
Logical Methods in Computer Science
Vol. 8(3:27)2012, pp. 1–25
www.lmcs-online.org

Submitted Jul. 25, 2011
Published Sep. 29, 2012

COMPLEXITY CLASSIFICATIONS FOR DIFFERENT EQUIVALENCE

AND AUDIT PROBLEMS FOR BOOLEAN CIRCUITS

ELMAR BÖHLER a, NADIA CREIGNOU b, MATTHIAS GALOTA c, STEFFEN REITH d,
HENNING SCHNOOR e, AND HERIBERT VOLLMER f

a Theoretische Informatik, Universität Würzburg, Am Hubland, D-97030 Würzburg, Germany
e-mail address: boehler@informatik.uni-wuerzburg.de

b Aix-Marseille Université, CNRS, LIF UMR 7279, 13 288 Marseille, France
e-mail address: creignou@lif.univ-mrs.fr

c Elektrobit, Am Wolfsmantel 46, D-91058 Erlangen, Germany
e-mail address: Matthias.Galota@elektrobit.com

d Theoretische Informatik, FB DCSM, Hochschule RheinMain, Kurt-Schumacher-Ring 18, D-65197
Wiesbaden, Germany
e-mail address: Steffen.Reith@hs-rm.de

e Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Christian-Albrechts-Platz 4, 24118
Kiel
e-mail address: schnoor@ti.informatik.uni-kiel.de

f Institut für Theoretische Informatik, Leibniz Universität Hannover, Appelstraße 4, 30167 Han-
nover, Germany
e-mail address: vollmer@thi.uni-hannover.de

Abstract. We study Boolean circuits as a representation of Boolean functions and con-
sider different equivalence, audit, and enumeration problems. For a number of restricted
sets of gate types (bases) we obtain efficient algorithms, while for all other gate types we
show these problems are at least NP-hard.

1. Introduction

The study of Boolean functions is an active research topic since more than one hundred
years. Since the early papers of Shannon [RS42, Sha38] and Lupanov [Lup58] in the 1940s
and 1950s, Boolean circuits (then called switching circuits) have been used as a computation
model for Boolean functions. The computational complexity theory of Boolean circuits de-
veloped rapidly, see Savage’s textbook [Sav76]. In the meantime many beautiful results have

1998 ACM Subject Classification: F.2.2.
Key words and phrases: Boolean circuits, complexity classification, isomorphism.

b Supported by the Agence Nationale de la Recherche under grant ANR-09-BLAN-0011-01.
f Supported by DFG VO 630/6-2.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8(3:27)2012

c© E. Böhler, N. Creignou, M. Galota, S. Reith, H. Schnoor, and H. Vollmer
CC© Creative Commons

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutionelles Repositorium der Leibniz Universität Hannover

https://core.ac.uk/display/130519868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/about/licenses

2 E. BÖHLER, N. CREIGNOU, M. GALOTA, S. REITH, H. SCHNOOR, AND H. VOLLMER

been proven, e. g., in the area of lower bounds or of algebraic and logical characterizations
of small circuit classes, cf. [Weg87, Vol99].

Another development of equal importance is the search for different representations
(sometimes also called data structures, see, e.g., the books [MT98, Weg00]) for Boolean
functions that may facilitate solving presumably hard problems. Let us explain this with
an example. The well-known satisfiability problem for propositional logic is known to be
NP-complete. This immediately implies that the problem, given a Boolean circuit C, to
decide if there is an input for which C outputs 1 is NP-complete as well. Thus, using
Boolean circuits as a representation for a Boolean function f , to determine if f−1(1) is
not empty appears to be a computationally hard problem. However, if we represent f by a
decision tree, satisfiability can be solved in polynomial time (in the size of the decision tree).
The same holds for ordered binary decision diagrams and different further types of so called
branching programs, see [Weg00]. This advantage of course has its price: generally, Boolean
circuits are a much more succinct way of representing Boolean functions. Nevertheless, since
the pioneering work by R. E. Bryant, branching programs and in particular ordered binary
decision diagrams have turned out to be a suitable representation for many application areas
such as model checking, VLSI design, computer-aided design, etc; we refer the interested
reader to [Weg00] for a discussion.

In this paper, a different approach is advocated. While it is known that in general
satisfiability for Boolean circuits is NP-complete, there are prominent easy special cases:
For example, if we consider only circuits over a monotone base, the satisfiability problem
admits an efficient solution. Another example is that of linear circuits (i. e., circuits with a
base of linear functions). This phenomenon was studied systematically by H. R. Lewis in
1979, who showed that satisfiability is NP-complete if the base contains or can implement
the negation of implication, i. e., the function x ∧ ¬y. In all other cases, satisfiability has
a polynomial-time algorithm. This dichotomy result holds for Boolean circuits as well as
for propositional formulas. The work of Lewis has been taken up by Reith and Wagner
[RW05] who examined further algorithmic problems such as the circuit value problem and
the problem of counting the number of satisfying assignments.

Here we study further important algorithmic tasks for the representation of Boolean
functions by Boolean circuits: First we examine the equivalence problem, i. e., the question
if two given Boolean circuits represent logically equivalent Boolean functions, and the iso-
morphism problem, i. e., the problem if two given circuits can be made equivalent through a
permutation of their input variables. While these problems are of enormous interest in the
area of verification and model-checking, it should be remarked that also from a theoretical
viewpoint they have a long history: they were studied by Jevons and Clifford in the 19th
century and in particular the isomorphism problem became known as the “Jevons-Clifford
Problem”. The isomorphism problem admittedly gains its importance from a more theo-
retical point of view. In complexity theory, isomorphism problems in general are notorious
since often they resist a precise complexity theoretic classification. Most famous of course
is graph isomorphism, a candidate for an “intermediate problem” between P and the NP-
complete problems. Here we obtain a dichotomy distinguishing the easy from the hard cases
for isomorphism of circuits, but for the hard problems we only have a hardness result, we
are not able to prove completeness for a complexity class.

A second group of problems we study concerns so called frozen variables. A variable x
is frozen in a Boolean circuit C if C is satisfiable and all its satisfying assignments give the
same Boolean value to x. We study the problem to determine if a given circuit has a variable

COMPLEXITY CLASSIFICATIONS FOR BOOLEAN CIRCUITS 3

that is frozen. We also consider a variant that has become known recently under the name
audit problem: this is the problem to decide if a given circuit has a frozen variable or is
unsatisfiable. Originally the audit problem stems from the database area. One can view the
value of a frozen variable as having been compromised by the results of the query expressed
by the circuit. This is considered problematic with respect to data security questions (see
[KPR03]). The audit problem has further practical importance also in VLSI design and
testing: here, a frozen variable is a hint for a stuck-at fault and hence a manufacturing
defect within the circuit.

Finally, we study a variant of the counting problem that is also relevant in practice:
Instead of just determining the number of satisfying assignments we are interested in an ef-
ficient way of producing (enumerating) all such assignments. Different notions of “efficient”
enumeration have been considered in a paper by Johnson et al. [JYP88]. We recall these
notions here (e. g., polynomial total time, polynomial delay) and study them in the context
of enumerating solutions of Boolean circuits.

For all these problems we obtain complete complexity classifications: We determine
exactly those circuit bases that make the problems hard (NP-complete or even harder) and
for all remaining bases we present efficient algorithms solving these problems.

The organization of the paper is as follows: In the next section we define Boolean func-
tions and Boolean circuits. We also introduce Post’s lattice of all closed classes of Boolean
functions; this lattice will be our main technical tool to obtain the desired complexity re-
sults. In Sect. 3 we formally introduce all algorithmic problems that we will classify. In
Sect. 4 we then turn to equivalence and isomorphism while in Sect. 5 we study all audit-like
problems; Sect. 6 contains our results on enumeration. Finally, Sect. 7 contains a conclusion
and presents some open problems and future research directions.

2. Preliminaries

2.1. Boolean functions and Post’s lattice. A Boolean function is an n-ary function
f : {0, 1}n → {0, 1}. In the following we will often use well-known Boolean functions as
0, 1, ∧, ∨, ¬, ⊕, →, the implication function, and the (k + 1)-ary k-threshold function tk
verifying tk(x1, . . . , xk+1) = 1 if and only if

∑k+1
i=1 xi ≥ k.

A clone is a set of Boolean functions that is closed under superposition, i.e., it contains
all projections (that is, the functions f(a1, . . . , an) = ak for 1 ≤ k ≤ n and n ∈ N) and is
closed under arbitrary composition [PK79, Sze86, Pip97, Lau06]. Let B be a finite set of
Boolean functions. We denote by [B] the smallest clone containing B and call B a base for
[B]. The set [B] corresponds to the set of all Boolean functions that can be computed by
B-circuits (as defined below). All closed classes of Boolean functions are known, as is their
inclusion structure, which forms a lattice. This lattice is named after its discoverer E. Post
[Pos41].

The following properties are crucial for the below definitions of the clones:

− f is c-reproducing if f(c, . . . , c) = c, c ∈ {0, 1}. The functions ∧ and ∨ are 0- and 1-
reproducing, the binary exclusive or, ⊕, is 0-reproducing, but not 1-reproducing, whereas
the unary negation (¬) is neither 1- nor 0-reproducing.

− f is monotonic if a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤ f(b1, . . . , bn). Boolean
functions built up on composition of only ∧,∨, 0, 1 are monotonic, like for instance
g(x, y, z) ≡ x ∧ (1 ∧ (y ∨ z)).

4 E. BÖHLER, N. CREIGNOU, M. GALOTA, S. REITH, H. SCHNOOR, AND H. VOLLMER

− f is c-separating of degree k if for all A ⊆ f−1(c) of size |A| ≤ k there exists an i ∈
{1, . . . , n} such that (a1, . . . , an) ∈ A implies ai = c, c ∈ {0, 1}. The (k + 1)-ary k-
threshold function tk is 1-separating of degree k, but not 1-separating of degree k + 1.
For instance t2(x, y, z) ≡ (x∧y)∨(x∧z)∨(y∧z), which is the ternary majority function,
is 1-separating of degree 2.

− f is c-separating if f is c-separating of degree |f−1(c)|. The implication (x → y) ≡ ¬x∨y
is 0-separating.

− f is self-dual if f(x1, . . . , xn) ≡ ¬f(¬x1, . . . ,¬xn). The function g(x, y, z) ≡ (x ∧ ¬y) ∨
(x ∧ ¬z) ∨ (¬y ∧ ¬z) is self-dual.

− f is affine if f ≡ x1⊕ · · · ⊕xn⊕ c with c ∈ {0, 1}. The function g(x, y, z) ≡ x⊕ y⊕ z⊕ 1
is affine and self-dual.

