92 research outputs found

    A Review of Approaches for Sleep Quality Analysis

    Get PDF
    Sleep quality is directly related to overall wellness and can reveal symptoms of several diseases. However, the term ‘‘sleep quality’’ still lacks a definitional consensus and is commonly assessed in sleep labs with polysomnography, comprising high costs, or through sleep questionnaires, a highly subjective technique. Multiple methods have been proposed to address the estimation of sleep quality, and devices were developed to conduct the examination in the subject’s home. The objective of this paper is to analyze the methods and the devices presented in the literature, assessing the development of objective markers that could lead to an improvement of the subjective sleep experience understanding, leading to developments in the treatment of sleep quality deficits. A systematic review was conducted, selecting research articles published from 2000 to 2018, and two research questions were formulated, specifically, ‘‘what methods for sleep quality assessment have been developed’’ and ‘‘what kind of measures are employed by the devices that have been developed to estimate sleep quality.’’ The research trend for the assessment of sleep quality is based on the sleep macrostructure, and it was verified that despite the convenience and considerable popularity among the consumers of home health monitoring of devices, such as actigraphs, the validity of these tools regarding the estimation of sleep quality still needs to be systematically examined. A detailed resume of the key findings and the identified challenges are presented, ascertaining the main gaps in the current state of the art.info:eu-repo/semantics/publishedVersio

    An empirical study on anomaly detection algorithms for extremely imbalanced datasets

    Get PDF
    Anomaly detection attempts to identify abnormal events that deviate from normality. Since such events are often rare, data related to this domain is usually imbalanced. In this paper, we compare diverse preprocessing and Machine Learning (ML) state-of-the-art algorithms that can be adopted within this anomaly detection context. These include two unsupervised learning algorithms, namely Isolation Forests (IF) and deep dense AutoEncoders (AE), and two supervised learning approaches, namely Random Forest and an Automated ML (AutoML) method. Several empirical experiments were conducted by adopting seven extremely imbalanced public domain datasets. Overall, the IF and AE unsupervised methods obtained competitive anomaly detection results, which also have the advantage of not requiring labeled data.This work has been supported by the European Regional Development Fund (FEDER) through a grant of the Operational Programme for Competitivity and Internationalization of Portugal 2020 Partnership Agreement (PRODUTECH4S&C, POCI-01-0247-FEDER-046102)

    Agenda

    Get PDF
    Congreso

    Agenda

    Get PDF

    Desenvolvimento de um protótipo e de metodologias de controlo de uma cadeira de rodas inteligente

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Automatic detection and indication of pallet-level tagging from rfid readings using machine learning algorithms

    Get PDF
    Identifying specific locations of items such as containers, warehouse pellets, and returnable packages in a large environment, for instance, in a warehouse, requires an extensive tracking system that could identify the location through data visualization. This is the similar case for radio-frequency identification (RFID) pallet level signal as the accuracy of determining the position for specific location either on the level or stacked in the same direction are read uniformly. However, there is no single study focusing on pallet-level classification, in particular on distance measurement of pallet height. Hence, a methodological approach that could provide the solution is essential to reduce the misplaced issues and thus reduce the problem in searching the products in a large-scale setting. The objective of this work attempts to define the pallet level of the stacked RFID tags through the machine learning techniques framework. The methodology started with the pallet-level which firstly determined by manual clustering according to the product code number of the tags that were manufactured for defining the actual level. An additional study of the radio frequency of the tagged pallet box in static condition was carried out by determining the feature of the time series. Various sample sizes of 1 Hz, 5 Hz and 10 Hz combined with the received signal strength of maximum, minimum, mode, median, mean, variance, maximum and minimum difference, kurtosis and skewness are evaluated. The statistical features of the received signal strength reading are analyzed by the selection of the univariate features, feature importance technique, and principal component analysis. The received signal strength of the maximum, median, and mean of all statistical features has been shown to be significant specifically for the 10Hz sample size. Different machine learning classifiers were tested based on the significant features, namely the Artificial Neural Network, Decision Tree, Random Forest, Naive Bayes Support Vector Machine, and k-Nearest Neighbors. It was shown that up to 95.02% of the trained Random Forest Model could be classified, indicating that the established framework is viable for pallet classification. Furthermore, the efficacy of different models based on heuristic hyperparameter tuning is evaluated in which the different kernel function for Support Vector Machine, various distance metrics of k-Nearest Neighbors. The ensemble learning technique, changes of activation function in Neural Network as well as the unsupervised learning (k-means clustering algorithm and Friis Transmission Equation) was also applied to classify the multiclass classification in pallet-level. In results, it was found that the Random Forest provided 92.44% of the test sets with the highest accuracy. In order to further validate the position of the tagging in the pallet box of the Random Forest model developed, a different predefined location was used to validate the model. The best position that could achieve a classification accuracy of 93.30% through the validation process for position five (5) in the systematic model that is the centre of the pallet box. In conclusion, it can be inferred from the analysis that the Random Forest model has better predictive performance compared to the rest of the pallet level partition model with a height of 12 cm used in this research. Based on the train, validation, and test sets in Random Forest, the RFID capability to determine the position of the pallet can be detected precisely

    Enabling automated engineering’s project progress measurement by using data flow models and digital twins

    Get PDF
    A significant challenge of managing successful engineering projects is to know their status at any time. This paper describes a concept of automated project progress measurement based on data flow models, digital twins, and machine learning (ML) algorithms. The approach integrates information from previous projects by considering historical data using ML algorithms and current unfinished artifacts to determine the degree of completion. The information required to measure the progress of engineering activities is extracted from engineering artifacts and subsequently analyzed and interpreted according to the project’s progress. Data flow models of the engineering process help understand the context of the analyzed artifacts. The use of digital twins makes it possible to connect plan data with actual data during the completion of the engineering project.DFG, 414044773, Open Access Publizieren 2021 - 2022 / Technische Universität Berli
    • …
    corecore