problems are as follows:

– There is still a space-time dependent nonlinear prefactor 1/g′(P (x, t)) in (42) for
the deterministic system, so the system is not an exact gradient flow for a potential.

– Applying the change-of-variable Pt (x) := f (Ut (x)) for the stochastic Amari
model (2) requires an Itô-type formula so that

dPt (x) = 1

g′(Pt (x))

[
−αg

(
Pt (x)

)+
∫
B

w(x,y)Pt (y)dy +O
(
ε2
)]

dt

+ εM
(
Pt (x)

)
dWt(x), (43)

where M(Pt (x)) is now a multiplicative noise term; see [24], and references
therein for more details on infinite-dimensional Itô-type formulas. The higher-
order term O(ε2) in the drift part of (43) is not expected to cause difficulties but a
multiplicative noise structure definitely excludes the direct application of Kramers’
law.

– Even if we would just assume—without any immediate physical motivation—that
the noise term in (43) is purely additive εdWt(x), there is a problem to apply
Kramers’ law since we do not have a structure like in (22) with G(·) = Id as Wt(x)

is a Q-Wiener process defined in (5) and driving space-time white noise in (4) is
particularly excluded due to the nonexistence of a solution.

Based on these observations, an immediate approach to generalize a sharp
Kramers’ formula to neural fields seems unlikely. Hence we try to understand an
LDP for the stochastic Amari-type model (2).

7 Direct Approach to an LDP

A general direct approach for the derivation of an LDP for infinite-dimensional
stochastic evolution equations is presented in [23] and further results have been ob-
tained for certain additional classes of SPDEs [17–19, 57]. The results in [23] are
valid for semilinear equations with suitable Lipschitz assumptions on the nonlinear-
ity and with solutions taking values in C(D). We state the available results applied
to continuous solutions of the Amari equation (4) assuming that the conditions of
Lemma 2.1 are satisfied.

For the following, we assume that there exists an open neighborhood D ∈ C(B)

containing a stable equilibrium state u∗ of the deterministic Amari equation (16)
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such that D̄ is contained in the basin of attraction of u∗. We are interested in the rate
function and the first-exit time of the process from D given by

τ ε
D = inf{t ≥ 0 : U /∈D}

if U starts in the deterministic equilibrium state u∗. In order to state the quasipotential
for u, we consider the control system

ẏ = −αy + KF(y) + Q1/2v, y0 = x ∈ C(B) (44)

for controls v ∈ L2((0, T ),L2(B)) for all T > 0 and denote by yx,v its unique mild
solution2 taking values in C([0, T ],C(B)) for all T > 0. Then we define

I
(
u∗, z

)= inf

{
1

2

∫ T

0

∥∥v(s)
∥∥2

L2ds : yu∗,v(T ) = z,T > 0

}
, (45)

where this quasipotential relates to the minimal energy necessary to move the control
system (44) started at the equilibrium state u∗ to z.

Theorem 7.1 ([23, Theorem 12.18]) It holds that

lim
ε→0

ε2 lnE
[
τ ε
D|U0 = u∗]= inf

z∈∂D
I
(
u∗, z

)
.

Following further the exposition in [23, Sect. 12] explicit formulae for the rate
function I are only available in the special case of the drift possessing gradient struc-
ture and space-time white noise. As we have argued above, this structure is partic-
ularly not satisfied for neural field equations. Hence, the same observations as pre-
sented at the end of the last section prevent a further direct analytic approach to the
LDP. Therefore, we try to understand the LDP problem for a discretized approximate
finite-dimensional version of the neural field equation.

2The existence of such a solution is guaranteed by standard results on deterministic equations (cf. [23,

Sect. A.3]) as long as Q1/2 maps L2(B) continuously into C(B). This is easily established. The unique
square root Q1/2 of Q is the Hilbert–Schmidt operator given by Q1/2g = ∑∞

i=1 λi 〈vi , g〉vi for all

g ∈ L2(B) and in order to show that Q1/2g ∈ C(B) it remains to establish that the functions converge
uniformly on B. This holds as for all x ∈ B

∣∣∣∣∣
∞∑

i=N

λi 〈vi , g〉vi(x)

∣∣∣∣∣ ≤
∣∣∣∣∣

∞∑
i=N

λ2i vi (x)2

∣∣∣∣∣
1/2∣∣∣∣∣

∞∑
i=1

〈vi , g〉2
∣∣∣∣∣
1/2

≤
(
sup
x∈B

∣∣∣∣∣
∞∑
i=1

λ2i vi (x)2

∣∣∣∣∣
)1/2( ∞∑

i=N

〈vi , g〉2
)1/2

.

