186 research outputs found

    A FIC-based stabilized mixed finite element method with equal order interpolation for solid–pore fluid interaction problems

    Get PDF
    This is the peer reviewed version of the following article: [de-Pouplana, I., and Oñate, E. (2017) A FIC-based stabilized mixed finite element method with equal order interpolation for solid–pore fluid interaction problems. Int. J. Numer. Anal. Meth. Geomech., 41: 110–134. doi: 10.1002/nag.2550], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nag.2550/abstract. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."A new mixed displacement-pressure element for solving solid–pore fluid interaction problems is presented. In the resulting coupled system of equations, the balance of momentum equation remains unaltered, while the mass balance equation for the pore fluid is stabilized with the inclusion of higher-order terms multiplied by arbitrary dimensions in space, following the finite calculus (FIC) procedure. The stabilized FIC-FEM formulation can be applied to any kind of interpolation for the displacements and the pressure, but in this work, we have used linear elements of equal order interpolation for both set of unknowns. Examples in 2D and 3D are presented to illustrate the accuracy of the stabilized formulation for solid–pore fluid interaction problems.Peer ReviewedPostprint (author's final draft

    Finite element modelling of fracture propagation in saturated media using quasi-zero-thickness interface elements

    Get PDF
    A new computational technique for the simulation of 2D and 3D fracture propagation processes in saturated porous media is presented. A non-local damage model is conveniently used in conjunction with interface elements to predict the degradation pattern of the domain and insert new fractures followed by remeshing. FIC-stabilized elements of equal order interpolation in the displacement and the pore pressure have been successfully used under complex conditions near the undrained-incompressible limit. A bilinear cohesive fracture model describes the mechanical behaviour of the joints. A formulation derived from the cubic law models the fluid flow through the crack. Examples in 2D and 3D, using 3-noded triangles and 4-noded tetrahedra respectively, are presented to illustrate the accuracy and robustness of the proposed methodology.Peer ReviewedPostprint (author's final draft

    Low-order stabilized finite element for the full Biot formulation in soil mechanics at finite strain

    Get PDF
    This article presents a novel finite element formulation for the Biot equation using low-order elements. Additionally, an extra degree of freedom is introduced to treat the volumetric locking steaming from the effective response of the medium; its balance equation is also stabilized. The accuracy of the proposed formulation is demonstrated by means of numerical analyses.Peer ReviewedPostprint (author's final draft

    Desarrollo de nuevos métodos para el análisis fluido-estructura mediante PFEM

    Get PDF
    El objetivo de la tesina será avanzar en la implementación de métodos numéricos para la modelización de la interacción entre fluido-estructura y fluido-partícula utilizando PFEM, elementos sólidos en tres dimensiones y partículas discretas (DEM). Con este tipo de metodología se pretende estudiar los posibles efectos producidos por desastres naturales como avenidas, inundaciones, desprendimientos, etc. en las que un fluido puede arrastrar objetos de distinto tamañ

    PFEM–DEM for particle-laden flows with free surface

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s40571-019-00244-1This work proposes a fully Lagrangian formulation for the numerical modeling of free-surface particle-laden flows. The fluid phase is solved using the particle finite element method (PFEM), while the solid particles embedded in the fluid are modeled with the discrete element method (DEM). The coupling between the implicit PFEM and the explicit DEM is performed through a sub-stepping staggered scheme. This work only considers suspended spherical particles that are assumed not to affect the fluid motion. Several tests are presented to validate the formulation. The PFEM–DEM results show very good agreement with analytical solutions, laboratory tests and numerical results from alternative numerical methods.Peer ReviewedPostprint (author's final draft

    A FIC-based stabilized mixed finite element method with equal order interpolation for solid–pore fluid interaction problems

    No full text
    This is the peer reviewed version of the following article: [de-Pouplana, I., and Oñate, E. (2017) A FIC-based stabilized mixed finite element method with equal order interpolation for solid–pore fluid interaction problems. Int. J. Numer. Anal. Meth. Geomech., 41: 110–134. doi: 10.1002/nag.2550], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nag.2550/abstract. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."A new mixed displacement-pressure element for solving solid–pore fluid interaction problems is presented. In the resulting coupled system of equations, the balance of momentum equation remains unaltered, while the mass balance equation for the pore fluid is stabilized with the inclusion of higher-order terms multiplied by arbitrary dimensions in space, following the finite calculus (FIC) procedure. The stabilized FIC-FEM formulation can be applied to any kind of interpolation for the displacements and the pressure, but in this work, we have used linear elements of equal order interpolation for both set of unknowns. Examples in 2D and 3D are presented to illustrate the accuracy of the stabilized formulation for solid–pore fluid interaction problems.Peer Reviewe

    Research and Technology, 1998

    Get PDF
    This report selectively summarizes the NASA Lewis Research Center's research and technology accomplishments for the fiscal year 1998. It comprises 134 short articles submitted by the staff scientists and engineers. The report is organized into five major sections: Aeronautics, Research and Technology, Space, Engineering and Technical Services, and Commercial Technology. A table of contents and an author index have been developed to assist readers in finding articles of special interest. This report is not intended to he a comprehensive summary of all the research and technology work done over the past fiscal year. Most of the work is reported in Lewis-published technical reports, journal articles, and presentations prepared by Lewis staff and contractors. In addition, university grants have enabled faculty members and graduate students to engage in sponsored research that is reported at technical meetings or in journal articles. For each article in this report, a Lewis contact person has been identified, and where possible, reference documents are listed so that additional information can be easily obtained. The diversity of topics attests to the breadth of research and technology being pursued and to the skill mix of the staff that makes it possible. At the time of publication, NASA Lewis was undergoing a name change to the NASA John H. Glenn Research Center at Lewis Field
    corecore