86 research outputs found

    Publication list of Zoltán Ésik

    Get PDF

    Lambek vs. Lambek: Functorial Vector Space Semantics and String Diagrams for Lambek Calculus

    Full text link
    The Distributional Compositional Categorical (DisCoCat) model is a mathematical framework that provides compositional semantics for meanings of natural language sentences. It consists of a computational procedure for constructing meanings of sentences, given their grammatical structure in terms of compositional type-logic, and given the empirically derived meanings of their words. For the particular case that the meaning of words is modelled within a distributional vector space model, its experimental predictions, derived from real large scale data, have outperformed other empirically validated methods that could build vectors for a full sentence. This success can be attributed to a conceptually motivated mathematical underpinning, by integrating qualitative compositional type-logic and quantitative modelling of meaning within a category-theoretic mathematical framework. The type-logic used in the DisCoCat model is Lambek's pregroup grammar. Pregroup types form a posetal compact closed category, which can be passed, in a functorial manner, on to the compact closed structure of vector spaces, linear maps and tensor product. The diagrammatic versions of the equational reasoning in compact closed categories can be interpreted as the flow of word meanings within sentences. Pregroups simplify Lambek's previous type-logic, the Lambek calculus, which has been extensively used to formalise and reason about various linguistic phenomena. The apparent reliance of the DisCoCat on pregroups has been seen as a shortcoming. This paper addresses this concern, by pointing out that one may as well realise a functorial passage from the original type-logic of Lambek, a monoidal bi-closed category, to vector spaces, or to any other model of meaning organised within a monoidal bi-closed category. The corresponding string diagram calculus, due to Baez and Stay, now depicts the flow of word meanings.Comment: 29 pages, pending publication in Annals of Pure and Applied Logi

    Syntactic completeness of proper display calculi

    Full text link
    A recent strand of research in structural proof theory aims at exploring the notion of analytic calculi (i.e. those calculi that support general and modular proof-strategies for cut elimination), and at identifying classes of logics that can be captured in terms of these calculi. In this context, Wansing introduced the notion of proper display calculi as one possible design framework for proof calculi in which the analiticity desiderata are realized in a particularly transparent way. Recently, the theory of properly displayable logics (i.e. those logics that can be equivalently presented with some proper display calculus) has been developed in connection with generalized Sahlqvist theory (aka unified correspondence). Specifically, properly displayable logics have been syntactically characterized as those axiomatized by analytic inductive axioms, which can be equivalently and algorithmically transformed into analytic structural rules so that the resulting proper display calculi enjoy a set of basic properties: soundness, completeness, conservativity, cut elimination and subformula property. In this context, the proof that the given calculus is complete w.r.t. the original logic is usually carried out syntactically, i.e. by showing that a (cut free) derivation exists of each given axiom of the logic in the basic system to which the analytic structural rules algorithmically generated from the given axiom have been added. However, so far this proof strategy for syntactic completeness has been implemented on a case-by-case base, and not in general. In this paper, we address this gap by proving syntactic completeness for properly displayable logics in any normal (distributive) lattice expansion signature. Specifically, we show that for every analytic inductive axiom a cut free derivation can be effectively generated which has a specific shape, referred to as pre-normal form.Comment: arXiv admin note: text overlap with arXiv:1604.08822 by other author

    Logics of Informational Interactions

    Get PDF
    The pre-eminence of logical dynamics, over a static and purely propositional view of Logic, lies at the core of a new understanding of both formal epistemology and the logical foundations of quantum mechanics. Both areas appear at first sight to be based on purely static propositional formalisms, but in our view their fundamental operators are essentially dynamic in nature. Quantum logic can be best understood as the logic of physically-constrained informational interactions (in the form of measurements and entanglement) between subsystems of a global physical system. Similarly, (multi-agent) epistemic logic is the logic of socially-constrained informational interactions (in the form of direct observations, learning, various forms of communication and testimony) between “subsystems” of a social system. Dynamic Epistemic Logic (DEL) provides us with a unifying setting in which these informational interactions, coming from seemingly very different areas of research, can be fully compared and analyzed. The DEL formalism comes with a powerful set of tools that allows us to make the underlying dynamic/interactive mechanisms fully transparent

    Expressive Logics for Coinductive Predicates

    Get PDF
    The classical Hennessy-Milner theorem says that two states of an image-finite transition system are bisimilar if and only if they satisfy the same formulas in a certain modal logic. In this paper we study this type of result in a general context, moving from transition systems to coalgebras and from bisimilarity to coinductive predicates. We formulate when a logic fully characterises a coinductive predicate on coalgebras, by providing suitable notions of adequacy and expressivity, and give sufficient conditions on the semantics. The approach is illustrated with logics characterising similarity, divergence and a behavioural metric on automata
    • …
    corecore