Hence, the upper bound, which is finite due to (7), is in independent of x and converges to zero forN → ∞.
Moreover, we further find that g(t) ∈ L2((0, T ),L2(B)) implies Q1/2g(t) ∈ L2((0, T ),C(B)).
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8 Galerkin Approximation

Throughout the section, we assume that the assumptions (H1)–(H3) are satisfied. As
a discretized version of the neural field equation (2), we consider its spectral Galerkin
approximations; recall that the solutionUt of (2) lies inC([0, T ],L2(B)) as discussed
in Sect. 2. In order to decouple the noise, we define the spectral representation of the
solution

Ut(x) =
∞∑
i=1

ui
t vi(x). (46)

Here, the orthonormal basis functions vi are given by the eigenfunctions of the co-
variance operator of the noise with corresponding eigenvalues λ2i , see Eq. (5). To
obtain a equation for the coefficients ui

t , we take the inner product of Eq. (4) with the
basis functions vi , which yields

〈dUt , vi〉 = [−α〈Ut , vi〉 + 〈
KF(Ut ), vi

〉]
dt + ε〈dWt , vi〉 for i ∈N.

After plugging in (46), we obtain for ui the countable Galerkin system

dui
t = [−αui

t + (KF)i
(
u1t , u

2
t , . . .

)]
dt + ελidβi

t for i ∈ N. (47)

Here, the nonlinearities coupling all the equations are given by

(KF)i
(
u1t , u

2
t , . . .

) :=
∫
B

vi(x)

(∫
B

w(x,y)f

( ∞∑
j=1

u
j
t vj (y)

)
dy

)
dx

=
∫
B

f

( ∞∑
j=1

u
j
t vj (x)

)(∫
B

w(x,y)vi(y)dy

)
dx

due to the symmetry of the kernel w. If, in addition, we assume that (H4) holds and K

and Q possess the same eigenfunctions and the eigenvalues are related as discussed
in Sect. 3 the nonlinearities become

(KF)i
(
u1t , u

2
t , . . .

)= λi

∫
B

f

( ∞∑
j=1

u
j
t vj (x)

)
vi(x)dx. (48)

The N th Galerkin approximation UN to U is obtained truncating the spectral repre-
sentation (46), and thus given by

UN
t =

N∑
i=1

u
i,N
t vi, (49)

where u
i,N
t are the solutions to the N -dimensional Galerkin SDE system

du
i,N
t = [−αu

i,N
t + (KF)i,N

(
u
1,N
t , . . . , u

N,N
t

)]
dt + ελidβi

t ∀i = 1, . . . ,N, (50)
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where the nonlinearities KFi,N are given by

(KF)i,N
(
u1,N , . . . , uN,N

)=
∫
B

f

(
N∑

j=1

uj,Nvj (x)

)(∫
B

w(x,y)vi(y)dy

)
dx (51)

or, in the special case of Sect. 3, by

(KF)i,N
(
u1,N , . . . , uN,N

)= λi

∫
B

f

(
N∑

j=1

uj,Nvj (x)

)
vi(x)dx, (52)

respectively. The following theorem establishes the almost sure convergence of the
Galerkin approximations to the solution of (4). Therefore, we may be able to in-
fer properties of the behavior of paths of the solution from the path behavior of the
Galerkin approximations. We have deferred the proof of the theorem to the Appendix.

Theorem 8.1 It holds for all T > 0 that

lim
N→∞ sup

t∈[0,T ]
∥∥Ut − UN

t

∥∥
L2(B)

= 0 a.s.

If, in addition, the series
∑∞

i=1 λ2i v
2
i converges in C(B) and the functions vi are

Lipschitz continuous with Lipschitz constants Li such that supx∈B
∑∞

i=1 λ2i L
2ρ
i ×

|vi(x)|2(1−ρ) < ∞ for a ρ ∈ (0,1) (i.e., the conditions of Lemma 2.1 are satisfied),
U0 ∈ C(B) such that limN→∞ ‖U0 − P NU0‖0 = 0 and K is compact on C(B), then
it holds for all T > 0 that

lim
N→∞ sup

t∈[0,T ]

∥∥Ut − UN
t

∥∥
0 = 0 a.s.

