107 research outputs found

    A Collective Adaptive Approach to Decentralised k-Coverage in Multi-robot Systems

    Get PDF
    We focus on the online multi-object k-coverage problem (OMOkC), where mobile robots are required to sense a mobile target from k diverse points of view, coordinating themselves in a scalable and possibly decentralised way. There is active research on OMOkC, particularly in the design of decentralised algorithms for solving it. We propose a new take on the issue: Rather than classically developing new algorithms, we apply a macro-level paradigm, called aggregate computing, specifically designed to directly program the global behaviour of a whole ensemble of devices at once. To understand the potential of the application of aggregate computing to OMOkC, we extend the Alchemist simulator (supporting aggregate computing natively) with a novel toolchain component supporting the simulation of mobile robots. This way, we build a software engineering toolchain comprising language and simulation tooling for addressing OMOkC. Finally, we exercise our approach and related toolchain by introducing new algorithms for OMOkC; we show that they can be expressed concisely, reuse existing software components and perform better than the current state-of-the-art in terms of coverage over time and number of objects covered overall

    Rigorous engineering of collective adaptive systems – 2nd special section

    Get PDF

    Towards Practical Runtime Verification and Validation of Self-Adaptive Software Systems

    Get PDF
    International audienceSoftware validation and verification (V&V) ensures that software products satisfy user requirements and meet their expected quality attributes throughout their lifecycle. While high levels of adaptation and autonomy provide new ways for software systems to operate in highly dynamic environments, developing certifiable V&V methods for guaranteeing the achievement of self-adaptive software goals is one of the major challenges facing the entire research field. In this chapter we (i) analyze fundamental challenges and concerns for the development of V&V methods and techniques that provide certifiable trust in self-adaptive and self-managing systems; and (ii) present a proposal for including V&V operations explicitly in feedback loops for ensuring the achievement of software self-adaptation goals. Both of these contributions provide valuable starting points for V&V researchers to help advance this field

    Knowledge management for self-organised resource allocation

    Get PDF
    Many open systems, such as networks, distributed computing and socio-technical systems address a common problem of how to define knowledge management processes to structure and guide decision-making, coordination and learning. While participation is an essential and desirable feature of such systems, the amount of information produced by its individual agents can often be overwhelming and intractable. The challenge, thus, is how to organise and process such information, so it is transformed into productive knowledge used for the resolution of collective action problems. To address this problem, we consider a study of classical Athenian democracy which investigates how the governance model of the city-state flourished. The work suggests that exceptional knowledge management, i.e. making information available for socially productive purposes, played a crucial role in sustaining its democracy for nearly 200 years, by creating processes for aggregation, alignment and codification of knowledge. We therefore examine the proposition that some properties of this historical experience can be generalised and applied to computational systems, so we establish a set of design principles intended to make knowledge management processes open, inclusive, transparent and effective in self-governed social technical systems. We operationalise three of these principles in the context of a collective action situation, namely self-organised common-pool resource allocation, exploring four governance problems: (a) how fairness can be perceived; (b) how resources can be distributed; (c) how policies should be enforced and (d) how tyranny can be opposed. By applying this operationalisation of the design principles for knowledge management processes as a complement to institutional approaches to governance, we demonstrate empirically how it can guide solutions that satisfice shared values, distribute power fairly, apply "common sense" in dealing with rule violations, and protect agents against abuse of power. We conclude by arguing that this approach to the design of open systems can provide the foundations for sustainable and democratic self-governance in socio-technical systems.Open Acces

    Wi-Fi Sensing: Applications and Challenges

    Full text link
    Wi-Fi technology has strong potentials in indoor and outdoor sensing applications, it has several important features which makes it an appealing option compared to other sensing technologies. This paper presents a survey on different applications of Wi-Fi based sensing systems such as elderly people monitoring, activity classification, gesture recognition, people counting, through the wall sensing, behind the corner sensing, and many other applications. The challenges and interesting future directions are also highlighted

