
This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Danilo Pianini, Federico Pettinari, Roberto Casadei, and Lukas Esterle. 2022. A Collective Adaptive Approach
to Decentralised k-Coverage in Multi-robot Systems. ACM Trans. Auton. Adapt. Syst. 17, 1–2, Article 4 (June
2022), 39 pages.

The final published version is available online at: https://doi-

org.ezproxy.unibo.it/10.1145/3547145

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi-org.ezproxy.unibo.it/10.1145/3547145
https://doi-org.ezproxy.unibo.it/10.1145/3547145

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

A Collective Adaptive Approach to Decentralised k-Coverage in Multi-Robot
Systems

DANILO PIANINI, Alma Mater Studiorum—Università di Bologna, Italy

FEDERICO PETTINARI, Alma Mater Studiorum—Università di Bologna

ROBERTO CASADEI, Alma Mater Studiorum—Università di Bologna

LUKAS ESTERLE, Aarhus University, Denmark

We focus on the online multi-object 𝑘-coverage problem (OMOkC), where mobile robots are required to sense a mobile target from 𝑘

diverse points of view, coordinating themselves in a scalable and possibly decentralised way. There is active research on OMOkC,

particularly in the design of decentralised algorithms for solving it. We propose a new take on the issue: rather than classically

developing new algorithms; we apply a macro-level paradigm, called aggregate computing, specifically designed to directly program

the global behaviour of a whole ensemble of devices at once. To understand the potential of the application of aggregate computing to

OMOkC, we extend the Alchemist simulator (supporting aggregate computing natively) with a novel toolchain component supporting

the simulation of mobile robots. This way, we build a software engineering toolchain comprising language and simulation tooling for

addressing OMOkC. Finally, we exercise our approach and related toolchain by introducing new algorithms for OMOkC; we show that

they can be expressed concisely, reuse existing software components, and perform better than the current state of the art in terms of

coverage over time and number of objects covered overall.

CCS Concepts: • Computer systems organization→ Self-organizing autonomic computing; Robotic autonomy; • Theory of
computation → Self-organization; • Computing methodologies → Distributed programming languages; Self-organization; •

Software and its engineering→ Application specific development environments.

Additional Key Words and Phrases: Location based services Internet of things, online multi-object 𝑘-coverage, smart cameras,

multi-robot, aggregate computing

ACM Reference Format:
Danilo Pianini, Federico Pettinari, Roberto Casadei, and Lukas Esterle. 2021. A Collective Adaptive Approach to Decentralised

k-Coverage in Multi-Robot Systems . 1, 1 (July 2021), 39 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Recent technological trends foster a vision of large-scale, situated systems where devices sense and act upon their local

environment to perform some joint task and coordinate with one another to provide global, system-wide benefits. How-

ever, as the scale and density of computational collectives increase, centralised solutions become impractical, whereas

mobility and failure create a dynamicity that systems ought to partially address by themselves, i.e., autonomously [49]. In

Authors’ addresses: Danilo Pianini, Alma Mater Studiorum—Università di Bologna, Via dell’Università, 50, Cesena (FC), Italy, danilo.pianini@unibo.it;

Federico Pettinari, AlmaMater Studiorum—Università di Bologna, federico.pettinari2@studio.unibo.it; Roberto Casadei, AlmaMater Studiorum—Università

di Bologna, roby.casadei@unibo.it; Lukas Esterle, Aarhus University, Nordre Ringgade 1, Aarhus, Denmark, lukas.esterle@eng.au.dk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/1122445.1122456
danysk

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Pianini et al.

such pervasive computing scenarios, awareness of the local context and location is often leveraged to make appropriate

decisions and coordinate activity in a decentralised fashion [60].

In this paper, we address the Cooperative Multi-Robot Observation of Multiple Moving Targets (CMOMMT) problem [59]:

we consider multiple mobile robots (e.g., drones with vision sensors) able to observe or cover objects of interest (also

known as targets) and interact with other robots in order to cooperate. More specifically, we focus on the Online

Multi-Object k-Coverage (OMOkC) [29, 30] problem, where the number of cooperative robots and targets is unknown

and possibly dynamic. Our goal is to operate the system to maximise the number of 𝑘-covered mobile targets (i.e., the

number of targets covered by at least 𝑘 robots) over time, while minimising the cost of doing it (where the definition of

cost is application-specific—e.g., in terms of total movement or energy consumption). Importantly, the agents may not be

able to achieve this goal optimally. This can be due to the fact that the agents do not know some of the objects or there

are too many objects to cover all of them with 𝑘 agents. The robots have to explore the area to discover targets; once

they find one (or more), they have to choose whether to follow it or not (or which one). In other words, as the robots,

tasked with covering targets know neither the area nor the number of targets or their location they are confronted with

an explore vs exploit dilemma. However, the robots can communicate to cooperate towards the goal, which is essentially

global in nature—i.e., the robots make up a team [44].

In the literature, several algorithms have been proposed to solve OMOkC [30], and evaluated through simulation.

However, such algorithms typically use conventional techniques by which the global coordination logic is expressed

according to a local viewpoint in terms of individual message-based communication acts. Since defining local behaviours

to build a specific global behaviour (a.k.a. local-to-global mapping problem) from the bottom up tends to be difficult, in

recent years, novel paradigms and abstractions are emerging that support the development of location-based services

in a more top-down fashion [9]. These approaches internally deal with the inverse problem (a.k.a. global-to-local

mapping) and let the programmer work at the macro-level perspective, generally at the expense of a more constrained

programming model. Accordingly, in this work, we consider the latter approach and develop a method and practical

framework for implementing and simulating networks of mobile robots with vision sensors through an aggregate

perspective. We leverage the approach and the toolchain to realise and benchmark two novel algorithms: (i) one based

on the idea of moving robots as if they were subject to virtual force fields generated by known targets and other robots,

which has showed to be suitable for exploration; (ii) the other based on the idea of sharing the vision information among

neighbouring robots and using these data to solve an optimisation problem locally, which has showed to improve over

the state of the art when targets are spotted. Most specifically, our contribution is threefold.