For a list of all Boolean clones see Table 1 and for their inclusion structure see Figure 2.
For an extensive introduction to superposition, Post’s Lattice and related problems see
[BCRV03]. In the naming of the clones the semantic of single indexes is as follows. Index
2 indicates that the clone contains no constants at all. Index 0 (resp. 1) indicates that
the clone contains only the constant 0 (resp. 1) but not 1 (resp. 0). Clones with no index
contain both constants 0 and 1. The only exceptions to this convention are the clones D
and D1 which do not contain any constants at all. The index * stands for all valid indexes.
Clones of particular importance in this paper are:

− the clone of all Boolean functions BF = [∧,¬] = [∧,∨,¬, 0, 1]

− the monotonic clones M∗, e.g., M2 = [∧,∨], M = [∧,∨, 0, 1]

− the affine clones L∗, e.g., L2 = [x⊕ y ⊕ z], L = [x⊕ y, 0, 1]

− the disjunctive clones V∗, e.g., V2 = [∨], V = [∨, 0, 1]

− the conjunctive clones E∗, e.g., E2 = [∧], E = [∧, 0, 1]

− the c-reproducing clones R1 (the clone of all 1-reproducing functions), R0 (0-reproducing
functions), R2 (functions that are both 1- and 0-reproducing)

− the implication clone S0 = [→]

− the negated-implication clone S1 = [x ∧ ¬y]

− the self-dual clones: D self-dual, D1 = D ∩ R2, D2 = D ∩M

− the clones S00 = S0 ∩ R2 ∩ M = [x ∨ (y ∧ z)], S10 = S1 ∩ R2 ∩ M = [x ∧ (y ∨ z)],
S12 = S1 ∩ R2 = [x ∧ (y ∨ ¬z)] and S02 = S0 ∩ R2 = [x ∨ (y ∧ ¬z)].

− the clones I∗ containing only the identity and some constant functions, e.g., I0 = [id , 0]

In the following we will often implicitly refer to the inclusion structure of Post’s lattice.
Here are some facts that we will use.

− The function x⊕ y⊕ z is a function of D1 since it is in L2 (see the base given in Table 1)
and L2 ⊂ D1.

− Similarly the ternary majority function t2(x, y, z) ≡ (x∧y)∨ (x∧z)∨ (y∧z) is a function
of D1 since it is in D2 and D2 ⊂ D1.

− For all B such that S12 ⊂ [B] ⊆ R1 there exists a k ≥ 2 such that the threshold function
tk ∈ [B]. Indeed in this case [B] is either Sk12 for some k ≥ 2, or R1 or R2 (which both
contain S212).

We will often add some constant c = 0 or 1 to a clone C and consider the clone C ′ = [C∪{c}]
generated out of C and c. With Post’s lattice one can determine this C ′ quite easily: It is

COMPLEXITY CLASSIFICATIONS FOR BOOLEAN CIRCUITS 5

the lowest clone above C that contains c, i.e., the lowest clone above both C and Ic. As a
consequence a base of C ′ is obtained by a base of C to which we add the constant c. The
following list contains identities we will frequently use.

− BF = [S1 ∪ {1}], thus {x ∧ ¬y, 1} is a base of BF.

− S1 = [S12 ∪ {0}], thus {x ∧ (y ∨ ¬z), 0} is a base of S1.

− R1 = [S12 ∪ {1}], thus {x ∧ (y ∨ ¬z), 1} is a base of R1.

− R0 = [S02 ∪ {0}], thus {x ∨ (y ∧ ¬z), 0} is a base of R0.

2.2. Boolean circuits. Let us now define the central objects that we deal with in this
paper, namely Boolean circuits (see also [Vol99]):

Definition 2.1. Let B be a finite set of Boolean functions. A Boolean circuit over B, or a
B-circuit is a tuple

C = (V,E, α, β, o),

where (V,E) is a finite, acyclic, directed graph, α : E → N is an injective function, β : V →
B ∪ {xi | i ∈ N}, and o ∈ V, such that the following conditions hold:

− If v ∈ V has in-degree 0, then β(v) ∈ {xi | i ∈ N}, or β(v) is a 0-ary function from B,
− if v ∈ V has in-degree k > 0, then β(v) is a k-ary function in B.

Nodes in V are also called gates. A gate v with β(v) ∈ {xi | i ∈ N} is called an input-
gate, and o is called output-gate. Later the function α will be used to specify the order of
the predecessors of a gate.

With Var(C) we denote the variables appearing in the circuit C, i.e., the set {β(v) | v ∈
V } ∩ {xi | i ∈ N}.

This definition of a Boolean circuit corresponds to the intuitive idea that a circuit
consists of a set of gates which are either input gates, or compute some Boolean function
(in our case, functions from B) with arguments taken from the predecessor gates. The set
B is also called a base. The distinguished gate o is the output-gate, i.e., the value computed
by the circuit is the result computed in this gate. The size of a circuit is the number
of non-input gates. The function computed by a circuit is defined in the canonical way:
Once we know the values for the input-gates, we can inductively (since the graph is acyclic)
compute the value for each gate g ∈ V . For non-commutative functions in B, the ordering
α on the edges in the graph gives a well-defined function value. The following definition
captures this formally:

Definition 2.2. Let C = (V,E, α, β, o) be a Boolean circuit with Var(C) = {x1, . . . , xn},
and let a1, . . . , an ∈ {0, 1} . Let v be a gate in C. We define the function fv computed by
the gate v on input (a1, . . . , an) as follows:

− If v is an input-gate, i.e., β(v) = xi for i ∈ {1, . . . , n} , we define fv(a1, . . . , an) = ai.
− If v has in-degree k, and v1, . . . , vk are the predecessor gates of v in C such that

α ((v1, v)) < · · · < α ((vk, v)) , then

fv(a1, . . . , an) = β(v)(fv1(a1, . . . , an), . . . , fvk(a1, . . . , an)).

We define the function fC : {0, 1}n → {0, 1}, the function computed by C, as fo.

6 E. BÖHLER, N. CREIGNOU, M. GALOTA, S. REITH, H. SCHNOOR, AND H. VOLLMER

Class Definition Base(s)

BF all Boolean functions {∧,¬}
R0 { f ∈ BF | f is 0-reproducing} {∧,⊕}
R1 { f ∈ BF | f is 1-reproducing} {∨, x⊕ y ⊕ 1}
R2 R1 ∩ R0 {∨, x ∧ (y ⊕ z ⊕ 1)}
M { f ∈ BF | f is monotonic } {∧,∨, 0, 1}
M1 M ∩ R1 {∧,∨, 1}
M0 M ∩ R0 {∧,∨, 0}
M2 M ∩ R2 {∧,∨}
Sn
0

{ f ∈ BF | f is 0-separating of degree n } {→, dual(tn)}
S0 { f ∈ BF | f is 0-separating} {→}
Sn
1

{ f ∈ BF | f is 1-separating of degree n } {x ∧ y, tn}
S1 { f ∈ BF | f is 1-separating} {x ∧ y}
Sn
02

Sn
0
∩ R2 {x ∨ (y ∧ z), dual(tn)}

S02 S0 ∩ R2 {x ∨ (y ∧ z)}
Sn
01

Sn
0
∩M {dual(tn), 1}

S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sn
00

Sn
0
∩ R2 ∩M {x ∨ (y ∧ z), dual(tn)}

S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sn
12

Sn
1
∩ R2 {x ∧ (y ∨ z), tn}

S12 S1 ∩ R2 {x ∧ (y ∨ z)}
Sn
11

Sn
1
∩M {tn, 0}

S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sn
10

Sn
1
∩ R2 ∩M {x ∧ (y ∨ z), tn}

S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D { f | f is self-dual } {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
D1 D ∩ R2 {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
D2 D ∩M {(x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z)}
L { f | f is linear} {⊕, 1}
L0 L ∩R0 {⊕}
L1 L ∩R1 {↔}
L2 L ∩R2 {x⊕ y ⊕ z}
L3 L ∩D {x⊕ y ⊕ z ⊕ 1}
V { f | f is an ∨-function or a constant function} {∨, 0, 1}
V0 [{∨}] ∪ [{0}] {∨, 0}
V1 [{∨}] ∪ [{1}] {∨, 1}
V2 [{∨}] {∨}
E { f | f is an ∧-function or a constant function} {∧, 0, 1}
E0 [{∧}] ∪ [{0}] {∧, 0}
E1 [{∧}] ∪ [{1}] {∧, 1}
E2 [{∧}] {∧}
N [{¬}] ∪ [{0}] ∪ [{1}] {¬, 1}, {¬, 0}
N2 [{¬}] {¬}
I [{id}] ∪ [{1}] ∪ [{0}] {id , 0, 1}
I0 [{id}] ∪ [{0}] {id , 0}
I1 [{id}] ∪ [{1}] {id , 1}
I2 [{id}] {id}

Figure 1: The list of all Boolean clones with definitions and bases, where tn :=
∨n+1

i=1

∧n+1
j=1,j 6=i xj and dual(f)(a1, . . . , an) = ¬f(¬a1 . . . ,¬an).

COMPLEXITY CLASSIFICATIONS FOR BOOLEAN CIRCUITS 7

R1 R0

BF

R2

M

M1 M0

M2

S2
0

S3
0

S0

S2
02

S3
02

S02

S2
01

S3
01

S01

S2
00

S3
00

S00

S2
1

S3
1

S1

S2
12

S3
12

S12

S2
11

S3
11

S11

S2
10

S3
10

S10

D

D1

D2

L

L1 L0

L2

L3

V

V1 V0

V2

E

E0E1

E2

I

I1 I0

I2

N2

N

Figure 2: Lattice of all Boolean clones

If the function fC associated with a circuit C does not depend on its ith argument, we
say that xi is a fictive or irrelevant variable for the circuit.

By writing C(x1, . . . , xn), we mean that C is a circuit such that Var(C) ⊆ {x1, . . . ,
xn}. For constant values a1, . . . , an ∈ { 0, 1 }, we also denote fC(a1, . . . , an) by C(a1, . . . ,
an). An assignment for the variables in C(x1, . . . , xn) is a function I : {x1, . . . , xn} →
{0, 1}. Such an assignment is also called compatible with C. We will write I |= C if
C(I(x1), . . . , I(xn)) = 1. In this case we also say that I is a satisfying assignment or a
solution for C. We denote by Sat(C) the set of assignments satisfying C and by #Sat(C)
the cardinality of this set. A circuit is satisfiable if it has a satisfying assignment. When
the order of variables is clear from the context, we write an assignment simply as the tuple
of binary values, i.e., with (a1, . . . , an) we denote the corresponding assignment I where
I(xi) = ai for all relevant i. For convenience we also often write C(a1 . . . an) when we mean
C(a1, . . . , an). Hence C(1n) denotes the value C(1, . . . , 1). We sometimes view the circuit
as a function of its assignments, and write C(I) = 1 if I |= C, and C(I) = 0 otherwise.
In the following, let n ∈ N, let f be an n-ary Boolean function, a ∈ { 0, 1 }, and I1, I2 be

8 E. BÖHLER, N. CREIGNOU, M. GALOTA, S. REITH, H. SCHNOOR, AND H. VOLLMER

functions I1, I2 : {x1, . . . , xn} → {0, 1}. We define #a(I) = #{ i : 1 ≤ i ≤ n and I(xi) = a }.
For assignments I1 and I2, we write I1 ≤ I2 if I1(xi) ≤ I2(xi) for 1 ≤ i ≤ n. Finally let
dual(I) be the assignment dual(I)(xi) = 1− I(xi).