    Engineering Self-Adaptive Collective Processes for Cyber-Physical Ecosystems

    Get PDF
    The pervasiveness of computing and networking is creating significant opportunities for building valuable socio-technical systems. However, the scale, density, heterogeneity, interdependence, and QoS constraints of many target systems pose severe operational and engineering challenges. Beyond individual smart devices, cyber-physical collectives can provide services or solve complex problems by leveraging a “system effect” while coordinating and adapting to context or environment change. Understanding and building systems exhibiting collective intelligence and autonomic capabilities represent a prominent research goal, partly covered, e.g., by the field of collective adaptive systems. Therefore, drawing inspiration from and building on the long-time research activity on coordination, multi-agent systems, autonomic/self-* systems, spatial computing, and especially on the recent aggregate computing paradigm, this thesis investigates concepts, methods, and tools for the engineering of possibly large-scale, heterogeneous ensembles of situated components that should be able to operate, adapt and self-organise in a decentralised fashion. The primary contribution of this thesis consists of four main parts. First, we define and implement an aggregate programming language (ScaFi), internal to the mainstream Scala programming language, for describing collective adaptive behaviour, based on field calculi. Second, we conceive of a “dynamic collective computation” abstraction, also called aggregate process, formalised by an extension to the field calculus, and implemented in ScaFi. Third, we characterise and provide a proof-of-concept implementation of a middleware for aggregate computing that enables the development of aggregate systems according to multiple architectural styles. Fourth, we apply and evaluate aggregate computing techniques to edge computing scenarios, and characterise a design pattern, called Self-organising Coordination Regions (SCR), that supports adjustable, decentralised decision-making and activity in dynamic environments.Con lo sviluppo di informatica e intelligenza artificiale, la diffusione pervasiva di device computazionali e la crescente interconnessione tra elementi fisici e digitali, emergono innumerevoli opportunità per la costruzione di sistemi socio-tecnici di nuova generazione. Tuttavia, l'ingegneria di tali sistemi presenta notevoli sfide, data la loro complessità—si pensi ai livelli, scale, eterogeneità, e interdipendenze coinvolti. Oltre a dispositivi smart individuali, collettivi cyber-fisici possono fornire servizi o risolvere problemi complessi con un “effetto sistema” che emerge dalla coordinazione e l'adattamento di componenti fra loro, l'ambiente e il contesto. Comprendere e costruire sistemi in grado di esibire intelligenza collettiva e capacità autonomiche è un importante problema di ricerca studiato, ad esempio, nel campo dei sistemi collettivi adattativi. Perciò, traendo ispirazione e partendo dall'attività di ricerca su coordinazione, sistemi multiagente e self-*, modelli di computazione spazio-temporali e, specialmente, sul recente paradigma di programmazione aggregata, questa tesi tratta concetti, metodi, e strumenti per l'ingegneria di ensemble di elementi situati eterogenei che devono essere in grado di lavorare, adattarsi, e auto-organizzarsi in modo decentralizzato. Il contributo di questa tesi consiste in quattro parti principali. In primo luogo, viene definito e implementato un linguaggio di programmazione aggregata (ScaFi), interno al linguaggio Scala, per descrivere comportamenti collettivi e adattativi secondo l'approccio dei campi computazionali. In secondo luogo, si propone e caratterizza l'astrazione di processo aggregato per rappresentare computazioni collettive dinamiche concorrenti, formalizzata come estensione al field calculus e implementata in ScaFi. Inoltre, si analizza e implementa un prototipo di middleware per sistemi aggregati, in grado di supportare più stili architetturali. Infine, si applicano e valutano tecniche di programmazione aggregata in scenari di edge computing, e si propone un pattern, Self-Organising Coordination Regions, per supportare, in modo decentralizzato, attività decisionali e di regolazione in ambienti dinamici

    The Daily Egyptian, June 22, 2000

    Get PDF

    South to Freedom? Anti-Apartheid Activism and Politics in Atlanta, 1976-1990

    Get PDF
    This study examines Atlanta’s role in the international anti-apartheid movement during the 1980s. As the movement to end apartheid in South Africa intensified throughout the decade, Atlanta’s universities, government officials, and corporations came under pressure to respond to the mounting crisis. While the anti-apartheid movement was constructed on a global scale, in any given locality a transnational movement must intersect with a variety of unique political, social and economic forces. In Atlanta, grassroots activists worked through the Southern Regional Office of the American Friends Service Committee as well as through the Georgia Coalition for Divestment in Southern Africa to hold institutions accountable for their ties to South Africa. However, at the same time these efforts collided with a local political regime in which African American politicians eagerly partnered with corporate interests, resulting in anti-apartheid activism in Atlanta that was often less confrontational or radical than that found in other U.S. cities. Examining this moment in Atlanta’s history sheds light on the way that diverse groups jockeyed to shape metro-Atlanta’s political identity on both a local and a global scale. Further, examining the overlap, cooperation, and competition between groups with varying organizational scales and focuses contributes to the broader literature on social movements. This dissertation emphasizes the need for scholars of movement building to consider the influence of local dynamics when analyzing transnational social movements
    • …
    corecore