(1) An aggregate approach to OMOkC: our main contribution is the application of an emerging paradigm

(aggregate computing) to the problem of OMOkC. We apply, for the first time, aggregate computing [94] to

OMOkC, thus modelling, engineering, and programming networks of mobile robots with vision sensors as

collective adaptive systems;

(2) Two novel OMOkC algorithms: to showcase the applicability of the approach to the problem, we devised two

novel algorithms for distributed OMOkC, and show they perform better than the pre-existing state of the art.

(3) A simulation tool for aggregate programs in networks of robots with vision sensors: the application of

the technique required a toolchain for its evaluation, that we built by extending the Alchemist simulator [65]

with new capabilities. These new features have been released and are currently part of the main distribution of

the simulator: they are as such a by-contribution of this work.

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Collective Adaptive Decentralized k-Coverage 3

The remainder of the paper is organised as follows: Section 2 provides a mathematical model of the problem; Section 3

describes the aggregate computing approach to designing software for systems of robots with vision sensors; Section 4

provides motivation and a description of the proposed toolchain; Section 5 describes the application of the approach

and toolchain to OMOkC, presenting two novel algorithms and validating them against the state of the art; Section 6

discusses related work; Section 7 covers limitations and future work; finally, Section 8 concludes the paper with a

wrap-up and an outline of research directions for the future.

2 MODEL AND PROBLEM DEFINITION

This section provides a mathematical model of the Online Multi-Object k-Coverage (OMOkC) problem, following the

conceptualisation and notation introduced in [29, 30]. The problem extends the Cooperative Multi-robot Observation of

Multiple Moving Targets (CMOMMT) problem [59]. Related problems are discussed in Section 6.1.

2.1 The Online Multi-Object k-Coverage (OMOkC) problem

Let 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛} be a set of 𝑛 autonomous mobile robots with vision sensors, capable of analysing their Field of

View (FoV) and communicate with others in the environment. That is, we generally assume that robots are capable of

communicating with other nearby robots, which may be captured by a (logical) neighbouring relationship (as covered

in Section 3.1), and we abstract from the enabling actual networking mechanisms and protocols. An in-depth discussion

of how the network topology can affect the collective response of decentralised systems [55] falls beyond the scope of

this paper. Further, we consider 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑚} the set of𝑚 mobile objects, and 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑙 } ⊆ 𝑂 a set of 𝑙

important objects. Objects can become important for various reasons such as specific suspicious behaviour, appearance,

or simply because an operator selected them: the set of important objects is dynamic, i.e., it can change over time as

elements become important and unimportant. In particular, targets may be identified according to some (possibly also

dynamic) predicate P, so that, e.g., 𝑜𝑖 is a target 𝑝 𝑗 if predicate P(𝑜𝑖) = 1.

The state of each robot with vision sensors is modelled as a 4-tuple 𝑐𝑖 = ⟨®𝑥𝑖 , ®𝑣𝑖 , 𝜔𝑖 ,V𝑖 ⟩ with location ®𝑥𝑖 = (𝑥𝑖 , 𝑦𝑖)1,
velocity ®𝑣𝑖 = (𝑣𝑋

𝑖
, 𝑣𝑌
𝑖
) = (𝑑𝑥𝑖

𝑑𝑡
,
𝑑𝑦𝑖
𝑑𝑡

), angular velocity 𝜔𝑖 , and field of view (FoV) V𝑖 . We assume perfect localisation.

Angular velocity is included in the 4-tuple despite the robot being modelled as point-wise to capture a rotating field of

view in dynamic situations. The FoVV𝑖 of robot’s camera 𝑐𝑖 is described as a triple ⟨Θ𝑖 , 𝑅𝑖 ,
𝛽𝑖
2
⟩ where Θ𝑖 models the

orientation of the view with respect to some fixed reference system, 𝑅𝑖 is the range of view (modelling the maximum

range a camera can detect targets), and
𝛽𝑖
2
denotes half of the view angle (modelling the width of the FoV beyond

which there are blind spots)—where we assume that the FoV is symmetric, i.e., both sides of the directrix for a given

orientation have the same angle width and range.

An object 𝑜𝑎 is covered at a given time 𝑡 , if the object is geometrically within the field of view V𝑖 of a camera 𝑐𝑖 , as

represented in Figure 1:

𝑐𝑜𝑣 (𝑜𝑎, 𝑐𝑖 , 𝑡) =
{

1, if 𝑑𝑖,𝑎 ≤ 𝑅𝑖 ∧ |𝛼𝑖,𝑎 | ≤ | 𝛽𝑖
2
|

0, otherwise,

where 𝑑𝑖,𝑎 and 𝛼𝑖,𝑎 denote, respectively, the Euclidean distance and the angle between the object 𝑜𝑎 and the camera 𝑐𝑖 :

any object within any FoV is considered covered.

1
For simplicity, we consider a two-dimensional environment, even though extensions are possible for three-dimensional scenarios.

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Pianini et al.

d
β

α
o

ci

a

i

i,a

i
i,a

i

Θ

R

Fig. 1. Illustration of an object 𝑜𝑎 inside the FoV V𝑖 of camera 𝑐𝑖 .

Since we are interested to cover each target with at least 𝑘 robots at any time, we define the 𝑘-coverage at time 𝑡 as

follows:

𝑘𝑐𝑜𝑣 (𝑜𝑎, 𝑘, 𝑡) =
{

1, if
∑𝑛
𝑖=1 𝑐𝑜𝑣 (𝑜𝑎,V𝑖 , 𝑡) ≥ 𝑘

0, otherwise.

In order to measure how well 𝑘-coverage is achieved throughout an arbitrary period, we extend the normalised

metric by Esterle and Lewis [29] considering a continuous-time flow beginning at 𝑇0 and ending at 𝑇 :

𝑂𝑀𝐶𝑘 =

∫ 𝑇

𝑇0

∑𝑚
𝑎=1 𝑘𝑐𝑜𝑣 (𝑜𝑎,𝑘,𝑡)
𝑚𝑎𝑥 (1, |𝑃𝑡 |) 𝑑𝑡

𝑇 −𝑇0
(1)

for a given value of 𝑘 . This value is normalised by the number of elements in the set of important objects 𝑃𝑡 at time 𝑡 .