For a circuit C and a variable x ∈ Var(C), the variable x is said to be frozen in C if
C is satisfiable and there is a constant c ∈ {0, 1} such that for all assignments I, I |= C
implies I(x) = c. Similarly we define that V ⊆ Var(C) is frozen in C if every variable in V
is frozen in C.

3. Problems for propositional circuits and complexity classes

We now define the list of computational problems involving Boolean circuits that we study
in this paper. All our problems are connected to the satisfiability problem and the circuit
value problem defined as follows—in the following, let B be a base, i.e., a finite set of
Boolean functions.

Problem: SATCB

Instance: A B-circuit C(x1, . . . , xn)

Question: Is C satisfiable?

Problem: VALC(B)

Instance: A B-circuit C(x1, . . . , xn) and an assignment (a1, . . . , an)

Question: Is fC(a1, . . . , an) = 1?

The complexity of these problems is well known:

Proposition 3.1. ([Lew79]) Let B be a finite set of Boolean functions. Then SATC(B) is
NP-complete if S1 ⊆ [B], and solvable in P otherwise.

Proposition 3.2 ([Lad75],[RW05]). Let B be a finite set of Boolean functions, then VALC(B) ∈
P.

We will be interested in equivalence and isomorphism problems. Let us define precisely
these two notions.

Definition 3.3. Let π : {x1, . . . , xn } → {x1, . . . , xn } be a permutation and I : {x1, . . . ,
xn } → { 0, 1 } be a truth assignment. We define the permuted assignment π(I) by π(I)(xi) =
I(π(xi)) for i = 1, . . . , n.

Definition 3.4. Let C1(x1, . . . , xn) and C2(x1, . . . , xn) be B-circuits.
The two circuits are equivalent, denoted by C1 ≡ C2, if for all truth assignments

I : {x1, . . . , xn } → { 0, 1 }, I |= C1 if and only if I |= C2.
The two circuits are isomorphic, denoted by C1

∼= C2 if there exists a permutation
π : {x1, . . . , xn } → {x1, . . . , xn } such that for all truth assignments I : {x1, . . . , xn } →
{ 0, 1 }, I |= C1 if and only if π(I) |= C2.

Using these equivalence relations, we define the Boolean equivalence and Boolean iso-
morphism problem for B-circuits:

Problem: EQC(B)

Instance: Two B-circuits C1 and C2

Question: Is C1 ≡ C2?

COMPLEXITY CLASSIFICATIONS FOR BOOLEAN CIRCUITS 9

The equivalence problem for propositional circuits or formulas is one of the standard
coNP-complete problems. The complexity of the next problem we consider, the isomorphism
problem, is not completely determined. It is clearly coNP-hard and lies in the second level
of the polynomial hierarchy, more precisely in Σp

2. However, it is not known to be solvable
in coNP, and is not complete for Σp

2, unless the polynomial hierarchy collapses [AT00]. We
study the version of this problem where the inputs are restricted to B-circuits:

Problem: ISOC(B)

Instance: Two B-circuits C1 and C2

Question: Is C1
∼= C2?

The next two problems are concerned with frozen variables. As defined earlier a variable
x is frozen in a satisfiable circuit if all solutions of the circuit assign x the same Boolean value.
The problem of recognizing frozen variables in Boolean formulas was first studied by Jon
Kleinberg, Christos Papadimitriou, and Prabhakar Raghavan in [KPR03]; their motivation
to consider this problem was to ensure that database queries do not reveal information that
should be kept secret. Again, we consider the version of two problems in this context where
we restrict the propositional gates allowed to appear in the input circuits:

Problem: FVC(B)

Instance: A B-circuit C over a set of variables V and V ′ ⊆ V such that |V ′| ≥ 1

Question: Is V ′ frozen in C?

If we restrict the problem FVC(B) to instances with V ′ = V , then we obtain the generalized
Unique Satisfiability problem over circuits. This is a natural complete problem for the class
US (see [BG82]). We define the problem Unique SATC(B) to be the restriction of this
problem to B-circuits as input.

Problem: Unique SATC(B)

Instance: A B-circuit, C

Question: Does C have exactly one satisfying assignment?

The question of the existence of such a frozen variable is the following problem

Problem: ∃ FVC(B)

Instance: A B-circuit C

Question: Is there a frozen variable in C?

Note that in the above problem ∃ FVC(B) it is necessary that the circuit is satisfiable. If
we drop the restriction of being satisfiable, we have the definition of the so called Audit
problem: Does C have a frozen variable or is C unsatisfiable?

Besides these decision problems we are also interested in the enumeration problem
which asks, for a given Boolean circuit to generate the set of its satisfying assignments with
no repetition.

Problem: Enum SATC(B)

Input: A B-circuit, C

Output: All satisfying assignments of C

In the following in establishing the complexity of the decision problems defined above we
need notions of the following complexity classes: Let P (NP resp.) be the class of languages
which are decidable (acceptable, resp.) by deterministic (nondeterministic, resp.) Turing
machines in polynomial time. For an arbitrary complexity class K, let coK = {A : A ∈ K}.

10 E. BÖHLER, N. CREIGNOU, M. GALOTA, S. REITH, H. SCHNOOR, AND H. VOLLMER

Recall that DP = {L ∩ L′ : L ∈ NP, L′ ∈ coNP }, which is the second level of the Boolean
hierarchy and contains both NP and coNP (see [CGH+88, CGH+89]).

For our hardness results we mostly employ logspace many-one reductions, defined as

follows: A language A is logspace many-one reducible to some language B (written A ≤log
m

B) if there exists a logspace-computable function f such that x ∈ A if and only if f(x) ∈ B.

We write A ≡log
m B if A ≤log

m B and B ≤log
m A. Polynomial-time many-one reductions

(written as A ≤p
m B and A ≡p

m B) are defined in the same way, except that the function f
is only required to be computable in polynomial time.

For the enumeration problem polynomial time is not a suitable notion of efficiency,
since the number of solutions may be exponential in the length of the circuit. For the
notion of an “efficient” enumeration algorithm, we use the definitions from [JPY88]. An
algorithm for the enumeration problem has polynomial total time, if the running time of
the algorithm is polynomial in the length of the input circuit and in the number of its
satisfying solutions. This notion is also referred to as output polynomial. An important
feature of an enumeration algorithm is the ability to start generating solutions as soon
as possible, and more generally to generate solutions in a regular way with a limited delay
between two successive outputs. It has polynomial delay if the time needed by the algorithm
between its start and the printing of the first solution, the time between the printing of
each two consecutive solutions, and the time between printing the last solution and the
termination of the algorithm is bounded by a polynomial in the length of the input circuit.
In [JPY88] the authors exhibited polynomial-delay algorithms that used exponential space
and therefore distinguished polynomial-delay algorithms using only polynomial space. In
our paper polynomial-delay enumeration algorithms all work with polynomial space, hence
we do not mention it explicitly. An enumeration algorithm with polynomial delay can
be further required to output the elements in some order (e.g. lexicographic order) (see
[JPY88]).

Let us now make explicit the main tool that we will use in order to get complexity
classifications.

Proposition 3.5. Let Prob be one of the decision problems introduced above, and let B1, B2

be finite sets of Boolean functions such that B1 ⊆ [B2]. Then Prob(B1) ≤log
m Prob(B2).

In particular, if [B1] = [B2], then Prob(B1) ≡
log
m Prob(B2).

Proof. Since all of the problems that we study in this paper only consider the function
computed by the corresponding input circuits, it is clear that a transformation converting
a circuit into an equivalent one leaves the properties considered in these decision problems
invariant. Observe that if B1 and B2 are finite sets of Boolean functions such that B1 ⊆ [B2],
then every function from B1 can be expressed as a B2-circuit, its so-called B2-representation.
Thus we can, in logarithmic space, convert any B1-circuit into an equivalent B2-circuit
in replacing every gate of the original circuit (which is a function from B1) by its B2-
representation. This concludes the proof. Note that since B1 and B2 are not part of the
input the cost of computing the B2-representations of the functions of B1 is a not taken
into account. �

Since the above result shows that the complexity of the problems we study does not
depend on the particular base of a clone that we consider, we sometimes write Prob(C) for
a clone C. For example, we write SATC(BF) to denote the satisfiability for a set B with

COMPLEXITY CLASSIFICATIONS FOR BOOLEAN CIRCUITS 11

[B] = BF, e.g., for SATC({∧,∨,¬}). Due to the above, choosing a different base B of BF
results in a problem with the same complexity.

As a consequence in order to get a complete classification forProb(B) for every finite set
B it is enough to examine all possible clones. When we show a hardness result for Prob(C)
for some clone C, then hardness also holds for every finite set B such that C ⊆ [B]. Also
when we show tractability of Prob(C), then tractability also holds for every finite set B
such that B ⊆ [C].

We also note that a similar result as Proposition 3.5 applies to the enumeration problem.
For example, if B1 ⊆ [B2], and there is a polynomial-delay enumeration algorithm for B2-
circuits, then there also is a polynomial-delay enumeration algorithm for B1-circuits.

4. Equivalence- and isomorphism problems

In this section we use the inclusion structure of all closed classes (see Figure 2) to determine
the complexity of EQC(B) step by step. Similarly we are able to give lower bounds for the
isomorphism problem of B-circuits.

The following lemma will be a useful fact in our proofs—the lemma follows from
the simple observation that for the equivalence- or isomorphism problems, consistently
swapping 0s and 1s does not change the complexity. Let us first introduce some no-
tation. If f is an n-ary Boolean function, then dual(f) denotes the Boolean function
such that dual(f)(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn). For a set B of Boolean functions, let
dual(B) = {dual(f) | f ∈ B}.

Lemma 4.1. Let B be a finite set of Boolean functions. Then EQC(B) ≡log
m EQC(dual(B))

and ISOC(B) ≡log
m ISOC(dual(B)).

Let us first identify the tractable cases. The next proposition says that when besides
constants only ∨-functions or only ∧-functions or only ⊕-functions are allowed, equivalence
and isomorphism are easily checkable.

Proposition 4.2. Let B be a finite set of Boolean functions. If B ⊆ E or B ⊆ V or B ⊆ L
then EQC(B) and ISOC(B) are tractable.

Proof. If B only contains to ∨-functions (∧-functions, ⊕-functions resp.), the basic idea is
that we can first compute an explicit normal form for the functions computed by such a
B-circuit. This normal form then easily allows to determine equivalence or isomorphism.

