41,324 research outputs found

    Kernelization and Enumeration: New Approaches to Solving Hard Problems

    Get PDF
    NP-Hardness is a well-known theory to identify the hardness of computational problems. It is believed that NP-Hard problems are unlikely to admit polynomial-time algorithms. However since many NP-Hard problems are of practical significance, different approaches are proposed to solve them: Approximation algorithms, randomized algorithms and heuristic algorithms. None of the approaches meet the practical needs. Recently parameterized computation and complexity has attracted a lot of attention and been a fruitful branch of the study of efficient algorithms. By taking advantage of the moderate value of parameters in many practical instances, we can design efficient algorithms for the NP-Hard problems in practice. In this dissertation, we discuss a new approach to design efficient parameterized algorithms, kernelization. The motivation is that instances of small size are easier to solve. Roughly speaking, kernelization is a preprocess on the input instances and is able to significantly reduce their sizes. We present a 2k kernel for the cluster editing problem, which improves the previous best kernel of size 4k; We also present a linear kernel of size 7k 2d for the d-cluster editing problem, which is the first linear kernel for the problem. The kernelization algorithm is simple and easy to implement. We propose a quadratic kernel for the pseudo-achromatic number problem. This implies that the problem is tractable in term of parameterized complexity. We also study the general problem, the vertex grouping problem and prove it is intractable in term of parameterized complexity. In practice, many problems seek a set of good solutions instead of a good solution. Motivated by this, we present the framework to study enumerability in term of parameterized complexity. We study three popular techniques for the design of parameterized algorithms, and show that combining with effective enumeration techniques, they could be transferred to design efficient enumeration algorithms

    Paradigms for Parameterized Enumeration

    Full text link
    The aim of the paper is to examine the computational complexity and algorithmics of enumeration, the task to output all solutions of a given problem, from the point of view of parameterized complexity. First we define formally different notions of efficient enumeration in the context of parameterized complexity. Second we show how different algorithmic paradigms can be used in order to get parameter-efficient enumeration algorithms in a number of examples. These paradigms use well-known principles from the design of parameterized decision as well as enumeration techniques, like for instance kernelization and self-reducibility. The concept of kernelization, in particular, leads to a characterization of fixed-parameter tractable enumeration problems.Comment: Accepted for MFCS 2013; long version of the pape

    Complexity classifications for different equivalence and audit problems for Boolean circuits

    Get PDF
    We study Boolean circuits as a representation of Boolean functions and consider different equivalence, audit, and enumeration problems. For a number of restricted sets of gate types (bases) we obtain efficient algorithms, while for all other gate types we show these problems are at least NP-hard.Comment: 25 pages, 1 figur

    Efficient enumeration of solutions produced by closure operations

    Full text link
    In this paper we address the problem of generating all elements obtained by the saturation of an initial set by some operations. More precisely, we prove that we can generate the closure of a boolean relation (a set of boolean vectors) by polymorphisms with a polynomial delay. Therefore we can compute with polynomial delay the closure of a family of sets by any set of "set operations": union, intersection, symmetric difference, subsets, supersets …\dots). To do so, we study the MembershipFMembership_{\mathcal{F}} problem: for a set of operations F\mathcal{F}, decide whether an element belongs to the closure by F\mathcal{F} of a family of elements. In the boolean case, we prove that MembershipFMembership_{\mathcal{F}} is in P for any set of boolean operations F\mathcal{F}. When the input vectors are over a domain larger than two elements, we prove that the generic enumeration method fails, since MembershipFMembership_{\mathcal{F}} is NP-hard for some F\mathcal{F}. We also study the problem of generating minimal or maximal elements of closures and prove that some of them are related to well known enumeration problems such as the enumeration of the circuits of a matroid or the enumeration of maximal independent sets of a hypergraph. This article improves on previous works of the same authors.Comment: 30 pages, 1 figure. Long version of the article arXiv:1509.05623 of the same name which appeared in STACS 2016. Final version for DMTCS journa

    Solving the Shortest Vector Problem in Lattices Faster Using Quantum Search

    Full text link
    By applying Grover's quantum search algorithm to the lattice algorithms of Micciancio and Voulgaris, Nguyen and Vidick, Wang et al., and Pujol and Stehl\'{e}, we obtain improved asymptotic quantum results for solving the shortest vector problem. With quantum computers we can provably find a shortest vector in time 21.799n+o(n)2^{1.799n + o(n)}, improving upon the classical time complexity of 22.465n+o(n)2^{2.465n + o(n)} of Pujol and Stehl\'{e} and the 22n+o(n)2^{2n + o(n)} of Micciancio and Voulgaris, while heuristically we expect to find a shortest vector in time 20.312n+o(n)2^{0.312n + o(n)}, improving upon the classical time complexity of 20.384n+o(n)2^{0.384n + o(n)} of Wang et al. These quantum complexities will be an important guide for the selection of parameters for post-quantum cryptosystems based on the hardness of the shortest vector problem.Comment: 19 page
    • …
    corecore