In short, the numerator of 𝑂𝑀𝐶𝑘 represents the sum of the fraction of objects covered by 𝑘 or more robot cameras

over the total time 𝑇 − 𝑇0. We need this normalisation to keep results comparable even with changing numbers of

important targets. We finally divide it for the time length to get the average coverage during the period of interest. In

this work, we assume perfect localisation and detection to focus on the problem (demonstrated to be NP-hard [29, 59])

of coordinating mobile robots with vision sensors in a decentralised fashion in such a way that at least 𝑘 of them are

tracking each important mobile target (whose movement can not be controlled by robots), where the set of important

targets is dynamic. Furthermore, we aim to maximise the number of important targets detected by the set of cameras.

This makes coverage of each target with exactly 𝑘 cameras the dominant strategy for the collective as cameras not

tracking known targets are free the explore and detect new targets. However, when there are not enough agents 𝑛

to cover all objects 𝑚 this goal cannot be achieved, i.e., 𝑚 × 𝑘 > 𝑛. In Figure 2, we show a sequence of snapshots

exemplifying an instance of the problem
2
.

We utilise the OMOkC problem as it brings about an interesting trade-off between exploration vs. exploitation. This

dilemma requires decisions on the coordination to be considered continuously at runtime. Precisely, individual robots

2
Snapshots are from the video publicly available at https://www.youtube.com/watch?v=yuaY_8Vr3oc

Manuscript submitted to ACM

https://www.youtube.com/watch?v=yuaY_8Vr3oc

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Collective Adaptive Decentralized k-Coverage 5

Fig. 2. Sequence of snapshots exemplifying an instance of the OMOkC problem. Green dots represent uninteresting targets, red dots
are interesting targets, black dots are robots, and blue wedges their field of view. Targets move in the arena (black square), and they
may randomly switch their “interesting” status. Robots must explore the area in search of interesting targets and, once some are
found, they must organise (in a decentralised fashion) to follow the target from 𝑘 points of view.

Symbol Description

𝐶 set of cameras

𝑂 set of objects

𝑃 ⊆ 𝑂 set of important objects (targets)

𝑛 number of robots with cameras

𝑚 number of objects

𝑙 number of targets

𝑐𝑖 = ⟨®𝑥𝑖 , ®𝑣𝑖 , 𝜔𝑖 ,V𝑖 ⟩ i-th camera/robot

𝑜𝑖 i-th object

𝑝𝑖 i-th object of interest

®𝑥𝑖 = (𝑥𝑖 , 𝑦𝑖) i-th robot’s location vector

®𝑣𝑖 i-th robot’s velocity vector

𝜔𝑖 i-th cameras’s angular velocity

V𝑖 = ⟨Θ𝑖 , 𝑅𝑖 ,
𝛽𝑖
2
⟩ i-th cameras’s field of view

𝑅𝑖 range of the i-th cameras’s field of view

Θ𝑖 orientation of the i-th cameras’s field of view

𝛽𝑖 angle of the i-th cameras’s field of view

𝛼𝑖 𝑗 angle of the j-th object wrt the i-th camera’s field of view

𝑑𝑖 𝑗 distance of the j-th object wrt the i-th robot

Table 1. Summary of notation.

must decide whether to follow a specific target to improve the quality of its coverage or search for another to increase

the total number of detected targets. As targets can change their state, becoming important or unimportant at random

times, mobile robots have to re-evaluate their decisions continuously.

3 AN AGGREGATE APPROACH FOR OMOKC

All the methods tackling OMOkC in a decentralised fashion found in the literature (of which we provide an extensive

review in Section 6.2) share a common trait: the solution is designed by focussing on the interaction among single

robots, on the messages they should exchange, and on the ways they may form coalitions dynamically. In this work, we

propose a different take: building on the idea on which aggregate computing is rooted, we advocate that the ensemble

comprising all robots could and should be programmed as a single, distributed computational entity. To understand

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Pianini et al.

how this can be done, we briefly introduce
3
aggregate computing (Section 3.1) and motivate its application to the

decentralised OMOkC problem (Section 3.2).

3.1 Designing collective behaviours with Aggregate Computing

3.1.1 Approach overview. Aggregate computing is a paradigm and engineering approach for developing collective

adaptive systems from a global perspective. The core functional language that formally founds aggregate computing is

the (computational) field calculus [5]. As its name suggests, it is a calculus of (computational) fields, which are essentially

(dynamic) maps from (a domain of) devices to computational values. In particular, a field can be seen as a distributed

data structure that represents, over time, the result of a collective computation. Aggregate programming languages [94]

provide the field calculus primitives and library functions to manipulate these distributed data structures. Following this

approach, the designer does not need to focus on single devices or communication protocols but instead on how fields

evolve and compose: it is up to the language’s interpreter (or compiler) to determine the appropriate local interaction

schema generating the desired global effect.

Most notably, the calculus (and, thus, the derived languages) provides the primary mechanisms for the predictable

composition of emergent behaviour. Self-stabilising building blocks can be defined leveraging functional abstractions [93],

and an entire library of collective behaviours [36] can get built upon them. The paradigm has been implemented in several

languages: Protelis [67], a stand-alone, Java-interoperable, and JVM-hosted language; ScaFi [18], a domain-specific

language (DSL) embedded in the Scala programming language; and FCPP [2], a lightweight native implementation

designed to run on low-resource devices.

3.1.2 Aggregate computing model (structure, behaviour, interaction). Structurally, a logical4 aggregate system consists

of a set of (uniquely identified) devices; each device can communicate with other devices as per some neighbouring

relationship. As a device moves in the environment, its set of neighbours might change. Notice that neighbourhoods

are defined at a logically and independently of physical connectivity and spatial proximity (although it is natural to

leverage those).

From the point of view of (global) behaviour , the aggregate system is instructed to continuously:

(1) update the context by sensing the environment and gathering coordination messages;

(2) interpret some aggregate program expressing the collective logic;

(3) act onto the environment as a consequence.