First let B ⊆ V. Let C1(x1, . . . , xn) and C2(x1, . . . , xn) be two B-circuits. The Boolean
functions described by C1 and C2 can be expressed as follows: fC1

(x1, . . . , xn) = a0 ∨ (a1 ∧
x1) ∨ · · · ∨ (an ∧ xn) and fC2

(x1, . . . , xn) = b0 ∨ (b1 ∧ x1) ∨ · · · ∨ (bn ∧ xn), where a1, . . . ,
an, b1, . . . , bn ∈ {0, 1}.
The values of ai and bi, where 0 ≤ i ≤ n, can be determined easily by using the following
simple facts: a0 = 0 (b0 = 0, resp.) iff fC1

(0n) = 0 (fC2
(0n) = 0, resp.) and ai = 0 (bi = 0,

resp.) for 1 ≤ i ≤ n iff a0 = 0 (b0 = 0, resp.) and fC1
(0i−110n−i) = 0 (fC2

(0i−110n−i) = 0,
resp.). This can be checked in polynomial time with the help of VALC(B) as an oracle.
Since VALC(B) is tractable (see Proposition 3.2) we conclude that the normal forms can be
computed efficiently. Now, clearly (C1, C2) ∈ EQC(B) iff either a0 = b0 = 1 or a0 = b0 = 0
and ai = bi for 1 ≤ i ≤ n, and similarly, (C1, C2) ∈ ISOC(B) iff either a0 = b0 = 1 or
|{ i | ai = 1, 1 ≤ i ≤ n }| = |{ i | bi = 1, 1 ≤ i ≤ n }| and a0 = b0 = 0. Thus we conclude that
EQC(B) and ISOC(B) are tractable.

12 E. BÖHLER, N. CREIGNOU, M. GALOTA, S. REITH, H. SCHNOOR, AND H. VOLLMER

Tractability for B ⊆ E now follows immediately from the above using Lemma 4.1.
Finally let B ⊆ L and let C1 and C2 be B-circuits. The Boolean functions described by

the B-circuits C1(x1, . . . , xn) and C2(x1, . . . , xn) can be expressed as follows: fC1
(x1, . . . ,

xn) = a0 ⊕ (a1 ∧ x1)⊕ · · · ⊕ (an ∧ xn) and fC2
(x1, . . . , xn) = b0 ⊕ (b1 ∧ x1)⊕ · · · ⊕ (bn ∧ xn),

where a1, . . . , an, b1, . . . , bn ∈ { 0, 1 }. Similar to the above cases the values ai and bi for
0 ≤ i ≤ n can be determined by a ⊕L-calculation, since we know that VALC(B) is tractable.
In particular a0 = fC1

(0, . . . , 0), b0 = fC2
(0, . . . , 0), ai = fC1

(0i−110n−i) ⊕ a0 and bi =
fC2

(0i−110n−i) ⊕ b0, where 1 ≤ i ≤ n. Now, clearly (C1, C2) ∈ EQC(B) iff ai = bi for
0 ≤ i ≤ n, and (C1, C2) ∈ ISOC(B) iff a0 = b0 and |{ i | ai = 1, 1 ≤ i ≤ n }| = |{ i | bi =
1, 1 ≤ i ≤ n }|. Again, both problems are tractable. �

The main step in obtaining hardness for the remaining cases now is to show that both
equivalence and isomorphism are hard for monotone functions. This is the statement of the
next lemma.

Lemma 4.3. EQC({∨,∧}) and ISOC({∨,∧}) are ≤log
m -hard for coNP.

Proof. We prove that 3 -TAUT, the problem of deciding whether a 3 -DNF formula is a
tautology, is logspace reducible to EQC({∨,∧}) and ISOC({∨,∧}). Since 3 -TAUT is well
known to be coNP-hard this will complete the proof.

Let H(x1, . . . , xn) be a 3 -DNF formula with Var(H) = {x1, . . . , xn}. Let C(x1, . . . ,
xn, y1, . . . , yn) be the circuit obtained from H in replacing every occurrence of a negated
variable ¬xi by the fresh variable yi. Note that C is a {∨,∧}-circuit that can have fictive
variables. Define C1(x1, . . . , xn, y1, . . . , yn) =

∧n
i=1(xi ∨ yi) and C2(x1, . . . , xn, y1, . . . , yn) =

C1 ∧C. Observe that Sat(C2) ⊆ Sat(C1).
We claim that H is a tautology if and only if C1 ≡ C2 if and only if C1

∼= C2. Suppose
first that H is a tautology. We prove that every assignment that sets at least one of xi
and yi to true for every i = 1, . . . , n satisfies C, thus proving C1 ≡ C2 and a fortiori
C1

∼= C2. Let I be such an assignment. Consider the assignment Ĩ defined by Ĩ(xi) = I(xi)

and Ĩ(yi) = 1 − I(xi) for i = 1, . . . , n. Observe that Ĩ satisfies C since H is a tautology.

Moreover since for every i, I(xi) + I(yi) ≥ 1 we have I ≥ Ĩ. Therefore by monotonicity I
satisfies C as well.

Conversely, suppose that H is not a tautology. We prove that #Sat(C1) 6= #Sat(C2),
thus proving C1 6∼= C2 and a fortiori C1 6≡ C2. Let I be an assignment that does not satisfy
H. Consider I ′ defined by I ′(xi) = I(xi) and I ′(yi) = 1 − I(xi) for i = 1, . . . , n. Observe
that I ′ satisfies C1 but not C2. Since Sat(C2) ⊆ Sat(C1), this proves that #Sat(C2) <
#Sat(C1). �

The next three propositions generalize the hardness result from Lemma 4.3.

Proposition 4.4. Let B be a set of Boolean functions such that S10 ⊆ [B] or S00 ⊆ [B],

then EQC(B) and ISOC(B) are ≤log
m -hard for coNP.

Proof. First let S10 ⊆ [B]. By Figure 1 we know that g(x, y, z) = x ∧ (y ∨ z) is a base of
S10. Since g(x, y, y) = x∧ y and g(1, x, y) = x∨ y we know that ∧ ∈ [B] and ∨ ∈ [B ∪ {1}].
Therefore according to Proposition 3.5 and Lemma 4.3 we get that EQC(B ∪ {1}) and
ISOC(B ∪{1}) are coNP-hard. We now reduce these problems respectively to EQC(B) and
ISOC(B). Let C1(x1, . . . , xn, 1) and C2(x1, . . . , xn, 1) be two B ∪ {1}-circuits. Let v be a
fresh variable that will be used to replace the constant 1. Let C ′

1(x1, . . . , xn, v) = C1(x1,
. . . , xn, v) ∧ v and C ′

2(x1, . . . , xn, v) = C2(x1, . . . , xn, v) ∧ v. Since ∧ ∈ [B], C ′
1 and C ′

2 can
be represented as B-circuits, and their B-representation can be computed in logarithmic

COMPLEXITY CLASSIFICATIONS FOR BOOLEAN CIRCUITS 13

space, see proof of Proposition 3.5. It is obvious that C1 ≡ C2 if and only if C ′
1 ≡ C ′

2.
If C1

∼= C2 then clearly C ′
1
∼= C ′

2. Conversely if C ′
1
∼= C ′

2 then there is a permutation
π : {x1, . . . xn, v} → {x1, . . . xn, v} such that for all assignment I, I |= C ′

1 if and only if
π(I) |= C ′

2. Since the value of v is fixed to 1 in every satisfying assignment one can suppose
w.l.o.g. that π(v) = v. In this case we clearly have that for all assignment I, I |= C1 if and
only if π(I) |= C2, thus showing that C1

∼= C2 .
Now let S00 ⊆ [B]. By inspecting Figure 2 we obtain that S10 ⊆ [B] as well, or

S10 ⊆ dual([B]). According to Lemma 4.1 the proof is then completed. �

Proposition 4.5. Let B be a finite set of Boolean functions such that D2 ⊆ [B] ⊆ D, then

EQC(B) is ≤log
m -hard for coNP.

Proof. Due to Lemma 4.3, we know that EQC({∧,∨}) is ≤
log
m -hard for coNP. Hence let C1

and C2 be {∧,∨}-circuits, where Var(C1) ∪ Var(C2) = {x1, . . . , xn}. By Figure 1 we know
that t2(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z), the ternary majority function, is a base for
D2. Using the equalities t2(x, y, 0) = x∧ y and t2(x, y, 1) = x∨ y, we can transform C1 and
C2 into equivalent {t2, 0, 1}-circuits in logarithmic space. For ease of notation, we denote
these (equivalent) circuits with C1(x1, . . . , xn, 0, 1) and C2(x1, . . . , xn, 0, 1) again. We note
that due to the above transformation, every application of t2 in C1 or C2 has exactly one
constant argument.

We now construct {t2}-circuits C ′
1 and C ′

2 such that C1 ≡ C2 if and only if C ′
1 ≡ C ′

2.
Due to Proposition 3.5, this completes the proof.

Let u and v be fresh variables that will be used to replace the constants 0 and 1 that
appear in C1 and C2. Now define
C ′
1(x1, . . . , xn, u, v) = t2(v,C1(x1, . . . , xn, u, v), u) and

C ′
2(x1, . . . , xn, u, v) = t2(v,C2(x1, . . . , xn, u, v), u).

By construction, C ′
1 and C ′

2 are {t2}-circuits. We prove that C1 ≡ C2 if and only if
C ′
1 ≡ C ′

2.
First assume that C1 ≡ C2, and let I be an assignment for {x1, . . . , xn, u, v}. If I(u) =

I(v), then I |= C ′
1 iff I |= C ′

2 iff I(u) = I(v) = 1. Now consider the case that I(u) 6= I(v).
Since t2 is a self-dual function it is sufficient to consider the case I(u) = 0 and I(v) = 1. In
this case I |= C ′

i iff I |= Ci for i = 1, 2, and hence I |= C ′
1 iff I |= C ′

2 since C1 ≡ C2.
Conversely, suppose that C1 6≡ C2. Then we can suppose that there exists an assignment

I that satisfies C1 but not C2. Extend I to I ′ by setting I ′(u) = 0 and I ′(v) = 1. It is easy
to see that I ′ satisfies C ′

1 but not C ′
2, thus proving that C ′

1 6≡ C ′
2. �

We have a similar result for the isomorphism problem.

Proposition 4.6. Let B be a finite set of Boolean functions such that D2 ⊆ [B] ⊆ D, then

ISOC(B) is ≤log
m -hard for coNP.

While the proof of this proposition uses essentially the same reduction as above, it
is technically more involved and requires some technical results. We will reduce from the
isomorphism problem for {∧,∨}-circuits, which we know to be coNP-hard due to Lemma 4.3.
However, in the proof of Proposition 4.6, we will need some special properties of the instances
of ISOC({∨,∧}) that we reduce from. We therefore present a series of intermediate technical
results that allow us to restrict the instances of ISOC({∨,∧}) as required.

First we need to introduce some new notion.

Definition 4.7. A pair of two variables {s, t} is dominant for a circuit C, if every truth
assignment I with I(s) = I(t) = α satisfies the circuit C if and only if α = 1.

14 E. BÖHLER, N. CREIGNOU, M. GALOTA, S. REITH, H. SCHNOOR, AND H. VOLLMER

The following lemma gives some easy properties of dominant pairs. The proof of the
lemma is straight-forward.

Lemma 4.8.

(1) Let C be a circuit, and let {s, t} and {s′, t′} be two dominant pairs for C. Then {s, t}∩
{s′, t′} 6= ∅.

(2) Let C1 and C2 be two circuits such that C1
∼= C2 via a permutation π. If {s, t} is a

dominant pair for C1, then {π(s), π(t)} is a dominant pair for C2.