9 Approximating the LDP

The LDP in Theorem 7.1 is not immediately computable. Here, we show that a finite-
dimensional approximation can be made and what the structure of this approximation
entails. For simplicity, consider the case when the diagonal diffusion matrix D with
entriesDii = λ2i is positive definite, i.e., λi �= 0 for all i ∈ N. Observe that the inverse
of D induces an inner product on R

N for N ∈N∪ {∞} via

〈a, b〉N := aT (D)−1b = [
D

−1/2a
]T [

D
−1/2b

]
for a, b ∈ R

N,

where D is understood as the projection onto R
N×N if N < ∞. We are also going

to use the notation introduced in Sect. 8 for the Galerkin approximation, i.e., u
·,N
t

denotes the vector (
u
1,N
t , u

2,N
t , . . . , u

N,N
t

)T ∈ R
N (53)
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where u
·,N
t denotes the solutions of the N -dimensional system (50). Note that

throughout this section we shall always work with the Galerkin coefficients, e.g.,
ut refers to the vector (

u1t , u
2
t , . . .

)T ∈R
∞.

Furthermore, for arbitrary functions φt ∈ L2(B), which are used in the formulation
of the rate function, we use the notation φ

·,N
t to denote the projection onto the first N

Galerkin coefficients. Theorem 5.1 immediately implies the following:

Proposition 9.1 For the finite-dimensional Galerkin system (50) the rate function is
given by

IN
(
φ·,N )=

⎧⎪⎨
⎪⎩

1
2

∫ T

0 〈(φ·,N
t )′ − g·,N (φ

·,N
t ), (φ

·,N
t )′ − g·,N (φ

·,N
t )〉Ndt,

if φ ∈ u
·,N
0 + HN

1 ,

+∞, otherwise,

(54)

where gi,N (φ
·,N
t ) = −αφ

i,N
t + (KF)i,N (φ

1,N
t , . . . , φ

N,N
t ).

Recall from Sect. 7 that Theorem 7.1 provides a large deviation principle. For the
case when Q is a positive operator, we may formally rewrite the control system (44)
as

D
−1/2[ẏ − (−αy + KF(y)

)]= v (55)

so that the rate function for the Amari model can be expressed as

I (φ) =

⎧⎪⎨
⎪⎩

1
2

∫ T

0

∫
BD−1/2[φ′

t − g(φt )]D−1/2[φ′
t − g(φt )]dxdt,

if φ ∈ u0 + H∞
1 ,

+∞, otherwise,

(56)

where g(φt ) = −αφt + KF(φt ) and D−1/2u =∑∞
i=1(D

−1/2u,vi)vi . Therefore, the
next result just implies that the Galerkin approximation is consistent for the LDP.

Proposition 9.2 For each φt ∈ u0 + H∞
1 we have limN→∞ |I (φt ) − IN(φ

·,N
t )| = 0.

Proof Considering the finite-dimensional rate function (54) it suffices to notice that〈(
φ

·,N
t

)′ − g·,N (φ·,N
t

)
,
(
φ

·,N
t

)′ − g·,N (φ·,N
t

)〉
N

=
N∑

i=1

1

λ2i

[(
φ

i,N
t

)′ − gi,N
(
φ

·,N
t

)]2

=
N∑

i=1

∫
B

1

λ2i

[(
φ

i,N
t vi(x)

)′ − gi,N
(
φ

·,N
t

)
vi(x)

]2
dx

by orthonormality of the basis in L2(B). �
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Hence, we may work with the finite-dimensional Galerkin system and its LDP for
computational purposes. However, the truncation N may still be very large. We are
going to show, using a formal analysis for a certain case, that there is an intrinsic
multiscale structure of the rate function. We assume that we are in the special case
considered in Sect. 3 where K and Q have the same eigenfunctions and the corre-
sponding eigenvalues are given by λi and λ2i , respectively.

Lemma 9.1 For each N ∈ N, the first part of the rate function (54) can be rewritten
as

IN
(
φ·,N )= 1

2

∫ T

0
a1 − 2a2 + a3dt (57)

where the three terms are given by

aN
1 = 〈(

φ
·,N
t

)′ + αφ
·,N
t ,

(
φ

·,N
t

)′ + αφ
·,N
t

〉
N

,

aN
2 = 〈(

φ
·,N
t

)′ + αφ
·,N
t ,KF ·,N (φ·,N

t

)〉
N

,

aN
3 = [

K̃F
·,N (

φ·,N )]T [K̃F
·,N (

φ·,N )]
and (K̃F )i,N = 1

λ2i
(KF)i,N .