From a local, discrete perspective, every device works at asynchronous rounds of execution; in each round, an individual

device gets data from its sensors and messages from neighbours, locally interprets the aggregate program against such

input data, and triggers its actuators on the program local output (including data broadcasting to neighbours).

From the point of view of interaction, the devices continuously exchange coordination data with neighbour devices.

The data to be exchanged results from the interpretation of the aggregate program.

3.2 Networked robots as Aggregate Systems

Aggregate computing is a natural framework for expressing collective algorithms in a decentralised fashion [94]. The

aggregate computing aspects and abstractions can be mapped to the problem considered in this paper as follows.

3
A full treatise of the approach is beyond the scope of this work; the interested reader can refer to the dedicated literature [5, 10, 94].

4
Namely, not related to an actual system implementation: it can be shown [17] that an aggregate system admits different kinds of deployments and

execution architectures, ranging from purely decentralised (e.g., ad-hoc, peer-to-peer) to fully centralised (e.g., cloud-based).

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Collective Adaptive Decentralized k-Coverage 7

• Aggregate system. The aggregate system logically consists in a network of mobile robots with vision sensors.

Being in aggregate system, the set of interacting robots can be programmed as a whole, conceptually.

• Individual node. A mobile robot with vision sensors is an individual node of the aggregate system. It has identity,

state, sensors, actuators, runs an aggregate program, and interacts with other robots by sending messages as

prescribed by the semantical interpretation of the aggregate program.

• Neighbouring relationship. It depends on the particular application and deployment. It can merely mirror physical

connectivity (e.g., to support programming of situated systems), or can be used to set up a logical overlay

network [17] reflecting the spatial distribution of devices, or even purely logical relationships. For the scenario

considered in Section 5, we consider robots connected if they are close by a certain threshold (hence simulating

short-range radio communication).

• Aggregate program. It describes the behaviour of a network of mobile robots. The actual behaviour emerges

from the combination of the environmental dynamics, the dynamics of the evaluation of the program by each

robot against its context, and the dynamics of inter-robot communication.

• Sensors. The set of required sensors depends on the program. For the algorithms considered in the following

(Section 5), a robot has a vision sensor, a sensor for estimating the distance to neighbours, and a sensor for

estimating the direction towards neighbours.

• Actuators. The set of required actuators depends on the application. For the considered problem, a robot has

movement actuators (for rotating and going forward).

• State. A robot, at a minimum, must have sensors and actuators. In principle, state and aggregate program

computations can be offloaded to other machines [17]. The state of a robot would include the data implied by

the local aggregate program execution, plus configuration data which could also be modelled via sensors.

• Local computational behaviour. The local computational behaviour of a robot consists of the application of the

aggregate execution protocol as described in Section 3.1.2, which involves sensing the local context, running

the aggregate program against the local context, and then acting on the local context by sending messages to

neighbours and running actuations. The overall local behaviour, hence, emerges from the local computational

behaviour and interaction with the environment (e.g., the detection of a target through the visual sensors).

• Scheduling and execution details. There is large flexibility regarding when computational rounds and com-

munications are performed [17]. Typically, no synchronicity and message delivery guarantees are required:

rounds and communications may be asynchronous, and the computation would tend to self-stabilise [93] once

up-to-date data is available. As a rule of thumb, the frequency of computation and communications should be

adequate to the dynamics of the phenomenon to be monitored or dealt with—in this case, the speed of targets.

Of course, such details may significantly affect the overall performance. However, since the aggregate behaviour

is emergent, it may not be easy to determine the optimal execution strategy, especially when also considering

the costs in term of energy and bandwidth consumption. Such a detailed analysis of the performance is beyond

the scope of this work, which instead focusses on the overall approach.

3.2.1 Benefits. Modelling networked robots as an aggregate system allows to enjoy the features that aggregate

computing offers over other approaches, mainly:

(1) abstraction from device-to-device communication: in aggregate computing, communication protocols are a

consequence of the structure of the program—the designer does not need to figure out messages to be exchanged,

their order, and similar low-level details;

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Pianini et al.

(2) functional compositionality [93]: aggregate programs are written in a functional language and can (and should)

be encapsulated into reusable functions.

Thus, from a design point of view, describing the behaviour of the mobile robot network as an aggregate program

introduces abstractions closer to the problem than messages and protocols. From an engineering point of view, the

ability to encapsulate behaviour into functions in a reusable fashion opens the door to further simplification.

On the one hand, the designer can reuse an extensive API of collective behaviours [36] shipped as a standard library

for the languages; the availability of aggregate library functions with proven guarantees [93] can reduce significantly

the time and effort required to build and debug complex behaviours, as these reusable building blocks capture many

low-level details. On the other hand, reusable blocks of specialised behaviour can be encapsulated into reusable functions,

collected, and shared as blocks upon which more complex programs can be constructed, enabling guarantees and

fine-grained control over growing complexity, ultimately promoting the creation of more and more refined behaviours.

4 A TOOLCHAIN FOR DEVELOPING SOLUTIONS TO OMOKCWITH AGGREGATE COMPUTING

Reaping the benefits of aggregate computing into the multi-robot coordination domain requires appropriate development

tools. In particular, simulation platforms supporting aggregate computing and networks of robots with vision sensors

are essential, as they enable evaluation and testing of the algorithms being developed in a low-cost and time-efficient

fashion. We first analysed the state of the art and found that, to the best of our knowledge, no simulator supported both

aggregate computing specifications and the simulation of multi-robot systems with a field of view. We thus took the

subsequent step and extended an existing simulation platform, choosing between integrating aggregate programming

into an existing simulator for networked robots with vision sensors or extending an existing aggregate computing

simulator with the capabilities to support networked robots with vision sensors. This section first discusses the available

options for a viable simulation tool (Sections 4.1 and 4.2), motivating our choice for the tool, and finally explaining how

the extension has been realised in the selected product (Section 4.3).

4.1 Simulators for networked robots with vision sensors

Deploying and maintaining networks of mobile robots with vision sensors in the real world is generally cumbersome,

time-intensive, and requires manual labour. Testing new approaches in real networks can be costly and problematic—as

experiments often cannot be reproduced precisely. Various simulation tools for robotic systems have been developed

over the past several years to overcome this problem [78]. These different simulators, however, often come with a

trade-off between resource efficiency and fidelity [92]. Additionally, we identify three macro areas where a simulation

tool can focus:

(1) interaction among physical objects and with the physical world in general;

(2) network evaluation and performance;

(3) robot behaviour and software.

