108 research outputs found

    Experimental Performance Evaluation and Frame Aggregation Enhancement in IEEE 802.11n WLANs

    Get PDF
    The IEEE 802.11n standard promises to extend today’s most popular WLAN standard by significantly increasing reach, reliability, and throughput. Ratified on September 2009, this standard defines many new physical and medium access control (MAC) layer enhancements. These enhancements aim to provide a data transmission rate of up to 600 Mbps. Since June 2007, 802.11n products are available on the enterprise market based on the draft 2.0. In this paper we investigate the effect of most of the proposed 802.11n MAC and physical layer features on the adhoc networks performance. We have performed several experiments in real conditions. The experimental results demonstrated the effectiveness of 802.11n enhancement. We have also examined the interoperability and fairness of 802.11n. The frame aggregation mechanism of 802.11n MAC layer can improve the efficiency of channel utilization by reducing the protocol overheads. We focused on the effect of frame aggregation on the support of voice and video applications in wireless networks. We also propose a new frame aggregation scheduler that considers specific QoS requirements for multimedia applications. We dynamically adjust the aggregated frame size based on frame's access category defined in 802.11e standard

    The Cyborg Astrobiologist: Testing a Novelty-Detection Algorithm on Two Mobile Exploration Systems at Rivas Vaciamadrid in Spain and at the Mars Desert Research Station in Utah

    Full text link
    (ABRIDGED) In previous work, two platforms have been developed for testing computer-vision algorithms for robotic planetary exploration (McGuire et al. 2004b,2005; Bartolo et al. 2007). The wearable-computer platform has been tested at geological and astrobiological field sites in Spain (Rivas Vaciamadrid and Riba de Santiuste), and the phone-camera has been tested at a geological field site in Malta. In this work, we (i) apply a Hopfield neural-network algorithm for novelty detection based upon color, (ii) integrate a field-capable digital microscope on the wearable computer platform, (iii) test this novelty detection with the digital microscope at Rivas Vaciamadrid, (iv) develop a Bluetooth communication mode for the phone-camera platform, in order to allow access to a mobile processing computer at the field sites, and (v) test the novelty detection on the Bluetooth-enabled phone-camera connected to a netbook computer at the Mars Desert Research Station in Utah. This systems engineering and field testing have together allowed us to develop a real-time computer-vision system that is capable, for example, of identifying lichens as novel within a series of images acquired in semi-arid desert environments. We acquired sequences of images of geologic outcrops in Utah and Spain consisting of various rock types and colors to test this algorithm. The algorithm robustly recognized previously-observed units by their color, while requiring only a single image or a few images to learn colors as familiar, demonstrating its fast learning capability.Comment: 28 pages, 12 figures, accepted for publication in the International Journal of Astrobiolog

    On the Benefits of Channel Bonding in Dense, Decentralized Wi-Fi 4 Networks

    Get PDF
    Channel bonding is a technique first defined in the IEEE 802.11n standard to increase the throughput in wireless networks by means of using wider channels. In IEEE 802.11n (nowadays also known as Wi-Fi 4), it is possible to use 40 MHz channels instead of the classical 20 MHz channels. Although using channel bonding can increase the throughput, the classic 802.11 setting only allows for two orthogonal channels in the 2.4 GHz frequency band, which is not enough for proper channel assignment in dense settings. For that reason, it is commonly accepted that channel bonding is not suitable for this frequency band. However, to the best of our knowledge, there is not any accurate study that deals with this issue thoroughly. In this work, we study in depth the effect of channel bonding in Wi-Fi 4 dense, decentralized networks operating in the 2.4 GHz frequency band. We confirm the negative effect of using channel bonding in the 2.4 GHz frequency band with 11 channels which are 20 MHz wide (as in North America), but we also show that when there are 13 or more channels at hand (as in many other parts of the world, including Europe and Japan), the use of channel bonding yields consistent throughput improvements. For that reason, we claim that the common assumption of not considering channel bonding in the 2.4 GHz band should be revised

    Enabling high-bandwidth vehicular content distribution

    Full text link

    Advanced Protocols for Peer-to-Peer Data Transmission in Wireless Gigabit Networks