Proof. For the first part, assume that {s, t} ∩ {s′, t′} = ∅. Then there is an assignment I
with I(s) = I(t) = 0, and I(s′) = I(t′) = 1. Since {s, t} is dominant for C, it follows that
I 6|= C. On the other hand, since {s′, t′} is dominant for C as well, we know that I |= C, a
contradiction. The second part is trivial. �

Next we need the following result, which says that the isomorphism problem remains
hard for monotone functions even for some restricted instances.

Lemma 4.9. ISOC({∨,∧}) is ≤log
m -hard for coNP, even when instances are restricted to

pairs of circuits (C1, C2) where neither C1 nor C2 implies or is implied by one variable, and
further #Sat(C1) + #Sat(C2) < 2n where n is the number of variables in C1, which is the
same as the number of variables in C2.

Proof. We reduce the problem ISOC({∨,∧}), which is coNP-hard due to Lemma 4.3, to the
same problem with restrictions on the instances.

Let (C0
1 , C

0
2) be a pair of {∨,∧}-circuits given as an instance of ISOC({∨,∧}).

Without loss of generality one can suppose that they have the same number of variables,
n, and that C0

i is of the form C0
i
′
∧ (y ∧ z). Thus C0

i has fewer than 2n−1 solutions. Since
both C0

i are monotone, we can, in polynomial time, verify whether C0
1 or C0

2 are constant. If
one of them is, then C0

1
∼= C0

2 is true if and only if they are equivalent to the same constant.
Hence we assume that neither C0

1 nor C0
2 is constant. For i ∈ {1, 2}, we now rewrite C0

i

into

Ci = t2(z1, z2, C
0
i),

where t2 is the ternary majority function.
We will show that the Ci’s have the desired properties, and that C0

1
∼= C0

2 if and only
if C1

∼= C2, thus concluding the proof.
Clearly, since the outmost operator of C1 and C2 is the majority function, and neither

C0
1 nor C0

2 are constant, it follows that no variable implies or is implied by one of the Ci.
Obviously, #Sat(Ci) = 2 ·#Sat(C0

i) + 2n, since the solutions of Ci are exactly those of C0
i

extended with z1 6= z2 (giving two solutions for each solution of C0
i), plus all 2

n assignments
setting z1 = z2 = 1. Since #Sat(C0

i) < 2n−1, it follows that #Sat(Ci) < 2n + 2n = 2n+1.
Therefore, #Sat(C1) + #Sat(C2) < 2n+2 as required (note that n + 2 is the number of
variables appearing in C1 and C2).

It remains to show that C0
1
∼= C0

2 if and only if C1
∼= C2. The left-to-right direction is

trivial, by extending the permutation to be the identity on {z1, z2}. For the other direction,
assume that C1

∼= C2 via a permutation π. Observe that {z1, z2} is a dominant pair for
both circuits. If π({z1, z2}) = {z1, z2}, then since z1 and z2 are symmetric, we can assume
that π(zi) = zi, and π restricted to the original variables establishes C0

1
∼= C0

2 .

COMPLEXITY CLASSIFICATIONS FOR BOOLEAN CIRCUITS 15

Hence assume π({z1, z2}) 6= {z1, z2}. According to Lemma 4.8, π({z1, z2})∩{z1, z2} 6= ∅.
Since z1 and z2 are symmetric, we assume without loss of generality that π({z1, z2}) =
{z1, x} for a variable x of C2.

We prove that C0
2 is equivalent to x. First let I be an assignment to the variables in C0

2

with I(x) = 1, we prove that I |= C0
2 . For this, consider the assignment I+ which extends

I by I+(z1) = 1 and I+(z2) = 0. Since {z1, x} is dominant, it follows that I+ |= C2, and
thus I |= C0

2 . Therefore, x implies C0
2 . For the other direction, let I be an assignment with

I(x) = 0, we show that I 6|= C0
2 . We extend I to I+ by setting I+(z1) = 0 and I+(z2) = 1.

Since {z1, x} is dominant for C2, it follows that I
+ 6|= C2, hence we know that I 6|= C0

2 , and
thus C0

2 is equivalent to x as claimed.
Therefore, C2 has exactly three relevant variables (recall that a variable x is relevant

for a circuit C, if there are assignments I1 and I2 such that I1(x
′) = I2(x

′) for all variables
x′ 6= x, and I1 |= C and I2 6|= C, i.e., if the value of the function computed by the circuit in
fact depends on x).

Since C2
∼= C1, we know that C1 also has exactly three relevant variables. Hence C0

1

has exactly one relevant variable, and since we also know that C0
1 is a monotone circuit, it

follows that C0
1 is equivalent to a single variable. In particular, C0

1
∼= C0

2 as claimed. �

We need a last technical result. This lemma allows us, in the later proof of Proposi-
tion 4.6, to use a similar argument as in the above proof of Lemma 4.9: In both proofs it
is essential that we can control the possible dominant pairs of a circuit that is of the form
t2(x1, x2, C), where t2 is the ternary majority function and C is some circuit. In the proof
of Lemma 4.9, we knew the dominant sets of t2(z1, z2, C

0
i) since z1 and z2 did not appear

in C0
i . In the proof of Proposition 4.6, the situation will be a bit more complicated, and we

will need the following lemma to ensure that the dominant pairs in the circuits resulting
from our reduction are exactly the ones that we need.

Lemma 4.10. If C(x1, . . . , xn, 1, 0) is a circuit that does not imply a variable and is not
implied by a variable, then {u, v} is the only dominant pair for

C ′ = t2(u,C2(x1, . . . , xn, u, v), v),

where u and v are new variables.

We note that a circuit C implies a variable if and only if the function computed by
C is 1-separating, and is implied by a variable if and only if the function computed by C
is 0-separating We note that for the ternary majority function t2, all pairs of two distinct
variables are dominant.

Proof. We use the following notation: For an assignment I for C, with I+ we denote the
assignment I extended with I+(u) = 1 and I+(v) = 0. By construction it follows that
I |= C if and only if I+ |= C ′.

Clearly, {u, v} is dominant for C ′. Let {u′, v′} 6= {u, v} be dominant for C ′. Due to
Lemma 4.8, we know that {u, v} ∩ {u′, v′} 6= ∅.

First assume u ∈ {u, v} ∩ {u′, v′}, then {u′, v′} = {u, x} for a variable x of C. We
prove that x implies C. Hence let I(x) = 1. By construction, we have that I+(u) = 1, and
I+(x) = I(x) = 1. Since {u, x} dominates C ′, it follows that I+ |= C ′. Due to the above,
this means that I |= C. Hence x implies C, a contradiction.

Similarly, assume that v ∈ {u, v} ∩ {u′, v′}, then {u′, v′} = {v, x} for a variable x of
C. We claim that C implies x. Hence let I be an assignment with I |= C, and assume
that I(x) = 0. From the above it follows that I+ |= C ′. On the other hand, we have that

16 E. BÖHLER, N. CREIGNOU, M. GALOTA, S. REITH, H. SCHNOOR, AND H. VOLLMER

I+(x) = I+(v) = 0, and since {v, x} dominates C ′, this implies I+ 6|= C ′, a contradiction.
Therefore, C indeed implies x, which is a contradiction to the prerequisites of the lemma. �

We are now in a position to prove Proposition 4.6.

Proof. As in the proof of Proposition 4.5 we get that ISOC(B ∪ {0, 1}) is coNP-hard, and
we reduce this problem to ISOC(B). Let C1(x1, . . . , xn, 0, 1) and C2(x1, . . . , xn, 0, 1) be two
B∪{0, 1}-circuits. According to Lemma 4.9 one can suppose that neither C1 nor C2 implies
or is implied by one variable, and further that #Sat(C1) + #Sat(C2) < 2n where n is the
number of variables in C1, which is the same as the number of variables in C2.

Let u and v be fresh variables, and let

C ′
1(x1, . . . , xn, u, v) = t2(u,C1(x1, . . . , xn, u, v), v)

and
C ′
2(x1, . . . , xn, u, v) = t2(u,C2(x1, . . . , xn, u, v), v).

As mentioned in the earlier proof of Lemma 4.9, this construction is very similar to
what we used there. The major difference lies in the role of the variables that are used
in the application of the newly introduced majority function: In the proof of Lemma 4.9,
we used new variables z1 and z2 that did not appear anywhere else, and whose role was
symmetric. In fact, the proof of Lemma 4.9 only works since z1 and z2 did not appear in
the circuits C0

i considered in that proof.
In the current proof, the situation is different: Here, the variables u and v do appear

in the circuits Ci(x1, . . . , xn, u, v), and they are clearly not symmetric—they “simulate” the
values 0 and 1, respectively. In the remainder of the current proof, we make crucial use of
the facts established in Lemma 4.9, namely, that the circuits C1 and C2 are not implied by,
or imply, a variable. This then allows us to apply Lemma 4.10 and ensure that {u, v} is the
only dominant pair of C ′

i.
Another difference is that in the current proof, the circuits Ci(x1, . . . , xn, u, v) are in-

deed D2-circuits, where in the earlier result, the majority function was applied to (almost)
arbitrary {∧,∨}-circuits.

We prove C1
∼= C2 if and only if C ′

1
∼= C ′

2. It is obvious that if C1
∼= C2 then C ′

1
∼= C ′

2.
Conversely, suppose that C ′

1
∼= C ′

2. Then there exists a permutation π : {x1, . . . , xn, u, v } →
{x1, . . . , xn, u, v } such that for every truth assignment I : {x1, . . . , xn, u, v } → {0, 1} it
holds that I |= C ′

1 if and only if π(I) |= C ′
2. Observe that because of the majority function,

the pair {u, v} is dominant for both circuits C ′
1 and C ′

2. According to Lemma 4.10 we
have then {π(u), π(v)} = {u, v}. Suppose that π(u) = v and π(v) = u. Let #C ′

1 be
the number of truth assignments satisfying C ′

1 that set u to 0 and v to 1, and #C ′
2 be

the number of truth assignments satisfying C ′
2 that set u to 1 and v to 0. Since C ′

1 and
C ′
2 are isomorphic through a permutation π such that π(u) = v and π(v) = u we have

#C ′
1 = #C ′

2. We have #C ′
1 = #{I | I(u) = 0, I(v) = 1 and C1(I(x1), . . . , I(xn), 0, 1) = 1}

and #C ′
2 = #{J | J(u) = 1, J(v) = 0 and C2(J(x1), . . . , J(xn), 1, 0) = 1}. Observe that

#C ′
1 = #Sat(C1), while

#C ′
2 = #{I : {x1, . . . , xn } → {0, 1} | C2(I(x1), . . . , I(xn), 1, 0) = 1}

= #{I : {x1, . . . , xn } → {0, 1} | C2(1− I(x1), . . . , 1− I(xn), 0, 1) = 0},

since C2 is a B ∪ {0, 1}-circuit and B contains only self-dual functions. Therefore #C ′
2 =

2n − #Sat(C2). But #C ′
1 = #C ′

2 implies #Sat(C1) = 2n − #Sat(C2), i.e., #Sat(C1) +

COMPLEXITY CLASSIFICATIONS FOR BOOLEAN CIRCUITS 17

#Sat(C2) = 2n, which is not the case by assumption, thus providing a contradiction. There-
fore π(u) = u and π(v) = v. With this it is easy to see that C ′

1
∼= C ′

2 implies that C1
∼= C2

through the same permutation π. �

By a careful inspection of Figure 2 we see that Propositions 4.2, 4.4, 4.5, and 4.6 cover
all cases. This leads us to the following classification theorems for the complexity of the
equivalence- and isomorphism- problems of B-circuits:

Theorem 4.11. Let B be a finite set of Boolean functions.