Usually, tools focus on one of these areas. Consequently, multiple simulation tools may be used during development,

depending on the current development stage: a tool focussing on behavioural and software aspects is necessary from the

beginning to assess the functional correctness of the programs being designed and implemented; a network simulator

is helpful to understand whether the designed software may induce excessive stress on the communication channels;

a simulator specialised in physical interactions can be used to test and debug issues with the sensing and actuation

before deployment.

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Collective Adaptive Decentralized k-Coverage 9

In this work, we focus on simulators meant to be leveraged in the initial phase of software design, as we need a tool

focussing on the behaviour of many devices, even if at the expense of simplified physical interactions. These kinds

of tools allow for rapid prototyping, quick interception of possible mistakes, and streamlined acquisition of synthetic

benchmarks: our goal is to understand the technical feasibility and convenience of aggregate computing as a means

to tackle decentralised OMOkC. For the sake of completeness, we also review, in Section 6.4, simulators dedicated to

measuring network performance and simulators focussing on a realistic reproduction of the physical world where

robots work. These were not considered practical targets for our investigation, but they were considered, and we believe

they could be leveraged in the future for more in-depth analyses.

The leading example of a simulator dedicated to quick prototyping and benchmarking of OMOkC algorithms is

CamSim [31], focussing on the agent-based behaviour of networked robots with vision sensors. Initially developed for

static cameras, CamSim has been extended towards Pan-Tilt-Zoom (PTZ) cameras and later even enabled networked

mobile robots equipped with cameras to study coordination, individual self-adaption in collectives, and self-organisation

properties. The simulator does not represent physical aspects of the real world except the vision sensors themselves;

similarly, objects are represented as dots.

4.2 Simulators supporting aggregate programming

The ecosystem of simulators that natively support aggregate programming is still in its infancy. Typically, since an

aggregate system with a single device is considered a degenerate case, languages rooted in the aggregate computing

paradigm also feature a simulation system whose goal is to run code on a simulated network of devices. This is the case,

for instance, for ScaFi [18] and FCPP [2], both of which ship with a lightweight simulation infrastructure for quick

prototyping [2, 95]. This follows the tradition of MIT Proto [8], an early language for spatial computing (we review

approaches similar to aggregate computing in Section 6.3), whose language interpreter and internal simulator were

inextricably intertwined. However, these integrated simulators are not meant to be used for extensive benchmarking

and generally do not provide means for extending them to simulate complex scenarios.

Consequently, most of the experiments with simulations that leveraged aggregate programming have been executed,

so far, by integrating aggregate programming into an existing simulation platform
5
, or by creating custom environments

tailored to the specific analysis [11], or by leveraging the Alchemist simulator [65]. Thus, Alchemist is, to the best of

our knowledge, the only stand-alone tool with first-class native support for aggregate programming (limited to the

Protelis and ScaFi implementations).

Alchemist is a modular general-purpose meta-simulator for multi-agent systems. The core of Alchemist is an event-

based engine derived from chemistry-oriented simulators, and its computational meta-model in part reflects these

origins. The initial idea behind the simulator was to provide a lightweight core of abstractions, with few assumptions

necessary to make the simulation engine work efficiently (a performance comparison with Repast is available in [65]),

and providing a framework for easy extension in such a way that the meta-model entities could be refined differently

depending on the case at hand.

4.3 Supporting multi-robot systems with vision sensors in Alchemist

After extensive evaluation of the possibilities, we were left with the choice between extending a simulator supporting

aggregate computing with the tooling needed for robots with vision sensors, or extending a simulator supporting robots

5
https://archive.ph/cI2QN

Manuscript submitted to ACM

https://archive.ph/cI2QN

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Pianini et al.

with the capabilities to run aggregate programs. In any case, it was paramount to execute the aggregate specification

using the original interpreter: we did not want to perform paradigmatic conversions to fit aggregate computing into an

alternative paradigm, as it would likely introduce errors and limit expressiveness.

We needed a system allowing for quick prototyping, and thus a tool focussing on behaviour and software, belonging

to the first of the three categories identified in Section 4.1. Our choice was thus quickly restricted to (i) Alchemist,

supporting aggregate computing on mobile nodes, but missing support for fields of view; and (ii) CamSim, with mature

support for mobile robots with vision sensors, but lacking aggregate computing integration. Ultimately, we decided to

tackle the creation of the toolchain by extending Alchemist; three dominant factors drove the choice:

(1) we deemed extending the Alchemist simulation model easier than integrating aggregate computing into

CamSim;

(2) while Alchemist is actively developed, with the official repository
6
registering new commits at least weekly,

CamSim appears to have been discontinued, as the latest commit on the official repository
7
being (at the time

of writing) from 2017
8
; and

(3) we expected better performance, as Alchemist has been exercised in the past with tens of thousands of simulated

devices [12], while all works leveraging CamSim used few dozen devices, and in no case (to the best of our

knowledge) has ever been used with more than a hundred.

4.3.1 The Alchemist simulator meta-model. To better understand how we extended the original model of Alchemist,

we briefly introduce its computational model. In Alchemist, every simulation is the event-driven evolution of an

environment. An environment defines a coordinate system, the concept of position, and contains nodes and obstacles.