Proof For notational simplicity, we shall temporarily omit in this proof the subscript
for the inner product 〈·, ·〉N = 〈·, ·〉 as well as the Galerkin index, e.g., φ

·,N
t = φt as

it is understood that we work with N -dimensional vectors in this proof. Consider the
following general calculation:〈

φ′
t − g(φt ),φ

′
t − g(φt )

〉
= 〈

φ′
t , φ

′
t

〉− 2
〈
φ′

t , g(φt )
〉+ 〈

g(φt ), g(φt )
〉

= 〈
φ′

t , φ
′
t

〉+ 2α
〈
φ′

t , φt

〉− 2
〈
φ′

t ,KF(φt )
〉

+ 〈
KF(φt ),KF(φt )

〉+ α2〈φt ,φt 〉 − 2α
〈
φt ,KF(φt )

〉
= 〈

φ′
t + αφt ,φ

′
t + αφt

〉− 2
〈
φ′

t + αφt ,KF(φt )
〉+ K̃F (φt )

T K̃F (φt )

and observe that the result is independent of N . �

It is important to point out that the LDP from Theorem 5.1 requires the infimum
of the rate function. From Lemma 9.1, we know that the rate function splits into three
terms. The three terms are interesting in the asymptotic limit N → ∞. Suppose

(
φ

·,N
t

)′ + αφ
·,N
t = O

(
κ(N)

)
and K̃F

·,N (
φ

·,N
t

)= O
(
η(N)

)
as N → ∞ for some nonnegative functions κ , η. Then Lemma 9.1 yields

aN
1 = O

(
κ(N)2λ−2

N

)
, aN

2 = O
(
κ(N)η(N)λ−1

N

)
, aN

3 = O
(
η(N)2

)
.
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Lemma 9.2 Suppose there exists a positive constant Kf such that

sup
x∈R

∣∣f (x)
∣∣≤ Kf (58)

then η(N) = 1.

Proof A direct estimate yields

∣∣K̃F
j,N (

φ
·,N
t

)∣∣≤ ∫
B

∣∣∣∣∣f
(

N∑
i=1

φ
i,N
t vi(x)

)∣∣∣∣∣∣∣vj (x)
∣∣dx ≤ Kf

∫
B

∣∣vj (x)
∣∣dx.

Since ‖vj‖L2(B) = 1 and L2(B) ↪→ L1(B), the last integral is uniformly bounded
over j ∈ N by meas(B)1/2. �

We remark that several typical functions f discussed in Sect. 2 such as f (u) =
(1 + e−u)−1 and f (u) = (tanh(u) + 1)/2 are globally bounded so that Lemma 9.2
does apply to many practical cases. In this situation, we get that

aN
1 = O

(
κ(N)2λ−2

N

)
, aN

2 = O
(
κ(N)λ−1

N

)
, aN

3 = O(1).

We make a case distinction between the different relative asymptotics of κ(N) and
λN . Note that the following asymptotic relations are purely formal:

– If κ(N)  λN or κ(N) ∼ λN as N → ∞, then we can conclude that κ(N) → 0,
i.e., (

φ
N,N
t

)′ + αφ
N,N
t → 0 as N → 0 (59)

since for trace-class noise we know that λN → 0. If we formally require that
(φ

N,N
t )′ + αφ

N,N
t = 0 for N sufficiently large, then the higher-order Galerkin

modes decays exponentially in time

φ
N,N
t = φ

N,N
0 e−αt .

– If κ(N) � λN as N → ∞, then a1 � −2a2 + a3 and the first term dominates
the asymptotics. But aN

1 ≥ 0 for all N so that the rate function only has a finite
infimum if aN

1 → 0 as N → ∞. This implies again that (59) holds for the case of
a finite infimum.

Hence, we get in many reasonable first-exit problems for the Amari model with
trace-class noise that there is a finite set for n ≤ N of “slow” or “center-like” di-
rections and an infinite set of “fast” or “stable” directions for n > N . Although we
have made this observation from the rate function alone, it is entirely natural con-
sidering the structure of the Galerkin approximation. Indeed, for the case when the
eigenvalues of K and Q are related, we may write (50) as

du
i,N
t = (−αu

i,N
t + λi[· · · ]

)
dt + ελidβi

t (60)
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so that for bounded nonlinearity f , which is represented in the terms [· · · ] in (60),
the higher-order modes should really just be governed by du

i,N
t = −αu

i,N
t dt .