    Get PDF
    This thesis tackles problems on IEEE 802.11 MAC layer, network layer and application layer, to further push the performance of wireless P2P applications in a holistic way. It contributes to the better understanding and utilization of two major IEEE 802.11 MAC features, frame aggregation and block acknowledgement, to the design and implementation of opportunistic networks on off-the-shelf hardware and proposes a document exchange protocol, including document recommendation. First, this thesis contributes a measurement study of the A-MPDU frame aggregation behavior of IEEE 802.11n in a real-world, multi-hop, indoor mesh testbed. Furthermore, this thesis presents MPDU payload adaptation (MPA) to utilize A-MPDU subframes to increase the overall throughput under bad channel conditions. MPA adapts the size of MAC protocol data units to channel conditions, to increase the throughput and lower the delay in error-prone channels. The results suggest that under erroneous conditions throughput can be maximized by limiting the MPDU size. As second major contribution, this thesis introduces Neighborhood-aware OPPortunistic networking on Smartphones (NOPPoS). NOPPoS creates an opportunistic, pocket-switched network using current generation, off-the-shelf mobile devices. As main novel feature, NOPPoS is highly responsive to node mobility due to periodic, low-energy scans of its environment, using Bluetooth Low Energy advertisements. The last major contribution is the Neighborhood Document Sharing (NDS) protocol. NDS enables users to discover and retrieve arbitrary documents shared by other users in their proximity, i.e. in the communication range of their IEEE 802.11 interface. However, IEEE 802.11 connections are only used on-demand during file transfers and indexing of files in the proximity of the user. Simulations show that NDS interconnects over 90 \% of all devices in communication range. Finally, NDS is extended by the content recommendation system User Preference-based Probability Spreading (UPPS), a graph-based approach. It integrates user-item scoring into a graph-based tag-aware item recommender system. UPPS utilizes novel formulas for affinity and similarity scoring, taking into account user-item preference in the mass diffusion of the recommender system. The presented results show that UPPS is a significant improvement to previous approaches

    Analysis of RF-energy transducer for microwave harvesting system suitable for IoT applications

    Get PDF
    This project examines numerically the improved efficiency of energy transducer elements as RF antennas confined in metal cavities. To do so, parametric studies are performed using the 3D electromagnetic simulator CST transducers proposed using two RF antennas dual 2.4/5GHz antenna and a patch-designed 2.4 GHz. The results are contrasted with experimental measurements, demonstrating that the proposed transducers generate enough power to power a Texas Instruments BQ25570 chip or power IoT systems with μW power consumption.Aquest projecte analitza numèricament la millora en eficiència dels elements del transductor d'energia de RF d'antenes confinades en cavitats metàl·liques. Per fer-ho, es realitzen estudis paramètrics mitjançant el simulador electromagnètic 3D CST dels transductors de RF proposats utilitzant dues antenes duals a 2.4/5GHz i una patch-antenna dissenyada a 2.4GHz. Els resultats obtinguts es contrasten amb mesures experimentals, arribant a demostrar que els transductors proposats generen prou potència per a alimentar un sistema de gestió d'energia basat en el xip comercial BQ25570 de Texas Instruments o alimentar sistemes IoT amb consums en el rang del μW.El presente proyecto analiza numéricamente el aumento en eficiencia de los elementos del transductor de energía de RF de antenas confinadas en cavidades metálicas. Para ello, se realiza un estudio paramétrico mediante el simulador electromagnético 3D CST de los transductores de RF propuestos para dos antenas dipolos comerciales duales a 2.4/5GHz y una patch antena diseñada a 2.4GHz. Los resultados de las simulaciones se contrastan con medidas experimentales, llegando a demostrar que el transductor propuesto genera suficiente energía como para alimentar un sistema de gestión de energía estándar basado en el chip comercial BQ25570 de Texas Instrumentos alimentar sistemas IoT con consumos en el rango de los μW

    Interference charecterisation, location and bandwidth estimation in emerging WiFi networks