We call 𝑁𝑡 the set of nodes belonging to some environment at time 𝑡 , and ℘(𝑁𝑡) its power set. Environments are

programmed with a network model, a function 𝑛 : 𝑁𝑡 → ℘(𝑁𝑡) such as:

𝑦 ∈ 𝑛(𝑥) ⇔ 𝑥 ∈ 𝑛(𝑦) ∀ 𝑥 ∈ 𝑁𝑡 , 𝑦 ∈ 𝑁𝑡 , 𝑥 ≠ 𝑦

defining, for each node in the environment, the set of nodes considered neighbours, with the restriction that if some

node 𝑥 is neighbour to a node 𝑦 at time 𝑡 , then node 𝑦 must be neighbour of node 𝑥 at the same time (neighbourhood

relationships are symmetric). Every node in 𝑁𝑡 is situated, i.e., it has a valid position in the environment. Nodes are

containers of reactions and molecules. Both nodes and obstacles have a shape; the environment does not allow shapes

belonging to diverse objects to overlap. Molecules are symbolic names that can be associated with a concentration

(i.e., a value). Reactions are atomic events that can affect the environment. They are guarded by a set of conditions,

namely boolean functions deciding whether the reaction can be executed or not. Every reaction is associated with a time

distribution, providing putative execution times (or infinity, if conditions are unsatisfied). When a reaction is executed,

it triggers a sequence of actions. Actions are arbitrary modifications of the environment. It has been proven that this

abstract model allows for reuse of an extended version of the Gibson-Bruck stochastic Monte Carlo Algorithm [40],

providing a performance edge over classic, agent-based engines [65], and consequently allowing better scaling with the

count of simulated nodes. A so-called incarnation in Alchemist is a software component in charge of defining the actual

type of data items being manipulated (the concentration type), possibly along with some other concrete Alchemist

entities that manipulate it. This way, a precise trade-off can be achieved between generalisation and performance.

6
https://github.com/AlchemistSimulator/Alchemist

7
https://github.com/EPiCS/CamSim

8
https://web.archive.org/web/20210908134925/https://github.com/EPiCS/CamSim

Manuscript submitted to ACM

https://github.com/AlchemistSimulator/Alchemist
https://github.com/EPiCS/CamSim
https://web.archive.org/web/20210908134925/https://github.com/EPiCS/CamSim

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Collective Adaptive Decentralized k-Coverage 11

<<Interface>>
Vector

dimensions: Int

getCoordinate(Int): Double
plus(S): S
minus(S): S

<<Interface>>
GeometricTransformation

origin(S)

<<Interface>>
GeometricShape

diameter: Double

intersects(GeometricShape<S, T>): Boolean
contains(S): Boolean
transformed(A): GeometricShape<S>

Euclidean2DPosition

(from Alchemist)

<<Interface>>
Position2D

(from Alchemist)

<<bind>> S -> Vector<Euclidean2DPosition>

<<Interface>>
Euclidean2DTransformation

rotate(Double)
rotate(Euclidean2DPosition)

<<bind>> S -> Euclidean2DPosition

S: Vector<S>
A: GeometricTransformation<S>

S: Vector<S>

S: Vector<S>

<<bind>>
S -> Euclidean2DPosition

A -> Euclidean2DTransformation

<<Interface>>
Euclidean2DShape

<<Interface>>
Environment

(from Alchemist)

<<bind>> P -> Position2D<Euclidean2DPosition>

P: Position2D<P>

T
P: Position<P>

1 *has

centroid

<<Interface>>
GeometricShapeFactory

adimensional(): GeometricShape<S, A>

S: Vector<S>
A: GeometricTransformation<S>

<<Interface>>
Euclidean2DShapeFactory

circle(): Euclidean2DShape
rectangle(): Euclidean2DShape

<<bind>>
S -> Euclidean2DPosition

A -> Euclidean2DTransformation

<<Interface>>
EuclideanPhysics2DEnvironment

<<Interface>>
PhysicsEnvironment

getHeading(Node): S
setHeading(Node): S
getShape(Node): GeometricShape<S, A>
getNodesWithin(GeometricShape<S, A>): Node [0..*]
canNodeFitPosition(Node, P): Boolean

S: Vector<S>
A: GeometricTransformation<S>
F: GeometricShapeFactory<S, A>

1

*

offers a

factory

<<bind>>
S -> Euclidean2DPosition

A -> Euclidean2DTransformation
F -> Euclidean2DShapeFactory

1

<<Interface>>
Node

shape: GeometricShape

Fig. 3. Structural view of the implementation of the essential physical components into the existing simulator. Entities inherited
from the original implementation are annotated with “(from Alchemist)”. We associated Nodes with a shape and a heading. To
preserve a coherent view of the global coordinates system, this information is added to the Environment (as it originally was in
charge of tracking the node position as well). Since the simulator is generic concerning the number of dimensions and the details of
the manifold (as far as it is a Riemannian manifold), we had also to introduce means for rotation and translation of non-pointwise
objects; hence we enriched the model with the possibility of expressing GeometricTransformations, and we implemented the
required machinery for these transformations to happen in bidimensional Euclidean spaces.

4.3.2 Contribution: two novel modules for Alchemist. In Alchemist, a module is a software component extending the

capabilities of the simulator. The multi-robot with vision sensors support for Alchemist is composed of two such

modules: (i) the alchemist-influence-sphere9 module, introducing necessary physical interactions among

9
http://bit.ly/alchemist-influence-sphere-maven-central

Manuscript submitted to ACM

http://bit.ly/alchemist-influence-sphere-maven-central

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Pianini et al.

<<Interface>>
Action

(from Alchemist)

AbstractAction
(from Alchemist)

has

FieldOfView2D

distance
angle
- shape: GeometricShape

see(): VisibleNode[0..*]

subject

1

*

<<Interface>>
Molecule

(from Alchemist)

<<Interface>>
Reaction

(from Alchemist)

in
<<Interface>>
VisibleNode

<<Interface>>
Position

(from Alchemist)

output

See

ToggleMolecule

<<Interface>>
EuclideanPhysics2DEnvironment

getHeading(Node): Euclidean2DPosition
setHeading(Node): Euclidean2DPosition
getNodesWithin(GeometricShape): Node [0..*]
getPosition(Node): Euclidean2DPosition
setPosition(Node): Euclidean2DPosition

1 *

<<Interface>>
Node

shape: GeometricShape

target target

which

HeadTowardTarget

angularSpeed

FollowAtDistance

speed

distance
RandomlyToggleMolecule

odds

1

1 1 1

*

*

*

*

1

1

Fig. 4. Structural view of part of the implementation of the robots’ vision and control system into the existing simulator. Entities
inherited from the original implementation are annotated with “(from Alchemist)”. The basic Node was extended with the concept of
visibility, which enables some objects to be perceived by others (besides the neighbourhood relationship, which was built-in). We then
introduced the sensing capabilities by modelling a FieldOfView2D; the field of view orientation is bound to the robot’s heading
(as heading and position are captured in the environment, see Figure 3). Consistently with the original model of Alchemist, access to
the novel capabilities is modelled as a set of Actions—for the sake of conciseness, here we show some examples from the more
extensive library: vision sensor reading (See) and target following (FollowAtDistance).

objects and enriching the concept of node with a perception area (de facto generalising the concept of field of view);

and (ii) the alchemist-smartcam10 module, which collects actions that allow for controlling, moving robots,

and rotating their camera. For the sake of brevity, we do not delve into the implementation details of the simulator

extension; however, to help the interested reader navigate the code, we provide a structural UML schema for the physical

interactions in Figure 3 and a similar diagram for the robot controls in Figure 4.