Hence, Propositions 9.1–9.2 and the multiscale nature of the problem induced by
the trace-class noise suggests a procedure how to approximate the rate function and
the associated LDP in practice. In particular, we may compute the eigenvalues and
eigenfunctions of K and Q up to a sufficiently large given order N∗. This yields an
explicit representation of the Galerkin system and the associated rate function. Then
one may apply any finite-dimensional technique to understand the rate function. One
may even find a better truncation order N < N∗ based on the knowledge that the min-
imizer of the rate function must have components that decay (almost) exponentially
in time for orders bigger than N .

10 Outlook

In this paper, we have discussed several steps toward a better understanding of noise-
induced transitions in continuum neural fields. Although we have provided the main
basic elements via the LDP and finite-dimensional approximations, there are still
several very interesting open problems.

We have demonstrated that a sharp Kramers’ rate calculation for neural fields
with trace-class noise is very challenging as the techniques for white-noise gradient-
structure SPDEs cannot be applied directly. However, we have seen in Sect. 4 that the
deterministic dynamics for neural fields frequently exhibits a classical bistable struc-
ture with a saddle-state between stable equilibria. This suggests that there should
be a Kramers’ law with exponential scaling in the noise intensity as well as a pre-
cisely computable pre-factor. It is interesting to ask how this pre-factor depends on
the eigenvalues of the trace-class operator Q defining the Q-Wiener process. We ex-
pect that new technical tools are needed to answer this question.

From the viewpoint of experimental data, the exponential scaling for the LDP is
relevant as it shows that noise-induced transitions have exponential interarrival times.
This leads to the possibility that working memory as well as perceptual bistability
could be governed by a Poisson process. However, the same phenomena could also
be governed by a slowly varying variable, i.e., by an adaptive neural field [14]; the
“fast” activity variable U in the Amari model is augmented by one or more “slow”
variables. In this context, the required assumptions on the equilibrium structure in
Sect. 4 and the noise in Sect. 3 is not necessary to produce a bistable switch and
the fast variable U can, e.g., just have a single deterministically unstable equilibrium
and bistable, nonrandom switching between metastable states may occur. Of course,
there is also the possibility that an intermediate regime between noise-induced and
deterministic escape is relevant [53].

It is interesting to note that the same problem arises generically across many nat-
ural sciences in the study of critical transitions (or “tipping points”) [48, 59]. The
question which escape mechanism from a metastable state matches the data is of-
ten discussed very controversially and we shall not aim to provide a discussion here.
However, our main goal to make the LDP and its associated rate functional as explicit
as possible should definitely help to simplify comparison between models and exper-
iment. For example, a parameter study or data assimilation for the finite-dimensional
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Galerkin system considered in Theorem 8.1 and the associated rate function in Propo-
sition 9.1 are often easier than working directly with the abstract solutions of the
stochastic Amari model in C([0, T ],L2(B)).

To study the parameter dependence is an interesting open question, which we aim
to address in future work. In particular, the next step is to use the Galerkin approx-
imations in Sect. 8 and the associated LDP in Sect. 9 for numerical purposes [49].
Recent work for SPDEs [8] suggests that a spectral method can also be efficient for
stochastic neural fields. Results on numerical continuation and jump heights for SDEs
[47] can also be immediately transferred to the spectral approximation, which would
allow for studies of bifurcations and associated noise-induced phenomena.

One may also ask how far the technical assumptions we make in this paper can
be weakened. It is not clear which parts of the global Lipschitz assumptions may be
replaced by local assumptions or removed altogether. Similar remarks apply to the
multiscale nature of the problem induced by the decay of the eigenvalues of Q. How
far this observation can be exploited to derive more efficient analytical as well as
numerical techniques remains to be investigated.

On a more abstract level, it would certainly be desirable to extend our basic frame-
work to other topics that have been considered already for deterministic neural fields.
A generalization to activity based models with nonlinearity f (

∫
B w(x,y)u(y)dy)

seems possible. Furthermore, it may be highly desirable to go beyond stationary so-
lutions and investigate noise-induced switching and transitions for traveling waves
and patterns.

Competing Interests

The authors declare that they have no competing interests.

Authors’ Contributions

Both authors contributed equally to the paper.

Acknowledgements CK would like to thank the European Commission (EC/REA) for support by a
Marie-Curie International Reintegration Grant and the Austrian Academy of Sciences (ÖAW) for support
via an APART fellowship. We also would like to thank two anonymous referees whose comments helped
to improve the manuscript.