(1) If B ⊆ E or B ⊆ V or B ⊆ L then EQC(B) and ISOC(B) are tractable.

(2) In all other cases EQC(B) is ≤log
m -complete for coNP and ISOC(B) is ≤log

m -hard for
coNP.

5. Results for audit-like problems

This section covers our results about the problems related to the audit and frozen variable
problems. We start with the following basic facts about complexity upper bounds.

Proposition 5.1. For every finite set B of Boolean functions, the following upper bounds
hold:

(1) FVC(B) ∈ DP,
(2) ∃ FVC(B) ∈ DP,

(3) Unique SATC(B) ∈ DP, and
(4) AUDITC(B) ∈ coNP.

As an auxiliary problem we will first examine the generalization of the satisfiability
problem SAT∗

C(B), which asks whether a B-circuit has a satisfying assignment different
from the all 1’s one. This problem was examined in [CH97] in the constraint setting.

Theorem 5.2. Let B be a finite set of Boolean functions. Then SAT∗
C(B) is NP-complete

if S12 ⊆ [B], and solvable in P otherwise.

Proof. First assume S12 ⊆ [B]. In this case by looking at Post’s lattice (see Figure 2)
we know that [S12 ∪ {0}] = S1, hence following Proposition 3.1, SATC(S12 ∪ {0}) is NP-
complete. We will now reduce SATC(S12 ∪ {0}) to SAT∗

C(S12). Given an (S12 ∪ {0})-
circuit C(x1, . . . , xn, 0) we use a new variable x as a replacement for the constant 0. Thus
we obtain an S12-circuit C ′(x1, . . . , xn, x). Looking at Table 1 we see that the Boolean

function g(x, y, z) = x ∧ (y ∨ z̄) belongs to S12. Hence, let Ĉ be the S12-circuit defined by

Ĉ = g(· · · g(g(C ′, x1, x), x2, x), · · · , xn, x). Observe that Ĉ is equivalent to C ′ ∧ (x1 ∨ x̄) ∧
(x2∨ x̄)∧ · · · ∧ (xn∨ x̄). Observe now that C has a satisfying assignment if and only if there

is an assignment different from the all 1’s one that satisfies Ĉ. We conclude that SAT∗
C(S12)

is NP-hard, thus showing that SAT∗
C(B) is NP-complete for all B such that S12 ⊆ [B].

If B ⊆ M , then an n-ary circuit C has a satisfying assignment besides the all-1-
assignment if and only if it has a satisfying assignment of the form 1i01n−i−1. Hence
SAT∗

C(B) can be solved with n evaluations of the circuit C.
If B ⊆ L, we can use the linear normal form 0⊕

⊕n
i=1 cixi, which is obviously polynomial

time computable, to solve SAT∗
C(B) efficiently.

If B ⊆ D or B ⊆ S20 then we claim that each n-ary B-circuit has at least 2n−1 satisfying
assignments, which obviously makes SAT∗

C(B) tractable. If B ⊆ D the claim holds for any

18 E. BÖHLER, N. CREIGNOU, M. GALOTA, S. REITH, H. SCHNOOR, AND H. VOLLMER

self-dual circuit has exactly 2n−1 solutions. If B ⊆ S20, note that for every B-circuit and com-
patible assignment I, if I does not satisfy C, then dual(I) does. Indeed, assume that both I
and dual(I) do not satisfy C. Since C is a B-circuit, and B ⊆ S20, we know that the function
described by C is 0-separating of degree 2. Thus every set S with |S| = 2 and S ⊆ C−1({0})
is 0-separating. The set S defined as S {(I(x1), . . . , I(xn)), (dual(I)(x1), . . . ,dual(I)(xn))}
meets these conditions, and hence is 0-separating. From the definition, it follows that
there is some i ∈ {1, . . . , n} such that I(xi) = dual(I)(xi), which is a contradiction to the
definition of dual(I). In particular, the number of solutions of such a circuit is at least
2n−1. �

Next we want to study problems which are related to the concept of frozen variables.

Lemma 5.3. Let B be a finite set of Boolean functions. If D1 ⊆ [B] ⊆ D or S02 ⊆ [B] ⊆ R1,
then FVC(B) and ∃ FVC(B) are coNP-complete.

Proof. Observe that for all B that satisfy the conditions above all B-circuits are trivially
satisfiable, hence FVC(B) and ∃ FVC(B) are in coNP.

Let S02 ⊆ [B] ⊆ R1. We will reduce the coNP-complete problem (see Proposition 3.1)

SATC(R0) to ∃ FVC(B) and FVC(B). Recall that due to the very end of Section 2.1, we
know that {x ∨ (y ∧ z), 0 } is a base of R0. Hence let C be a circuit over {x ∨ (y ∧ z), 0 }.
We build a new circuit C ′ out of C by taking a fresh variable x and by replacing every
occurrence of 0 in C with x. Then C ′ is an S02-circuit. Since V2 ⊆ S00 ⊆ S02 we have
∨ ∈ [B] (see Figure 2), and hence C ′∨x can be converted into an equivalent B-circuit Note
that the only possibly frozen variable in C ′ ∨ x is x, since with setting x to true, every
possible assignment to the other variables satisfies the circuit. Finally, x is a frozen variable
in C ′ ∨ x if and only if C is not satisfiable.

Now let D1 ⊆ [B] ⊆ D. We will reduce the coNP-complete problem EQC(D1) (see
Theorem 4.11) to ∃ FVC(B) and FVC(B). For that let C1 and C2 be two n-ary D1-circuits.
Let x be a fresh variable and let C ′ = x⊕C1 ⊕C2. Since x⊕ y ⊕ z is a function in D1 (see
Figure 2), C ′ is a D1-circuit. Consider now the D1-circuit C

′′(x, y, z) = t2(x, y, z) (remind
that t2 ∈ D1). The reduction Φ works as follows:

Φ(C1, C2) =

{

C ′′ , if C1(0
n) 6= C2(0

n) or C1(1
n) 6= C2(1

n)
C ′ otherwise

We claim that C1 ≡ C2 holds if and only if Φ(C1, C2) ∈ ∃ FVC(D1) if and only if (Φ(C1, C2),
{x }) ∈ FVC(B). For that let C1 ≡ C2, then Φ(C1, C2) = C ′. Since C1 ⊕ C2 ≡ 0 the
formula C ′ is satisfied if and only if x is satisfied. Thus x is a frozen variable and therefore
Φ(C1, C2) ∈ ∃ FVC(B) and (Φ(C1, C2), {x }) ∈ FVC(B). On the other hand, if C1 6≡ C2

then we have two cases. If C1(0
n) 6= C2(0

n) or C1(1
n) 6= C2(1

n) then Φ(C1, C2) = C ′′,
which is a circuit without frozen variables. If C1(0

n) = C2(0
n) and C1(1

n) = C2(1
n)

then Φ(C1, C2) = C ′. Since C1 6≡ C2, there is an assignment α ∈ { 0, 1 }n such that
C1(α) 6= C2(α). Therefore 1 = 0⊕C1(α)⊕C2(α) = 1⊕C1(0

n)⊕C2(0
n) = 1⊕C1(1

n)⊕C2(1
n)

and there is no frozen variable in C ′. �

The following is our main classification result for the problem that asks if there is any
frozen variable:

Theorem 5.4. Let B be a finite set of Boolean functions.

(1) If B ⊆ L, B ⊆ M, or B = S12 then ∃ FVC(B) is tractable.
(2) If [B] = S1, then ∃ FVC(B) is NP-complete.

COMPLEXITY CLASSIFICATIONS FOR BOOLEAN CIRCUITS 19

(3) If S1 ⊂ [B] then ∃ FVC(B) is DP-complete.
(4) In all other cases ∃ FVC(B) is coNP-complete.

Proof.

(1) If B ⊆ L then in a B-circuit there is a frozen variable if and only if exactly one of the
variables of its linear normal form has a coefficient of 1. Note that the linear normal
form can easily be computed from the circuit using simulation (see proof of Proposition
4.2).

Now let B ⊆ M and let C(x1, . . . , xn) be a B-circuit. By monotonicity the variable
xi is frozen if and only if C(1n) = 1 and C(1i−101n−i) = 0. Moreover the satisfiability
of a monotonic C can be easily tested. If B = S12 = R1 ∩ S1 then every B-circuit C is
satisfiable and has a frozen variable because C is 1-separating.

(2) Note that an S1-circuit has a frozen variable by definition if and only if it is satisfi-
able and it is therefore equivalent to SATC(B), which is known to be NP-complete by
Proposition 3.1.

(3) Let B such that S1 ⊂ [B]. It is obvious, that ∃ FVC(B) is in DP. Let us now introduce
the problem SATP(B):

SATP(B) = { (C1, C2) : C1 and C2 are B-circuits

and (C1 ∈ SATC(B) xor C2 ∈ SATC(B)) }

By definition SATP(B) is in DP and is DP-complete as far as SATC(B) is NP-complete
(cf. [CGH+88, CGH+89]). We now reduce SATP(B) to ∃ FVC(B), thus completing the
proof. Since S1 ⊂ [B], there is a k ≥ 2 such that tk is in [B]. Let C1 and C2 be B-
circuits which are m- and n-ary respectively. Now define C = tk(C1, C2, x1, . . . , xk−1),
where xi is a fresh variable for 1 ≤ i ≤ k − 1. Clearly C is a B-circuit. Next we show
that this transformation gives the needed reduction.

If C1, C2 are both satisfiable then there are assignments α ∈ { 0, 1 }m and β ∈ { 0, 1 }n

such that C1(α) = C2(β) = 1. Then none of the variables of C1 is frozen in C, since
C(γβ1k−1) = 1 for all γ ∈ { 0, 1 }m. The same argumentation holds for all variables
in C2. Furthermore for all 1 ≤ i ≤ k − 1 it holds that xi is not frozen in C, since
C(αβ1i−101k−i−1) = C(αβ1k−1) = 1.

If C1, C2 are both unsatisfiable, then C is not satisfiable and therefore has no frozen
variables.

Suppose now without loss of generality C1 is satisfiable and that C2 is not, then
C ≡ C1 ∧x1 ∧ · · · ∧xk−1 and obviously at least all of the xi’s (1 ≤ i ≤ k− 1) are frozen.