10
http://bit.ly/alchemist-smartcam-maven-central

Manuscript submitted to ACM

http://bit.ly/alchemist-smartcam-maven-central

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Collective Adaptive Decentralized k-Coverage 13

The final result improves over the existing state of the art in several areas, in particular:

• Environment model. Alchemist supports a more detailed (yet still lightweight) model of the world, includ-

ing support for indoor environments (by importing floor plans images) and modelling objects obstructing

communication, movement, and view.

• Programming abstractions. Alchemist agents can be programmed with various approaches, including the

aggregate computing languages Protelis [67] and Scafi [95]; moreover, the architecture allows for plugging in

new languages in the future and using them for driving smart cameras with no case-specific code. The main

benefit of this feature is the possibility of experimenting with a variety of different approaches and compare

them.

• Scalability. Alchemist demonstrated to efficiently scale up to the order of tenths of thousands of devices on

conventional consumer hardware [12]. By contrast, CamSim has never been exercised with more than a few

dozen robots to the best of our knowledge.

• Target behaviour. Alchemist supports many advanced behaviours, such as movements accounting for cognitive,

sociocultural, and emotional elements as defined by existing models in the literature [89].

• Parallelism and distribution. Alchemist supports parallel and distributed execution and statistical analysis [66].

Once the modules are available in the classpath, the simulation can be expressed declaratively in a YAML file
11
.

YAML is a data serialisation format, superset of JSON, commonly used for non-trivial and human-readable configuration

files. A commented example simulation descriptor is given in Figure 5, giving the reader an idea of the complexity

of writing simulations. Alchemist is designed to allow third parties to extend the simulator and reuse the existing

specification language. Due to space constraints, we will not unravel all the details of the specification language in this

paper: the interested reader can refer to a recent tutorial [61]. By leveraging the pre-existing extension mechanisms

of Alchemist, we were able to write our extension in terms of new environments and nodes (containing the physical

properties, see Figure 3) and new actions (defining the behaviour of the camera sensors and exposing the actuators for

its control, see Figure 4).

The software developed as part of this work has been integrated into the main Alchemist distribution and is available

to the entire scientific community. Additional examples and a more extensive user guide are out of this work’s scope:

further (and up to date) details are provided on the Alchemist Simulator website
12
.

5 AGGREGATE COMPUTING FOR ONLINE MULTI-OBJECT K-COVERAGE (OMOKC) IN ACTION

This section shows the potential of aggregate computing applied to OMOkC by exercising the proposed toolchain.

We leverage aggregate computing capabilities to introduce two novel algorithmic solutions for the OMOkC problem

that we show to improve over the state of the art. The first algorithm leverages for the first time the notion of

computational field to build distributed data structures working as force fields, and then letting robots move according

to them. This algorithm was a natural candidate for our initial investigation, as aggregate computing is particularly

well-suited at expressing computations on field-like distributed data structures. We find that this algorithm is well-suited

for the initial exploration of the environment (especially in the bootstrap phase), while it is not particularly effective in

allocating cameras to targets. The algorithm, in fact, outputs a desired position for the robot, regardless of the existence

of known targets or other robots. The second algorithm exploits aggregate computing to share the field of view among

11
https://yaml.org/spec/1.2.1/

12
https://alchemistsimulator.github.io/

Manuscript submitted to ACM

https://yaml.org/spec/1.2.1/
https://alchemistsimulator.github.io/

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Pianini et al.

Incarnation to be used. Dictates which data types can be used and how nodes can be programmed.
incarnation: protelis # Enables support for the Protelis programming language.

Variables: parameters of the simulation. They can be used to reduce repetitions.
They can be referenced (as per YAML specification) by their anchor name (starting with '&'),
by prefixing a string with the special character '*'.
When containing the 'formula: "code"' mapping, "code" is fed to a Groovy interpreter for evaluation.
variables:
humans: &humans

formula: "20" # Target count
cameras: &cameras

formula: 10 # Robot count
size: &size

formula: 400 # Arena side length, in meters
origin: &origin

formula: "-size/2" # Where the arena bottom-right corner should be for the origin to be (0, 0)
FOVangle: &FOVangle

formula: 60 # Field of view angle, in degrees
FOVdistance: &FOVdistance

formula: 20 # Field of view distance, in meters

The kind of environment
environment:
The type/parameters syntax allows runtime loading of arbitrary simulation extensions: the
simulator searches the runtime classpath for a class that implements the necessary API, named
as the string passed for 'type', and whose constructor can produce a valid instance when fed
contextual information and the provided parameters.
type: Rectangular2DEnvironment # an environment with an unpassable rectangular arena
parameters: [*size, *size] # the horizontal and vertical dimensions of the arena, in meters

Declaration of nodes together with their position and content
displacements:
Randomly place potential targets into the arena
- type: Rectangle

parameters: [*humans, *origin, *origin, *size, *size]
nodes: # Defines the class of nodes representing potential targets within the simulation
type: CircleNode # An alchemist node with a physical size (part of our extension)
parameters: [1] # Dimension of the circular node (in meters)

- type: Rectangle
parameters: [*cameras, *origin, *origin, *size, *size]
programs: # Robots get programmed here
- time-distribution: 1 # Loads a negative exponential distribution with lambda=1

type: Event
actions:

type: See # Custom action enabling the camera sensing (part of our extension).
parameters: [*FOVdistance, *FOVangle, "inSight"]

