17 research outputs found

    SecuCode: Intrinsic PUF Entangled Secure Wireless Code Dissemination for Computational RFID Devices

    Full text link
    The simplicity of deployment and perpetual operation of energy harvesting devices provides a compelling proposition for a new class of edge devices for the Internet of Things. In particular, Computational Radio Frequency Identification (CRFID) devices are an emerging class of battery-free, computational, sensing enhanced devices that harvest all of their energy for operation. Despite wireless connectivity and powering, secure wireless firmware updates remains an open challenge for CRFID devices due to: intermittent powering, limited computational capabilities, and the absence of a supervisory operating system. We present, for the first time, a secure wireless code dissemination (SecuCode) mechanism for CRFIDs by entangling a device intrinsic hardware security primitive Static Random Access Memory Physical Unclonable Function (SRAM PUF) to a firmware update protocol. The design of SecuCode: i) overcomes the resource-constrained and intermittently powered nature of the CRFID devices; ii) is fully compatible with existing communication protocols employed by CRFID devices in particular, ISO-18000-6C protocol; and ii) is built upon a standard and industry compliant firmware compilation and update method realized by extending a recent framework for firmware updates provided by Texas Instruments. We build an end-to-end SecuCode implementation and conduct extensive experiments to demonstrate standards compliance, evaluate performance and security.Comment: Accepted to the IEEE Transactions on Dependable and Secure Computin

    Guest Editorial

    Full text link

    A Survey on Enterprise Network Security: Asset Behavioral Monitoring and Distributed Attack Detection

    Full text link
    Enterprise networks that host valuable assets and services are popular and frequent targets of distributed network attacks. In order to cope with the ever-increasing threats, industrial and research communities develop systems and methods to monitor the behaviors of their assets and protect them from critical attacks. In this paper, we systematically survey related research articles and industrial systems to highlight the current status of this arms race in enterprise network security. First, we discuss the taxonomy of distributed network attacks on enterprise assets, including distributed denial-of-service (DDoS) and reconnaissance attacks. Second, we review existing methods in monitoring and classifying network behavior of enterprise hosts to verify their benign activities and isolate potential anomalies. Third, state-of-the-art detection methods for distributed network attacks sourced from external attackers are elaborated, highlighting their merits and bottlenecks. Fourth, as programmable networks and machine learning (ML) techniques are increasingly becoming adopted by the community, their current applications in network security are discussed. Finally, we highlight several research gaps on enterprise network security to inspire future research.Comment: Journal paper submitted to Elseive

    Dissecting developer policy violating apps: Characterization and detection

    Get PDF

    On the Performance of Energy Criterion Method in Wi-Fi Transient Signal Detection

    Get PDF
    In the development of radiofrequency fingerprinting (RFF), one of the major challenges is to extract subtle and robust features from transmitted signals of wireless devices to be used in accurate identification of possible threats to the wireless network. To overcome this challenge, the use of the transient region of the transmitted signals could be one of the best options. For an efficient transient-based RFF, it is also necessary to accurately and precisely estimate the transient region of the signal. Here, the most important difficulty can be attributed to the detection of the transient starting point. Thus, several methods have been developed to detect transient start in the literature. Among them, the energy criterion method based on the instantaneous amplitude characteristics (EC-a) was shown to be superior in a recent study. The study reported the performance of the EC-a method for a set of Wi-Fi signals captured from a particular Wi-Fi device brand. However, since the transient pattern varies according to the type of wireless device, the device diversity needs to be increased to achieve more reliable results. Therefore, this study is aimed at assessing the efficiency of the EC-a method across a large set of Wi-Fi signals captured from various Wi-Fi devices for the first time. To this end, Wi-Fi signals are first captured from smartphones of five brands, for a wide range of signal-to-noise ratio (SNR) values defined as low (−3 to 5 dB), medium (5 to 15 dB), and high (15 to 30 dB). Then, the performance of the EC-a method and well-known methods was comparatively assessed, and the efficiency of the EC-a method was verified in terms of detection accuracy.publishedVersio