Appendix: Convergence of the Galerkin Approximation

Proof of Theorem 8.1 We fix a T > 0. Throughout the proof an unspecified norm
‖ · ‖ or operator norm ‖| · ‖|, respectively, are either for the Hilbert space L2(B) or
the Banach space C(B) and estimates using the unspecified notation are valid in both
cases. Furthermore, C > 0 denotes an arbitrary deterministic constant, which may
change from line to line but depend only on T . We begin the proof obtaining an
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a priori growth bound on the solution of the Amari equation (4). Using the linear
growth condition on F implied by its Lipschitz continuity, we obtain the estimate

‖Ut‖ ≤ e−αt‖U0‖ + C

∫ t

0
e−α(t−s)

(
1+ ‖Us‖

)
ds + ‖Ot‖.

Due to Gronwall’s inequality, there exists a deterministic constant C such that it holds
almost surely

sup
t∈[0,T ]

‖Ut‖ ≤ C
(
1+ ‖U0‖ + sup

t∈[0,T ]
‖Ot‖

)
eCT a.s. (61)

Note that O is an Ornstein–Uhlenbeck process, and it thus holds

sup
t∈[0,T ]

‖Ot‖L2 < ∞

almost surely and under the assumptions of Lemma 2.1 in addition

sup
t∈[0,T ]

‖Ot‖0 < ∞

almost surely.
Let P N denote the projection operator from L2(B) to the subspace spanned by the

first N basis functions. Then we find that in Hilbert space notation the N th Galerkin
approximation satisfies

UN
t = e−αtP NU0 +

∫ t

0
e−α(t−s)P NKF

(
UN

t

)
ds + εON

t .

Here, we use ON to be shorthand for the truncated stochastic convolution

ON
t :=

N∑
i=1

λi

∫ t

0
e−α(t−s)dβi

svi . (62)

Hence, we obtain for the error of the Galerkin approximation

Ut − UN
t = e−αt

(
U0 − P NU0

)+
∫ t

0
e−α(t−s)

(
KF(Ut ) − P NKF

(
UN

t

))
ds

+ ε
(
Ot − ON

t

)
.

Adding and subtracting the obvious terms yields for the norm the estimate

∥∥Ut − UN
t

∥∥ ≤ e−αt
∥∥U0 − P NU0

∥∥+ ∥∥∣∣P NK
∥∥∣∣ ∫ t

0
e−α(t−s)

∥∥F(Us) − F
(
UN

s

)∥∥ds

+ ∥∥∣∣K − P NK
∥∥∣∣ ∫ t

0
e−α(t−s)

∥∥F(Us)
∥∥ds + ε

∥∥Ot − ON
t

∥∥,
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where ‖|P NK‖|L2 ≤ ‖|K‖|L2 and supN∈N ‖|P NK‖|0 < ∞ as a consequence of [3,
Lemma 11.1.4] (cf. the application of this result below). Next, using the Lipschitz and
linear growth conditions on F , applying Gronwall’s inequality, taking the supremum
over all t ∈ [0, T ] and estimating using the bound (61) yield

sup
t∈[0,T ]

∥∥Ut − UN
t

∥∥
≤ C

(∥∥U0 − P NU0
∥∥+ ∥∥∣∣K − P NK

∥∥∣∣(1+ ‖U0‖ + sup
t∈[0,T ]

‖Ot‖
))

+ C
(

sup
t∈[0,T ]

∥∥Ot − ON
t

∥∥). (63)

It remains to show that the individual terms in the right-hand side converge to zero
for N → ∞ almost surely.

– It clearly holds that ‖U0 −P NU0‖L2 → 0 and the convergence ‖U0 −P NU0‖0 →
0 holds by assumption.

– Next, as argued above (1 + ‖U0‖ + supt∈[0,T ] ‖Ot‖) is a.s. finite and the com-
pactness of the operator K implies ‖|K − P NK‖| → 0 for N → ∞, see [3,
Lemma 12.1.4].

– Finally, the third error term supt∈[0,T ] ‖Ot −ON
t ‖ vanishes if the Galerkin approx-

imations ON of the Ornstein–Uhlenbeck process O converge almost surely in the
spaces C([0, T ],L2(B)) and C([0, T ],C(B)), respectively. This convergence is
proven in Lemma A.1 below.

The proof is completed. �

The following lemma contains the convergence of the Galerkin approximation of
the Ornstein–Uhlenbeck process necessary for proving Theorem 8.1.

