257 research outputs found

    Algebraic Properties of Qualitative Spatio-Temporal Calculi

    Full text link
    Qualitative spatial and temporal reasoning is based on so-called qualitative calculi. Algebraic properties of these calculi have several implications on reasoning algorithms. But what exactly is a qualitative calculus? And to which extent do the qualitative calculi proposed meet these demands? The literature provides various answers to the first question but only few facts about the second. In this paper we identify the minimal requirements to binary spatio-temporal calculi and we discuss the relevance of the according axioms for representation and reasoning. We also analyze existing qualitative calculi and provide a classification involving different notions of a relation algebra.Comment: COSIT 2013 paper including supplementary materia

    Answer Set Programming Modulo `Space-Time'

    Full text link
    We present ASP Modulo `Space-Time', a declarative representational and computational framework to perform commonsense reasoning about regions with both spatial and temporal components. Supported are capabilities for mixed qualitative-quantitative reasoning, consistency checking, and inferring compositions of space-time relations; these capabilities combine and synergise for applications in a range of AI application areas where the processing and interpretation of spatio-temporal data is crucial. The framework and resulting system is the only general KR-based method for declaratively reasoning about the dynamics of `space-time' regions as first-class objects. We present an empirical evaluation (with scalability and robustness results), and include diverse application examples involving interpretation and control tasks

    Qualitative Constraint Calculi: Heterogeneous Verification of Composition Tables

    Get PDF
    In the domain of qualitative constraint reasoning, a subfield of AI which has evolved in the past 25 years, a large number of calculi for efficient reasoning about spatial and temporal entities has been developed. Reasoning techniques developed for these constraint calculi typically rely on so-called composition tables of the calculus at hand, which allow for replacing semantic reasoning by symbolic operations. Often these composition tables are developed in a quite informal, pictorial manner and hence composition tables are prone to errors. In view of possible safety critical applications of qualitative calculi, however, it is desirable to formally verify these composition tables. In general, the verification of composition tables is a tedious task, in particular in cases where the semantics of the calculus depends on higher-order constructs such as sets. In this paper we address this problem by presenting a heterogeneous proof method that allows for combining a higher-order proof assistance system (such as Isabelle) with an automatic (first order) reasoner (such as SPASS or VAMPIRE). The benefit of this method is that the number of proof obligations that is to be proven interactively with a semi-automatic reasoner can be minimized to an acceptable level

    Reasoning with Mixed Qualitative-Quantitative Representations of Spatial Knowledge

    Get PDF
    Drastic transformations in human settlements are caused by extreme events. As a consequence, descriptions of an environment struck by an extreme event, based on spatial data collected before the event, become suddenly unreliable. On the other hand, time critical actions taken for responding to extreme events require up-to-date spatial information. Traditional methods for spatial data collection are not able to provide updated information rapidly enough, calling for the development of new data collection methods. Reports provided by actors involved in the response operations can be considered as an alternative source of spatial information. Indeed, reports often convey spatial descriptions of the environment. The extraction of spatial descriptions from such reports can serve a fundamental role to update existing information which is usually maintained within, and by means of, Geographic Information Systems. However, spatial information conveyed by human reports has qualitative characteristics, that strongly differ from the quantitative nature of spatial information stored in Geographic Information Systems. Methodologies for integrating qualitative and quantitative spatial information are required in order to exploit human reports for updating existing descriptions of spatial knowledge. Although a significant amount of research has been carried on how to represent and reason on qualitative data and qualitative information, relatively little work exists on developing techniques to combine the different methodologies. The work presented in this thesis extends previous works by introducing a hybrid reasoning system--able to deal with mixed qualitative-quantitative representations of spatial knowledge--combining techniques developed separately for qualitative spatial reasoning and quantitative data analysis. The system produces descriptions of the spatial extent of those entities that have been modified by the event (such as collapsed buildings), or that were not existing before the event (such as fire or ash clouds). Furthermore, qualitative descriptions are produced for all entities in the environment. The former descriptions allow for overlaying on a map the information interpreted from human reports, while the latter triggers warning messages to people involved in decision making operations. Three main system functionalities are investigated in this work: The first allows for translating qualitative information into quantitative descriptions. The second aims at translating quantitative information into qualitative relations. Finally, the third allows for performing inference operations with information given partly qualitatively and partly quantitatively for boosting the spatial knowledge the system is able to produce

    Reasoning with Mixed Qualitative-Quantitative Representations of Spatial Knowledge