    Get PDF
    Wireless LAN technology based on the IEEE 802.11 standard, commonly referred to as WiFi, has been hugely successful not only for the last hop access to the Internet in home, office and hotspot scenarios but also for realising wireless backhaul in mesh networks and for point -to -point long- distance wireless communication. This success can be mainly attributed to two reasons: low cost of 802.11 hardware from reaching economies of scale, and operation in the unlicensed bands of wireless spectrum.The popularity of WiFi, in particular for indoor wireless access at homes and offices, has led to significant amount of research effort looking at the performance issues arising from various factors, including interference, CSMA/CA based MAC protocol used by 802.11 devices, the impact of link and physical layer overheads on application performance, and spatio-temporal channel variations. These factors affect the performance of applications and services that run over WiFi networks. In this thesis, we experimentally investigate the effects of some of the above mentioned factors in the context of emerging WiFi network scenarios such as multi- interface indoor mesh networks, 802.11n -based WiFi networks and WiFi networks with virtual access points (VAPs). More specifically, this thesis comprises of four experimental characterisation studies: (i) measure prevalence and severity of co- channel interference in urban WiFi deployments; (ii) characterise interference in multi- interface indoor mesh networks; (iii) study the effect of spatio-temporal channel variations, VAPs and multi -band operation on WiFi fingerprinting based location estimation; and (iv) study the effects of newly introduced features in 802.11n like frame aggregation (FA) on available bandwidth estimation.With growing density of WiFi deployments especially in urban areas, co- channel interference becomes a major factor that adversely affects network performance. To characterise the nature of this phenomena at a city scale, we propose using a new measurement methodology called mobile crowdsensing. The idea is to leverage commodity smartphones and the natural mobility of people to characterise urban WiFi co- channel interference. Specifically, we report measurement results obtained for Edinburgh, a representative European city, on detecting the presence of deployed WiFi APs via the mobile crowdsensing approach. These show that few channels in 2.4GHz are heavily used and there is hardly any activity in the 5GHz band even though relatively it has a greater number of available channels. Spatial analysis of spectrum usage reveals that co- channel interference among nearby APs operating in the same channel can be a serious problem with around 10 APs contending with each other in many locations. We find that the characteristics of WiFi deployments at city -scale are similar to those of WiFi deployments in public spaces of different indoor environments. We validate our approach in comparison with wardriving, and also show that our findings generally match with previous studies based on other measurement approaches. As an application of the mobile crowdsensing based urban WiFi monitoring, we outline a cloud based WiFi router configuration service for better interference management with global awareness in urban areas.For mesh networks, the use of multiple radio interfaces is widely seen as a practical way to achieve high end -to -end network performance and better utilisation of available spectrum. However this gives rise to another type of interference (referred to as coexistence interference) due to co- location of multiple radio interfaces. We show that such interference can be so severe that it prevents concurrent successful operation of collocated interfaces even when they use channels from widely different frequency bands. We propose the use of antenna polarisation to mitigate such interference and experimentally study its benefits in both multi -band and single -band configurations. In particular, we show that using differently polarised antennas on a multi -radio platform can be a helpful counteracting mechanism for alleviating receiver blocking and adjacent channel interference phenomena that underlie multi -radio coexistence interference. We also validate observations about adjacent channel interference from previous studies via direct and microscopic observation of MAC behaviour.Location is an indispensable information for navigation and sensing applications. The rapidly growing adoption of smartphones has resulted in a plethora of mobile applications that rely on position information (e.g., shopping apps that use user position information to recommend products to users and help them to find what they want in the store). WiFi fingerprinting is a popular and well studied approach for indoor location estimation that leverages the existing WiFi infrastructure and works based on the difference in strengths of the received AP signals at different locations. However, understanding the impact of WiFi network deployment aspects such as multi -band APs and VAPs has not received much attention in the literature. We first examine the impact of various aspects underlying a WiFi fingerprinting system. Specifically, we investigate different definitions for fingerprinting and location estimation algorithms across different indoor environments ranging from a multi- storey office building to shopping centres of different sizes. Our results show that the fingerprint definition is as important as the choice of location estimation algorithm and there is no single combination of these two that works across all environments or even all floors of a given environment. We then consider the effect of WiFi frequency bands (e.g., 2.4GHz and 5GHz) and the presence of virtual access points (VAPs) on location accuracy with WiFi fingerprinting. Our results demonstrate that lower co- channel interference in the 5GHz band yields more accurate location estimation. We show that the inclusion of VAPs has a significant impact on the location accuracy of WiFi fingerprinting systems; we analyse the potential reasons to explain the findings.End -to -end available bandwidth estimation (ABE) has a wide range of uses, from adaptive application content delivery, transport-level transmission rate adaptation and admission control to traffic engineering and peer node selection in peer -to- peer /overlay networks [ 1, 2]. Given its importance, it has been received much research attention in both wired data networks and legacy WiFi networks (based on 802.11 a/b /g standards), resulting in different ABE techniques and tools proposed to optimise different criteria and suit different scenarios. However, effects of new MAC/PHY layer enhancements in new and next generation WiFi networks (based on 802.11n and 802.11ac standards) have not been studied yet. We experimentally find that among different new features like frame aggregation, channel bonding and MIMO modes (spacial division multiplexing), frame aggregation has the most harmful effect as it has direct effect on ABE by distorting the measurement probing traffic pattern commonly used to estimate available bandwidth. Frame aggregation is also specified in both 802.11n and 802.1 lac standards as a mandatory feature to be supported. We study the effect of enabling frame aggregation, for the first time, on the performance of the ABE using an indoor 802.11n wireless testbed. The analysis of results obtained using three tools - representing two main Probe Rate Model (PRM) and Probe Gap Model (PGM) based approaches for ABE - led us to come up with the two key principles of jumbo probes and having longer measurement probe train sizes to counter the effects of aggregating frames on the performance of ABE tools. Then, we develop a new tool, WBest+ that is aware of the underlying frame aggregation by incorporating these principles. The experimental evaluation of WBest+ shows more accurate ABE in the presence of frame aggregation.Overall, the contributions of this thesis fall in three categories - experimental characterisation, measurement techniques and mitigation/solution approaches for performance problems in emerging WiFi network scenarios. The influence of various factors mentioned above are all studied via experimental evaluation in a testbed or real - world setting. Specifically, co- existence interference characterisation and evaluation of available bandwidth techniques are done using indoor testbeds, whereas characterisation of urban WiFi networks and WiFi fingerprinting based location estimation are carried out in real environments. New measurement approaches are also introduced to aid better experimental evaluation or proposed as new measurement tools. These include mobile crowdsensing based WiFi monitoring; MAC/PHY layer monitoring of co- existence interference; and WBest+ tool for available bandwidth estimation. Finally, new mitigation approaches are proposed to address challenges and problems identified throughout the characterisation studies. These include: a proposal for crowd - based interference management in large scale uncoordinated WiFi networks; exploiting antenna polarisation diversity to remedy the effects of co- existence interference in multi -interface platforms; taking advantage of VAPs and multi -band operation for better location estimation; and introducing the jumbo frame concept and longer probe train sizes to improve performance of ABE tools in next generation WiFi networks