Lemma A.1 There exists a sequence bN > 0 with limN→∞ bN = 0 such that for all
T > 0 and all δ > 0 there exists a random variable Zδ with E|Zδ|p < ∞ for all p ≥ 1
such that

sup
t∈[0,T ]

∥∥Ot − ON
t

∥∥
L2 ≤ Zδb

1−δ
N

almost surely. If, in addition, the series
∑∞

i=1 λ2i v
2
i converges in C(B) and the

functions vi are Lipschitz continuous with Lipschitz constants Li such that
supx∈B

∑∞
i=1 λ2i L

2ρ
i |vi(x)|2(1−ρ) < ∞ for a ρ ∈ (0,1), then it further holds that

sup
t∈[0,T ]

∥∥Ot − ON
t

∥∥
0 ≤ Zδb

1−δ
N

almost surely.

Remark A.1 Assumptions on the speed of convergence of the series
∑∞

i=1 λ2i and∑∞
i=1 λ2i v

2
i and supx∈B

∑∞
i=1 λ2i L

2ρ
i |vi(x)|2(1−ρ) readily yield a rate of convergence



Page 28 of 33 C. Kuehn, M.G. Riedler

for the Galerkin approximation due to the definition of the constants bN in the proof
of the lemma.

Proof of Lemma A.1 As in the proof Theorem 8.1 the unspecified norm ‖ · ‖ denotes
either the norm in L2(B) or in C(B) and estimates are valid in both cases. We fix
T > 0, ρ ∈ (0,1) and a p ∈ N with p > 2d/ρ. Throughout the proof C > 0 denotes a
constant that changes from line to line, but depends only on the fixed parameters T ,
p, ρ, α and the domain B ⊂ R

d .
Then we obtain for all N,M ∈ N with M < N using the factorization method (cf.

[23, Sect. 5.3]) similarly to the proof of [8, Lemma 5.6] the estimate

(
E sup

t∈[0,T ]
∥∥ON

t − OM
t

∥∥p
)1/p ≤ C sup

t∈[0,T ]
(
E
∥∥YM,N

t

∥∥p)1/p
,

where Y
N,M
t is the process defined by

Y
M,N
t =

N∑
i=M+1

λi

∫ t

0
(t − s)−ρ/2e−α(t−s)dβi

svi .

In order to estimate the pth mean of the process YM,N , we proceed separately for the
two cases L2(B) and C(B).

The case of L2(B): Due to the orthogonality of the basis functions and employing
Hölder’s inequality, one obtains

E
∥∥YM,N

t

∥∥p

L2

= E

(
N∑

i=M+1

λ2i

(∫ t

0
(t − s)−ρ/2e−α(t−s)dβi

s

)2
)p/2

= E

(
N∑

i=M+1

λ
2(p−2)/p
i

(
λ
2/p
i

∫ t

0
(t − s)−ρ/2e−α(t−s)dβi

s

)2
)p/2

≤ E

((
N∑

i=M+1

λ2i

)(p−2)/p( N∑
i=M+1

(
λ
2/p
i

∫ t

0
(t − s)−ρ/2e−α(t−s)dβi

s

)p
)2/p)p/2

≤
(

N∑
i=M+1

λ2i

)(p−2)/2 N∑
i=M+1

E

(
λ
2/p
i

∫ t

0
(t − s)−ρ/2e−α(t−s)dβi

s

)p

.



Journal of Mathematical Neuroscience (2014) 4:1 Page 29 of 33

Next, as the stochastic integrals in the right-hand side are centered Gaussian random
variables [8, Lemma 5.2]3 yields for all t ≤ T

E
∥∥YM,N

t

∥∥p

L2 ≤ C

(
N∑

i=M+1

λ2i

)(p−2)/p N∑
i=M+1

λ2i

(∫ t

0
(t − s)−ρe−2α(t−s)ds

)p/2

≤ C

(
N∑

i=M+1

λ2i

)(p−2)/p N∑
i=M+1

λ2i

(∫ T

0
s−ρe−2αsds

)p/2

≤ C

(
N∑

i=M+1

λ2i

)p/2

.

Therefore, we obtain for all M,N ∈N with M < N

(
sup

t∈[0,T ]
E
∥∥YN,M

t

∥∥p

L2

)1/p ≤ C

(
N∑

i=M+1

λ2i

)1/2

≤ C

( ∞∑
i=M+1

λ2i

)1/2

, (64)

where the final upper bound decreases to zero for M → ∞ by assumption.