    Get PDF
    Drastic transformations in human settlements are caused by extreme events. As a consequence, descriptions of an environment struck by an extreme event, based on spatial data collected before the event, become suddenly unreliable. On the other hand, time critical actions taken for responding to extreme events require up-to-date spatial information. Traditional methods for spatial data collection are not able to provide updated information rapidly enough, calling for the development of new data collection methods. Reports provided by actors involved in the response operations can be considered as an alternative source of spatial information. Indeed, reports often convey spatial descriptions of the environment. The extraction of spatial descriptions from such reports can serve a fundamental role to update existing information which is usually maintained within, and by means of, Geographic Information Systems. However, spatial information conveyed by human reports has qualitative characteristics, that strongly differ from the quantitative nature of spatial information stored in Geographic Information Systems. Methodologies for integrating qualitative and quantitative spatial information are required in order to exploit human reports for updating existing descriptions of spatial knowledge. Although a significant amount of research has been carried on how to represent and reason on qualitative data and qualitative information, relatively little work exists on developing techniques to combine the different methodologies. The work presented in this thesis extends previous works by introducing a hybrid reasoning system--able to deal with mixed qualitative-quantitative representations of spatial knowledge--combining techniques developed separately for qualitative spatial reasoning and quantitative data analysis. The system produces descriptions of the spatial extent of those entities that have been modified by the event (such as collapsed buildings), or that were not existing before the event (such as fire or ash clouds). Furthermore, qualitative descriptions are produced for all entities in the environment. The former descriptions allow for overlaying on a map the information interpreted from human reports, while the latter triggers warning messages to people involved in decision making operations. Three main system functionalities are investigated in this work: The first allows for translating qualitative information into quantitative descriptions. The second aims at translating quantitative information into qualitative relations. Finally, the third allows for performing inference operations with information given partly qualitatively and partly quantitatively for boosting the spatial knowledge the system is able to produce

    Environmental Analysis of the Residential Sector in Cairo

    Get PDF
    Rapid demographic increase and transition in governmental policies influenced the patterns of Egyptianresidential sector, services and urban fabric. The housing stock in Egypt is dominated by private owners, informally and high consumption rates. Studies attempted to classify historic periods that created the current urban pattern and led to an uncontrollable expansion of a metropolis. Political and demographic changes had a major role in the city’s urban, architectural and legislative transformation, especially after the change of government policies in 1953. The article aims to evaluate the development milestones of the housing stock in Cairo before and after 1953, from an environmental sustainability perspective on a building and urban scale. Based on official statistics, maps from various periods and literature, the urban development of the city is assessed. The impact of governmental policies and strategic plans is analyzed, taking into consideration demographic growth, urban sprawl and environmental aspects. The residential stock is classified in two time phases (before and after 1953) and three dominant typological -urban and architectural- criteria. Based on this classificatory model, representative characteristics of different periods are assessed in terms of morphology, construction materials and environmental design. The results provide a critical analysis of Cairo's environmental and sustainability policies in the second half of the previous century. It provides an evaluation base for comparison with the city's current built environment and offers guidance for future scenarios

    Formal Qualitative Spatial Augmentation of the Simple Feature Access Model

    Get PDF
    The need to share and integrate heterogeneous geospatial data has resulted in the development of geospatial data standards such as the OGC/ISO standard Simple Feature Access (SFA), that standardize operations and simple topological and mereotopological relations over various geometric features such as points, line segments, polylines, polygons, and polyhedral surfaces. While SFA\u27s supplied relations enable qualitative querying over the geometric features, the relations\u27 semantics are not formalized. This lack of formalization prevents further automated reasoning - apart from simple querying - with the geometric data, either in isolation or in conjunction with external purely qualitative information as one might extract from textual sources, such as social media. To enable joint qualitative reasoning over geometric and qualitative spatial information, this work formalizes the semantics of SFA\u27s geometric features and mereotopological relations by defining or restricting them in terms of the spatial entity types and relations provided by CODIB, a first-order logical theory from an existing logical formalization of multidimensional qualitative space

    Indexing large geographic datasets with compact qualitative representation

    Get PDF
    © 2015 Taylor & Francis. This paper develops a new mechanism to efficiently compute and compactly store qualitative spatial relations between spatial objects, focusing on topological and directional relations for large datasets of region objects. The central idea is to use minimum bounding rectangles (MBRs) to approximately represent region objects with arbitrary shape and complexity and only store spatial relations that cannot be unambiguously inferred from the relations of corresponding MBRs. We demonstrate, both in theory and practice, that our approach requires considerably less construction time and storage space, and can answer queries more efficiently than the state-of-the-art methods
    • …
    corecore