    Experimenting with commodity 802.11 hardware: overview and future directions

    Get PDF
    The huge adoption of 802.11 technologies has triggered a vast amount of experimentally-driven research works. These works range from performance analysis to protocol enhancements, including the proposal of novel applications and services. Due to the affordability of the technology, this experimental research is typically based on commercial off-the-shelf (COTS) devices, and, given the rate at which 802.11 releases new standards (which are adopted into new, affordable devices), the field is likely to continue to produce results. In this paper, we review and categorise the most prevalent works carried out with 802.11 COTS devices over the past 15 years, to present a timely snapshot of the areas that have attracted the most attention so far, through a taxonomy that distinguishes between performance studies, enhancements, services, and methodology. In this way, we provide a quick overview of the results achieved by the research community that enables prospective authors to identify potential areas of new research, some of which are discussed after the presentation of the survey.This work has been partly supported by the European Community through the CROWD project (FP7-ICT-318115) and by the Madrid Regional Government through the TIGRE5-CM program (S2013/ICE-2919).Publicad

    Optimizing frequency domain contention in wireless network

    Get PDF
    Wireless communication became popular in the last decades, giving the mobility to the users. However with increased number of users and contention, network efficiency can hardly keep up with user needs. This thesis focuses on a new frequency domain contention technique called FICA. In FICA, the channel is assumed to be using Orthogonal Frequency Division Multiplex (OFDM) with multiple sub-carriers. We investigated the use of multiple channels and multiple access points (APs) in the design. First we investigated having one channel that is divided into number of sub-carriers, it shows good result, but only for limited number of users. Therefore we worked on the second scenario of having several sub-channels and each sub-channel is divided into a number of sub-carriers to communicate through one AP. And for efficient result nodes contend on the contention band and winner nodes will have the chance to send their data through the transmission band. In real world, networks have more than one AP, for that reason we investigate the third scenario, which is having more than one AP. In this setup, the result showed significant outcome, that we can divide the channel into several sub-channels to serve more than one AP and hash an ID for each AP. We further investigated optimal number of ID bits that are used to represent the hashed receiver IDs. We summarize the results as following: 1) it is possible to divide the channel bandwidth into several sub-channels that is divided into several sub-carriers to serve large number of users. 2) node contention should be partitioned into contention band and transmission band to reduce the overhead that the contending node cause when contending on the whole channel. 3) AP ID is required when the network has more than one AP. 4) number of sub-carriers in the contention band has to increase at least to the double for higher efficiency, since more AP on the network would make the channel more loaded. 5) AP ID can be anything between 20-40 bits. Decreasing the ID to less than 40bits did not affect the throughput and efficiency of the channel
    • …
    corecore