2,733 research outputs found

    A low-power reconfigurable logic array based on double-gate transistors

    Get PDF
    A fine-grained reconfigurable architecture based on double gate technology is proposed and analyzed. The logic function operating on the first gate of a double-gate (DG) transistor is reconfigured by altering the charge on its second gate. Each cell in the array can act as logic or interconnect, or both, contrasting with current field-programmable gate array structures in which logic and interconnect are built and configured separately. Simulation results are presented for a fully depleted SOI DG-MOSFET implementation and contrasted with two other proposals from the literature based on directed self-assembly

    A polymorphic hardware platform

    Get PDF
    In the domain of spatial computing, it appears that platforms based on either reconfigurable datapath units or on hybrid microprocessor/logic cell organizations are in the ascendancy as they appear to offer the most efficient means of providing resources across the greatest range of hardware designs. This paper encompasses an initial exploration of an alternative organization. It looks at the effect of using a very fine-grained approach based on a largely undifferentiated logic cell that can be configured to operate as a state element, logic or interconnect - or combinations of all three. A vertical layout style hides the overheads imposed by reconfigurability to an extent where very fine-grained organizations become a viable option. It is demonstrated that the technique can be used to develop building blocks for both synchronous and asynchronous circuits, supporting the development of hybrid architectures such as globally asynchronous, locally synchronous

    Nanoelectronic Design Based on a CNT Nano-Architecture

    Get PDF

    A Reconfigurable Digital Multiplier and 4:2 Compressor Cells Design

    Get PDF
    With the continually growing use of portable computing devices and increasingly complex software applications, there is a constant push for low power high speed circuitry to support this technology. Because of the high usage and large complex circuitry required to carry out arithmetic operations used in applications such as digital signal processing, there has been a great focus on increasing the efficiency of computer arithmetic circuitry. A key player in the realm of computer arithmetic is the digital multiplier and because of its size and power consumption, it has moved to the forefront of today\u27s research. A digital reconfigurable multiplier architecture will be introduced. Regulated by a 2-bit control signal, the multiplier is capable of double and single precision multiplication, as well as fault tolerant and dual throughput single precision execution. The architecture proposed in this thesis is centered on a recursive multiplication algorithm, where a large multiplication is carried out using recursions of simpler submultiplier modules. Within each sub-multiplier module, instead of carry save adder arrays, 4:2 compressor rows are utilized for partial product reduction, which present greater efficiency, thus result in lower delay and power consumption of the whole multiplier. In addition, a study of various digital logic circuit styles are initially presented, and then three different designs of 4:2 compressor in Domino Logic are presented and simulation results confirm the property of proposed design in terms of delay, power consumption and operation frequenc

    Rail-to-Rail Operational in Low-Power Reconfigurable Analog Circuitry

    Get PDF
    Analog signal processing (ASP) can be used to decrease energy consumption by several orders of magnitude over completely digital applications. Low-power field programmable analog arrays (FPAA) have been previously used by analog designers to decrease energy consumption. Combining ASP with an FPAA, energy consumption of these systems can be further reduced. For ASP to be most functional, it must achieve rail-to-rail operation to maintain a high dynamic range. This work strives to further reduce power consumption in reconfigurable analog circuitry by presenting a novel data converter that utilizes ASP and rail-to-rail operation. Rail-to-Rail operation is achieved in the data converter with the use of an operational amplifier presented in this work. This efficient yet elementary data converter has been fabricated in a 0.5μ\mum standard CMOS process. Additionally, this work looks deeper into the challenges of students working remotely, how MATLAB can be used to create circuit design tools, and how these developmental tools can be used by circuit design students

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF
    corecore