The case of C(B): In this case the estimates get a bit more involved. As ρ/2 > d/p

The continuous embedding of the Sobolev–Slobodeckij space Wρ/2,p(B) into C(B)

(cf. [58, Sect. 2.2.4 and 2.4.4]) and [8, Lemma 5.2] yield the estimates

sup
t∈[0,T ]

E
∥∥YN,M

t

∥∥p

0 ≤ C sup
t∈[0,T ]

∫
B

∫
B

E|YM,N
t (x) − Y

M,N
t (y)|p

|x − y|d+ρp/2
dxdy

+ C sup
t∈[0,T ]

∫
B
E
∣∣YM,N(x)

∣∣pdx

≤ C sup
t∈[0,T ]

∫
B

∫
B

(E|YM,N
t (x) − Y

M,N
t (y)|2)p/2

|x − y|d+ρp/2
dxdy

+ C sup
t∈[0,T ]

∫
B

(
E
∣∣YM,N(x)

∣∣2)p/2
dx. (65)

We proceed estimating the two expectation terms in the right-hand side. Then we
obtain for all M < N and all x, y ∈ B for the first term

E
∣∣YM,N

t (x) − Y
M,N
t (y)

∣∣2
= E

∣∣∣∣∣
N∑

i=M+1

λi

∫ t

0
(t − s)−ρ/2e−α(t−s)dβi

s

(
vi(x) − vi(y)

)∣∣∣∣∣
2

3For a centered Gaussian random variable Z, it holds EZp ≤ p!(EZ2)p/2 for all p ∈N.
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≤
N∑

i=M+1

λ2i

∫ T

0
s−ρe−2αsds

∣∣vi(x) − vi(y)
∣∣2

≤ C

N∑
i=M+1

λ2i L
2ρ
i |x − y|2ρ (66)

for any ρ ∈ (0,1) and for the second term

E
∣∣YM,N

t (x)
∣∣2 ≤

N∑
i=M+1

λ2i

∫ t

0
(t − s)−ρe−2α(t−s)dsvi(x)2

≤ C

N∑
i=M+1

λ2i vi(x)2. (67)

Next applying the estimates (67) and (66) to the right-hand side of (65) yields, note
that ρp/2− d > 0,

(
sup

t∈[0,T ]
E
∥∥YN,M

t

∥∥p

0

)1/p ≤ C

(∫
B

∫
B

(
∑N

i=M+1 λ2i L
2ρ
i |x − y|2ρ)p/2

|x − y|d+ρp/2
dxdy

+
∫
B

(
N∑

i=M+1

λ2i vi(x)2

)p/2

dx

)1/p

≤ C

(∫
B

∫
B

|x − y|ρp/2−ddxdy

(
N∑

i=M+1

λ2i L
2ρ
i

)
p/2

+
(
sup
x∈B

∣∣∣∣∣
N∑

i=M+1

λ2i vi(x)2

∣∣∣∣∣
)p/2)1/p

≤ C

(
sup
x∈B

∣∣∣∣∣
N∑

i=M+1

λ2i vi(x)2

∣∣∣∣∣+
N∑

i=M+1

λ2i L
2ρ
i

)1/2

for any ρ ∈ (0,1). Due to the assumptions of the lemma the two summations in the
right hand side converge for N → ∞, and thus we obtain for all M,N ∈ N with
M < N the estimate

(
sup

t∈[0,T ]
E
∥∥YN,M

t

∥∥p

0

)1/p ≤ C

(
sup
x∈B

∣∣∣∣∣
∞∑

i=M+1

λ2i vi(x)2

∣∣∣∣∣+
∞∑

i=M+1

λ2i L
2ρ
i

)1/2

, (68)

where the right-hand side decreases to zero for M → ∞.
Overall, we infer from the estimates (64) and (68) that ON is a Cauchy-sequence

in the two spaces C([0, T ],L2(B)) and C([0, T ],C(B)) with respect to convergence
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in the pth mean and the limit is given by the process O . Moreover, it holds that(
E sup

t∈[0,T ]

∥∥Ot − ON
t

∥∥p
)1/p ≤ CbN ∀N ∈N, (69)

where the constant C depends only on p but is independent of N and the sequence
bN is independent of p and limN→∞ bN = 0. As we fixed p ∈ N sufficiently large at
the beginning of the proof, the result (69) holds for all sufficiently large p ∈N. Then,
however, Jensen’s inequality implies that (69) holds for all p ∈ [1,∞). Proceeding
as in the proof of [44, Lemma 2.1] using the Chebyshev–Markov inequality and the
Borel–Cantelli lemma, one obtains that there exists for all δ > 0 a random variable
Zδ with E|Zδ|p < ∞ for all p ≥ 1 such that

sup
t∈[0,T ]

∥∥Ot − ON
t

∥∥≤ Zδb
1−δ
N almost surely. (70)

The proof is completed. �
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