(4) If D1 ⊆ [B] ⊆ D or S02 ⊆ [B] ⊆ R1, then ∃ FVC(B) is coNP-complete because of
Lemma 5.3. The only remaining case is S12 ⊂ [B] ⊆ R2. Then B-circuits are trivially
satisfiable and therefore ∃ FVC(B) ∈ coNP. The proof of the lower bound is similar

to Case 3, but this time the reduction starts with SAT∗
C(B), which is coNP-complete

(see Theorem 5.2). Since S12 ⊂ [B] ⊆ R1 there is a k ≥ 2 such that tk is in [B]. Let
C(x1, . . . , xn) be a B-circuit with the variables x1, . . . , xn. Let C ′ = tk(C, y1, . . . , yk),

C ′′ =
(

(
∧k

i=1 yi) ∨ ¬(
∧n

j=1 xj)
)

and G(x1, . . . , xn, y1, . . . , yk) = C ′ ∧ C ′′. Observe that

C ′′ and therefore G can be converted into equivalent B-circuits, because ∧ ∈ [B] and
[{x ∧ (y ∨ z) }] = S12.

If C is unsatisfiable, then because of C ′ then G is satisfiable only by setting yi to
1 for all 1 ≤ i ≤ k. The same holds if C has the all-1 assignment as only satisfying
assignment because of C ′′. Hence in both cases all yi are frozen.

20 E. BÖHLER, N. CREIGNOU, M. GALOTA, S. REITH, H. SCHNOOR, AND H. VOLLMER

On the other hand, if there is an α ∈ { 0, 1 }n such that α 6= (1, . . . , 1) and C(α) = 1
then none of the xi’s is frozen (1 ≤ i ≤ n), since G can be satisfied by just setting all
the yi’s to 1. Furthermore, for each j ∈ { 1, . . . , k } holds G(α1j−101k−j) = 1 = G(α1k),
hence none of the yj ’s is frozen.

Concerning the variant of the above problem, where the frozen variable is part of the input,
we obtain the following classification:

Theorem 5.5. Let B be a finite set of Boolean functions.

(1) If B ⊆ M or B ⊆ L, then FVC(B) is tractable,
(2) else if S1 ⊆ [B], then FVC(B) is DP-complete,
(3) else FVC(B) is coNP-complete.

Proof. If B ⊆ M or B ⊆ L, then the argumentations from Theorem 5.4.1 hold.
We have seen in Lemma 5.3 that if D1 ⊆ [B] ⊆ D or S02 ⊆ [B] ⊆ R1, then FVC(B) is

coNP-complete.
This leaves the coNP-hardness of FVC(B) for B such that S12 ⊆ [B] and the DP-

hardness of FVC(B) for all B such that S1 ⊆ [B] to show. We reduce FVC(R1) to FVC(S12)
(FVC(BF) to FVC(S1), resp.). For that, let C be a circuit over the R1-base {x∧ (y∨ z), 1 }
(over the BF-base {x ∧ y, 1 }, resp.) and let V be the set of variables used in C. Build a
circuit C ′ by taking a variable x that is not contained in C and replace every occurrence of
1 in C by x. Then C ′ ∧ x is an S12-circuit (an S1-circuit, resp.), which can only be satisfied
by assignments that set x to 1. For all these assignments, C ′ ∧ x is satisfied if and only
if C is satisfied. Therefore (C, V) ∈ FVC(R1) ((C, V) ∈ FVC(BF), resp.) if and only if
(C ′ ∧ x, V) ∈ FVC(S12) ((C

′ ∧ x, V) ∈ FVC(S1), resp.). �

To obtain a classification for the audit problem, we first note the following link between
the complexity of the problem ∃ FVC(B) and the audit problem:

Proposition 5.6. Let B be an arbitrary set of Boolean functions, then

(1) ∃ FVC(B) = SATC(B) ∩AUDITC(B), and
(2) If SATC(B) ∈ P then ∃ FVC(B) ≡p

m AUDITC(B).

The classification now is as follows:

Theorem 5.7. Let B be a finite set of Boolean functions.

(1) If B ⊆ M or B ⊆ L or B ⊆ S1, then AUDITC(B) is tractable,
(2) else AUDITC(B) is coNP-complete.

Proof.

(1) Since SATC(B) ∈ P if [B] ⊆ L or [B] ⊆ M (Proposition 3.1), the claim for such B
follows from Proposition 5.6 and Theorem 5.4. If B ⊆ S1, a B-circuit is either not
satisfiable or has always a frozen variable, hence the problem is tractable.

(2) If B ⊆ R1 or B ⊆ D, every B-circuit is trivially satisfiable. Therefore we can use
Proposition 5.6 and Theorem 5.4 again. It remains to show that AUDITC(B) is coNP-

hard if S1 ⊂ [B]. We will reduce the coNP-complete problem SATC(B) (see Proposition
3.1) to AUDITC(B). The proof runs along the same lines as in Theorem 5.4. Take an
B-circuit C. Since S1 ⊂ [B] there is a k with tk ∈ [B]. Define C ′ = tk(C, x1, . . . , xk),
where xi is a variable not occurring in C for 1 ≤ i ≤ k. If C is not satisfiable then xi is
frozen for 1 ≤ i ≤ k. If C is satisfiable by an assignment α none of the variables from

COMPLEXITY CLASSIFICATIONS FOR BOOLEAN CIRCUITS 21

C is frozen in C ′, since C ′ can be satisfied by setting all the xi’s to 1. Furthermore xi
is not frozen for 1 ≤ i ≤ k, because C ′(α1i−101k−i) = C ′(α1k) = 1.

We finish this section with a classification of the unique satisfiability problem.

Theorem 5.8. Let B be a finite set of Boolean functions.

(1) If S1 ⊆ [B], then Unique SATC(B) ≡log
m Unique SATC(BF)

(2) else if S12 ⊆ [B] ⊆ R1, then Unique SATC(B) is coNP-complete
(3) In all other cases Unique SATC(B) is tractable.

Proof.

(1) Trivially Unique SATC(B) ≤log
m Unique SATC(BF) for an arbitrary set B of Boolean

functions. According to Proposition 3.5,

Unique SATC(BF) ≤
log
m Unique SATC(S1 ∪ {1}).

We show that Unique SATC(S1 ∪ {1}) ≤log
m Unique SATC(S1), which in turn will prove

that Unique SATC(BF) ≤
log
m Unique SATC(B) for all B such that S1 ⊆ [B]. Let C be

a S1 ∪ {1}-circuit and let x be a variable not occurring in C. Let C ′′ be the circuit
obtained from C in replacing every occurrence of 1 by x. Finally consider C ′ = C ′′ ∧ x.
Observe, that since ∧ ∈ S1 the circuit C ′ is an S1-circuit and #Sat(C) = #Sat(C ′).

(2) If B ⊆ R1 we have Unique SATC(B) ≡log
m SAT∗

C(B). Hence for all B ⊆ R1 holds
Unique SATC(B) ∈ coNP and therefore the coNP-completeness for all B with S12 ⊆
[B] ⊆ R1 follows by Theorem 5.2.

(3) For all B ⊆ S20 or B ⊆ D the claim holds because as we have seen before any such
circuit has at least 2n−1 satisfying assignments. If B ⊆ M, then an n-ary B-circuit C
has more than one satisfying assignment if and only if there is an i ∈ { 1, . . . , n } such
that C(1i−101n−i) = 1. If B ⊆ L, then the number of satisfying assignments for every
B-circuit can easily be determined using its linear normal form.

6. Enumeration problems

We now present our results for the enumeration problem. The analogous problem has
been studied in the constraint context by Nadia Creignou, Jean-Jacques Hébrard, Henning
Schnoor, and Ilka Schnoor in [CH97, SS07]. The counting problem (i.e., determine the
number of solutions of a given circuit has been studied in [RW05]).

Theorem 6.1. Let B be a finite set of Boolean functions. Then the following holds:

(1) If B ⊆ M, or B ⊆ L, or B ⊆ D, or B ⊆ S20, then Enum SATC(B) has a polynomial-
delay enumeration algorithm.

(2) Else Enum SATC(B) has no polynomial-total-time enumeration algorithm unless P =
NP.

Note that since every polynomial-delay algorithm is also a polynomial-total-time algorithm,
the above theorem implies that in the context of enumerating the solutions for B-formulas,
the two notions coincide. In particular, the theorem completely classifies the “efficient”
cases with respect to either of these notions.

22 E. BÖHLER, N. CREIGNOU, M. GALOTA, S. REITH, H. SCHNOOR, AND H. VOLLMER

Proof.

(1) Let us first examine the case where B ⊆ M or B ⊆ L. In this case it follows from
Proposition 3.1 and Figure 2 that the satisfiability problem for B ∪ {0, 1}-circuits can
be solved in polynomial time. Thus it is easy to see that the following algorithm has
polynomial delay: Let C(x1, . . . , xn) be a B-circuit. We first check if C[x1/0] (that is,
the circuit resulting from C when replacing all gates labeled x1 with a gate computing
the constant 0-function) is satisfiable, if yes, we recursively print the satisfying solutions
of this circuit with the additional assignment x1 = 0. We do the same for the analogously
defined C[x1/1]. For a circuit without variables, we print the empty assignment.

Let us now consider the case where B ⊆ D, or B ⊆ S20. In this case, as we have seen
in the proof of Theorem 5.2, we know that for any B-circuit C and any assignment I
to the variables of C, if I is no solution for C, then dual(I) is. This gives a polynomial-
delay enumeration algorithm for the solutions of C, by testing the set of all assignments
in an appropriate order: let the variables of C be x1, . . . , xn, then use an arbitrary
order, for example the lexicographical order, on the assignments I with I(x1) = 0, and
for each of the assignments considered, test if I or dual(I) satisfies the circuit. In the
cases where the answer is “yes,” print the corresponding assignment. Due to the above
mentioned property, this gives at least one solution for each I considered, since if I is
not a solution, then dual(I) is. Therefore, since it can be verified in polynomial time
if a given assignment is a solution for the circuit, this clearly gives a polynomial delay
algorithm.

(2) According to Figure 2 in order to complete the proof of the theorem it remains to show
that if B is such that S12 ⊆ [B], then Enum SATC(B) has no polynomial-total-time
enumeration algorithm unless P = NP. We show that the existence of such an algorithm
for B-circuits implies that SAT∗

C(B) can be decided in polynomial time. The theorem
then follows from the proof of Theorem 5.2, since there it was proven that SAT∗

C(B) is
NP-hard.

Let C be a B-circuit. First check if the constant 1-assignment is a solution of C, this
can be done in polynomial time. Let i be 1 if this is the case, and let i be 0 otherwise (i.e.,
if the constant 1-assignment does not satisfy C). Clearly, C has a solution different from
the all-1-solution if and only if it has at least i+1 many solutions. Using a a polynomial-
total-time enumeration algorithm for B-circuits, this question can be decided as follows:

Since i + 1 can be at most 2, the time that a polynomial-total-time enumeration
algorithm can spend for enumerating all of C’s solution is bounded by a polynomial in
C. Therefore, we can simply start the algorithm, and wait if it finishes in this time. If
it does, then its output is the full list of solutions for C, and we obviously can decide
if there is solution different from the constant-1-solution present in this list. If it does
not finish in this time, then there are more than i+ 1 solutions, and thus there is one
which is not the constant-1-solution. Note that we deduce this fact solely from the
observation that the algorithm runs longer than allowed for i+1 solutions, independent
of any output the algorithm may have printed up to that time.