    Two Challenges of Stealthy Hypervisors Detection: Time Cheating and Data Fluctuations

    Get PDF
    Hardware virtualization technologies play a significant role in cyber security. On the one hand these technologies enhance security levels, by designing a trusted operating system. On the other hand these technologies can be taken up into modern malware which is rather hard to detect. None of the existing methods is able to efficiently detect a hypervisor in the face of countermeasures such as time cheating, temporary self uninstalling, memory hiding etc. New hypervisor detection methods which will be described in this paper can detect a hypervisor under these countermeasures and even count several nested ones. These novel approaches rely on the new statistical analysis of time discrepancies by examination of a set of instructions, which are unconditionally intercepted by a hypervisor. Reliability was achieved through the comprehensive analysis of the collected data despite its fluctuation. These offered methods were comprehensively assessed in both Intel and AMD CPUs.Comment: 25 pages, 7 figures, 8 tables. Paper presented at the Proceedings of the 10th Annual Conference on Digital Forensics, Security and Law (CDFSL), 33-57, Daytona Beach, Florida, USA (2015, May 18-21

    O-ADPI: Online Adaptive Deep-Packet Inspector Using Mahalanobis Distance Map for Web Service Attacks Classification

    Get PDF
    Most active research in Host and Network Intrusion Detection Systems are only able to detect attacks of the computer systems and attacks at the network layer, which are not sufficient to counteract SOAP/REST or XML/JSON-related attacks. In dealing with the problem of anomaly detection in web service message datasets, this paper roposes an anomaly detection system called the Online Adaptive DeepPacket Inspector (O-ADPI) for web service message attacks classification. The proposed approach relies on multiple statistical methods which use Unigram-based Weighting Scheme (UWS) that combines text mining techniques with a set of different statistical criteria for Feature Selection Engine (FSE) to effectively and efficiently explore optimal subspaces in detecting anomalies embedded deep in the high dimensional feature subspaces. We utilize a supervised intrusion detection algorithm based on mahalanobis distance map classifier. As web service attacks can be classified into anomaly and normal, the task of anomaly detection can be modeled as a classification problem. The O-ADPI model was assessed for F-value, true positive rate (TPR), and false positive rate (FPR) in order to evaluate the detectionx performance of OADPI against different type of feature selections engines with corresponding PCs for each service messagespecific. The experiments were performed using the REST-IDS Dataset 2015 and the results demonstrated that the proposed O-ADPI model achieved the best results in each message-specific service

    State of the Art and Future Perspectives in Smart and Sustainable Urban Development

    Get PDF
    This book contributes to the conceptual and practical knowledge pools in order to improve the research and practice on smart and sustainable urban development by presenting an informed understanding of the subject to scholars, policymakers, and practitioners. This book presents contributions—in the form of research articles, literature reviews, case reports, and short communications—offering insights into the smart and sustainable urban development by conducting in-depth conceptual debates, detailed case study descriptions, thorough empirical investigations, systematic literature reviews, or forecasting analyses. This way, the book forms a repository of relevant information, material, and knowledge to support research, policymaking, practice, and the transferability of experiences to address urbanization and other planetary challenges

    An Approach to Guide Users Towards Less Revealing Internet Browsers

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Previous research has shown that there are numerous privacy and security risks result from exposing sensitive information in the User-Agent string. For example, it enables device and browser fingerprinting and user tracking and identification. Our large analysis of thousands of User-Agent strings shows that browsers differ tremendously in the amount of information they include in their User-Agent strings. As such, our work aims at guiding users towards using less exposing browsers. In doing so, we propose to assign an exposure score to browsers based on the information they expose and vulnerability records. Thus, our contribution in this work is as follows: first, provide a full implementation that is ready to be deployed and used by users. Second, conduct a user study to identify the effectiveness and limitations of our proposed approach. Our implementation is based on using more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available and the solution has been deployed
    corecore