In the case of the existence of a polynomial-delay enumeration algorithm it is of interest to
further examine the complexity of the enumeration when requiring the solutions to be output
in lexicographic order. As observed in [JPY88] this further requirement can dramatically
increase the complexity. We prove that this is indeed the case for some sets B.

COMPLEXITY CLASSIFICATIONS FOR BOOLEAN CIRCUITS 23

Proposition 6.2. Let B be a finite set of Boolean functions such that B ⊆ M, or B ⊆ L,
or B ⊆ D, or B ⊆ S20.

(1) If B ⊆ M or B ⊆ L, then there exists a polynomial-delay enumeration algorithm that
produces all the solutions of a B-circuit in lexicographic order.

(2) Else such an algorithm does not exist unless P = NP.

Proof. Observe that the enumeration algorithm described in the proof of Theorem 6.1 when
B ⊆ M or B ⊆ L produces the solutions in lexicographic order. According to Figure 2 it
remains to consider the case where S02 ⊆ [B] or D1 ⊆ [B]. We prove that for any set B,
if one of these algorithms exists, then the satisfiability problem for B ∪ {0}-circuits can
be solved in polynomial time. The result then follows with Proposition 3.1, since due to
Figure 2, [B ∪ {0}] = BF, and therefore this problem is NP-complete.

We show how a polynomial-time decision algorithm for this problem can be obtained
from a polynomial-delay enumeration algorithm for B-circuits that produces solutions in
lexicographic order. To this end, let C be a B ∪ {0}-circuit. Introduce a new variable x0,
and construct the circuit C ′, which is obtained from C by replacing every occurrence of 0
by x0. Then C ′ is a B-circuit. It is clear that C has a solution if and only if C ′ is satisfiable
and the lexicographically first solution of C ′ maps x0 to 0, which clearly finishes the proof,
since the lexicographic order enumeration algorithm has to produce the first solution in
polynomial time, or determine that none exists. �

In addition to the cases where the satisfiability problem for B-circuits is NP-complete,
and therefore efficient enumeration algorithms obviously cannot be hoped for unless P = NP,
we also showed that in the cases where tractability of the satisfiability problem follows from
a simple “trick,” like the knowledge that the all-1-assignment is a solution to the circuits,
efficient enumeration algorithms do not exist. An interesting special case here is the case of
self-dual circuits. The satisfiability problem again is easy, simply because any such circuit
is always satisfiable. But the property of self-duality does not only give one solution, it
guarantees that half of the possible assignments are solutions. Therefore it is not surprising
that these solutions also can be enumerated in an efficient way. However, since the property
of self-duality does not say anything about the set of solutions where a given variable is set
to 0, this does not help us to construct a lexicographical order enumeration algorithm.

Given the above results and those on counting given in [RW05], one can see that count-
ing is “harder” than enumeration in the following sense: For all cases in which [RW05]
gives a polynomial-time algorithm for the counting problem, we also obtain an efficient
(polynomial-delay) algorithm for enumeration. The converse is not true: For monotone
functions, efficient enumeration is possible, but counting cannot be done in polynomial
time, unless #P ⊆ FP. When considering lexicographic enumeration algorithm, the picture
is similar, with the notable exception of the clone of the self-dual functions: As already dis-
cussed above, enumeration is trivial for these functions. For a similar reason, the counting
problem is trivial here as well (a self-dual function is satisfied by exactly half of its possible
arguments). However, the self-dual property does not help in obtaining an algorithm for
enumeration in lexicographic order.

7. Conclusion

We have obtained complete classifications for the equivalence and isomorphism problems,
the frozen variables problems, the unique satisfiability problem, the audit problem and the

24 E. BÖHLER, N. CREIGNOU, M. GALOTA, S. REITH, H. SCHNOOR, AND H. VOLLMER

enumeration problem for Boolean circuits. The classification into “hard” and “easy” classes
can be refined such that the internal structure of the tractable cases becomes visible. For
this, one has to use stricter reductions (e.g., logspace reductions or logtime projections),
and one obtains problems complete for subclasses of P. For some of our problems, this has
been done in [Rei01].

We think it is interesting to observe that, e.g., equivalence of OBDDs is decidable in
polynomial time, while we identify here intractability for many clones in the lattice. As
a consequence, this shows that, if P 6= NP, in all these cases OBDDs provide a provably
less succinct representation than Boolean circuits. Analogous remarks hold for cases of the
other algorithmic tasks that we consider, where a difference in complexity between OBDD
representation and circuit representation appears.

In general, given a Boolean function f , it is coNP-hard to determine if it is in a clone B
(if f is given by a general circuit; the problem becomes very easy if f is given by truth-table,
see [Vol09]). This might seem to destroy all relevance of our just discussed results. However,
we would like to mention that in practice, circuits computing functions f are synthesized
in one way or the other, hence we know the minimal clone it belongs to, and thus, our
tractability results are relevant.

In this paper we studied the complexity of problems related to circuits. So it is natural
to ask what can be said about the formula case. For this we define B-formulas as “tree-
like” B-circuits or analogously as B-circuits, where all gates have a fan-out of at most 1.
Interestingly the study of B-formulas leads to different dichotomy-theorems. The main
reason for this phenomenon is, that circuits can be regarded as a succinct representation of
formulas. Partial results in this direction have been obtained in [Rei01, Sch10].

Finally we would like to mention that another possible syntactic restriction of formula
related problems is to consider generalized Boolean CNF formulas, also known as CSPs, see
[CKS00, CV08]. Many results about the problems considered here have been obtained in
the CSP framework, see the survey [CV08].

Acknowledgement. We are grateful to the reviewers for many comments that helped to
improve the presentation considerably.

References

[AT00] M. Agrawal and T. Thierauf. The formula isomorphism problem. SIAM Journal on Computing,
30(3):990–1009, 2000.

[BCRV03] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks, part I: Post’s
lattice with applications to complexity theory. ACM SIGACT-Newsletter, 35(4):38–52, 2003.

[BG82] A. Blass and Y. Gurevich. On the unique satisfiability problem. Information and Control, 82:80–
88, 1982.

[CGH+88] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and G. Wech-
sung. The Boolean hierarchy I: Structural properties. SIAM Journal on Computing, 17(6):1232
– 1252, December 1988.

[CGH+89] J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and G. Wech-
sung. The Boolean hierarchy II: Applications. SIAM Journal on Computing, 18(1):95 – 111,
February 1989.

[CH97] N. Creignou and J.-J. Hébrard. On generating all solutions of generalized satisfiability problems.
Informatique Théorique et Applications/Theoretical Informatics and Applications, 31(6):499–511,
1997.

COMPLEXITY CLASSIFICATIONS FOR BOOLEAN CIRCUITS 25

[CKS00] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Constraint Satis-
faction Problems. Monographs on Discrete Applied Mathematics. SIAM, 2000.

[CV08] N. Creignou and H. Vollmer. Boolean constraint satisfaction problems: When does Post’s lattice
help? In Nadia Creignou, Phokion G. Kolaitis, and Heribert Vollmer, editors, Complexity of
Constraints, volume 5250 of Lecture Notes in Computer Science, pages 3–37. Springer, 2008.

[JPY88] D. Johnson, C. Papadimitriou, and M. Yannakakis. On generating all maximal independent sets.
Inf. Process. Lett., 27(3):119–123, 1988.

[JYP88] D.S. Johnson, M. Yannakakis, and C.H. Papadimitriou. On generating all maximal independent
sets. Information Processing Letters, 27:119–123, 1988.

[KPR03] J. M. Kleinberg, C. H. Papadimitriou, and P. Raghavan. Auditing Boolean attributes. J. Comput.
Syst. Sci., 66(1):244–253, 2003.

[Lad75] R. E. Ladner. The circuit value problem is log space complete for P. SIGACT News, 7(1):12–20,
1975.

[Lau06] D. Lau. Function Algebras on Finite Sets. Springer Monographs in Mathematics. Springer, 2006.
[Lew79] H. R. Lewis. Satisfiability problems for propositional calculi. Mathematical Systems Theory,

13:45–53, 1979.
[Lup58] O. B. Lupanov. A method of circuit synthesis. Izvestia V.U.Z. Radiofizika, 1:120–140, 1958.
[MT98] Christoph Meinel and Thorsten Theobald. Algorithms and Data Structures in VLSI Design:

OBDD - Foundations and Applications. Springer, 1998.
[Pip97] N. Pippenger. Theories of Computability. Cambridge University Press, Cambridge, 1997.
[PK79] R. Pöschel and L.A. Kalužnin. Funktionen- und Relationenalgebren. DVW, Berlin, 1979.
[Pos41] E. L. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematical

Studies, 5:1–122, 1941.
[Rei01] S. Reith. Generalized Satisfiability Problems. PhD thesis, Fachbereich Mathematik und Infor-

matik, Universität Würzburg, 2001.
[RS42] J. Riordan and C. Shannon. The number of two-terminal series-parallel networks. Journal of

Mathematics and Physics, 21:83–93, 1942.
[RW05] S. Reith and K. W. Wagner. The complexity of problems defined by Boolean circuits. In Proceed-

ings Mathematical Foundation of Informatics (MFI99), pages 141–156. World Scientific Publish-
ing, 2005.

[Sav76] J. E. Savage. The Complexity of Computing. John Wily, New York, 1976.
[Sch10] Henning Schnoor. The complexity of model checking for Boolean formulas. Int. J. Found. Comput.

Sci., 21(3):289–309, 2010.
[Sha38] C. Shannon. A symbolic analysis of relay and switching circuits. Transactions AIEE, 57:59–98,

1938.
[SS07] H. Schnoor and I. Schnoor. Enumerating all solutions for constraint satisfaction problems. In

Wolfgang Thomas and Pascal Weil, editors, Proceedings of the 24th International Symposium on
Theoretical Aspects of Computer Science, pages 694–705, 2007.

[Sze86] Á. Szendrei. Clones In Universal Algebra. Les Presses De L’Université de Montréal, 1986.
[Vol99] H. Vollmer. Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoretical

Computer Science. Springer Verlag, Berlin Heidelberg, 1999.
[Vol09] H. Vollmer. The complexity of deciding if a Boolean function can be computed by circuits over

a restricted basis. Theory Comput. Syst., 44(1):82–90, 2009.
[Weg87] I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner series in computer science. B.

G. Teubner & John Wiley, Stuttgart, 1987.
[Weg00] I. Wegener. Branching Programs and Binary Decision Diagrams. Monographs on Discrete Math-

ematics and Applications. SIAM, 2000.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Boolean functions and Post's lattice
	2.2. Boolean circuits

	3. Problems for propositional circuits and complexity classes
	4. Equivalence- and isomorphism problems
	5. Results for audit-like problems
	6. Enumeration problems
	7. Conclusion
	References