The 'program' syntax is alternative to the type/parameter syntax for Alchemist's
reactions/events, the provided string is passed down to the incarnation for interpretation
- program: "some:protelis:module" # Loads the omonym protelis program
- program: send # Special action, enabling networking with the Protelis incarnation

Fig. 5. An Alchemist YAML simulation descriptor using the newly developed modules. It configures an environment with 20 potential
targets and 10 robots with vision sensors in a 400mx400m square room. Robots are programmed (via the See action) to sense all the
perceived nodes (humans and other robots) and write all the associated metadata to the inSight molecule.

neighbouring devices, allowing each one to “see” with multiple fields of view. This information is then leveraged to

build a linear optimisation problem (describing only the system in the vicinity of the device) whose solution dictates

the device’s behaviour. The approach does not define an exploration strategy (as it outputs the position of the target

assigned to the robot only if the robot is being assigned) and must thus be coupled with some other approach that does

(including the previously presented force field-based algorithm). Data shows that this approach consistently improves

over the state of the art in allocating robots to targets.

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Collective Adaptive Decentralized k-Coverage 15

The proposed algorithms output positions, not orientations; selecting the latter can be done with an arbitrary strategy

during exploration and keeping the target object at the centre of the field of view during tracking. Before exercising our

new algorithms, in Section 5.3.1 we discuss our selected strategies for orientating the cameras.

5.1 Force Field Exploration (AForceField)

The A
ForceField

algorithm is inspired by the idea of attraction and repulsion fields, notions widely used in force-directed

graph drawing [7, 52]. Each robot generates a repulsive force field 𝜙𝑐 , whereas every known target (i.e., targets that

are currently in the field of view of at least one robot) generates an attractive force field 𝜙𝑜 . Of course, targets outside

all the fields of view are unknown to the robots, and since targets are not part of the aggregate computational systems,

they cannot emit any field and are thus unknown to the robots. The direction of movement of a robot is given by the

vector sum of the force fields involved. Moreover, to avoid the system from getting stuck into static situations, we

also consider an additional notion, willpower (symbol:𝑊), leveraged by robots to stick to the previous resolution

despite the current force fields. The force fields are defined as functions of the distance (symbol: 𝑑) between entities,

as follows:

𝜙𝑐 (𝑑) =
𝑊

2

(2V𝑅)2
max(1, 𝑑)2

(2)

𝜙𝑜 (𝑑) = −𝑘 4𝜙𝑐 (𝑑)
max(1, 𝑑) (3)

whereV𝑅 is the distance of the field of view, and 𝑘 is the desired maximum coverage (namely, the 𝑘 in 𝑘-coverage).

This algorithm is a form of coordinated exploration that can be expressed directly as a collective field computation. The

aggregate computing approach is particularly effective at expressing this kind of computation succinctly. As such, we

attach a Protelis-written implementation in Figure 6. A complete implementation including code interacting with the

simulated robot with vision sensors is available online
13
.

5.2 Linear Programming-based Algorithm (ALinPro)

ALinPro is rooted in the idea of continuously solving multiple local linear programming problems defining the target

selection strategy to minimise the robots’ movements while attaining coverage. This approach is motivated by the

idea that the problem could be broken down into smaller pieces (the neighbourhood of a robot, for each robot), and

then a solution could be searched for each smaller problem. Although this kind of modelling does not preserve the

possibility to reach a globally optimal solution, our intuition is that it should provide reasonably good local behaviour if

the robots can access the fields of view of their neighbours. The approach we propose thus builds an aggregate view

of the local system, sharing for each robot the fields of view of all neighbouring robots. The shared view is leveraged to

build a classic optimisation problem that we solve locally for each device on every round (recall the local view of the

behavioural description of aggregate computing introduced in Section 3.1).

This algorithm is different from a classic resolution of the global optimisation problem, as it works with partial

information and needs to be continuously updated due to the intrinsic dynamicity of the system. In fact, the absence

of a central leader means that the problem runs under partial information, and although the movement of robots can

be controlled and programmed, no control can be exerted by the program over the target’s behaviour. As such, the

optimisation is somewhat aiming at a moving target; in other words, it is not just simple optimisation, but continuous

optimisation towards an ever-changing optimum. Although techniques exist for building increasingly large alliances

13
http://archive.is/wip/MxJ5h

Manuscript submitted to ACM

http://archive.is/wip/MxJ5h

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Pianini et al.

def will() = ...
def repulsion(distance) = will()/2 *
((fovDistance() * 2)^2) / (max(1, distance)^2)

def attraction(distance) = if(distance >= fovDistance()/3) {
-((desiredK() * repulsion(distance) * 4) / max(1, distance))

} else { 0 }

def boundaries() { ... }

public def fieldExploration() {
let cameraForces = repulsion(nbrRange()) * nbrVersor()
let targetForces = foldUnion(nbr(vision()))

.map { attraction(distanceFrom(it)) * versor(position(self) - position(it))
}
.reduce([0,0]) { a, b -> a + b }

let sumOfForces = foldSum(cameraForces) + boundaries() + targetForces
rep(myDirectionAngle <- randomAngle()){ // Start with a random angle

let myDirection = angleToVersor(myDirectionAngle)
let myForce = myDirection * will()
let destination = position(self) + sumOfForces + myForce
let newAngle = directionToAngle(destination - position(self))
env.put("destination", destination +
[step() * cos(newAngle), step() * sin(newAngle)])

newAngle
}

}

Fig. 6. Protelis code for AForceField executed independently by each robot, stripped of low level details.

of robots with a central leader, up to the point where the whole network has a single leader where all information is

centralised [63], this comes with several downsides:

• the communication time with the leader, using these techniques on opportunistic networks, grows linearly

with the network diameter;

• data collection into a leader in mobile networks has its own sets of significant limitations that a growing body

of literature is analysing [3, 4, 105];

• the leader robot must solve the global optimisation problem for all devices, which may introduce scaling

problems (the more robots, the more difficult is the problem) and issues of asymmetric power consumption

among robots.

We thus preferred to experiment with solving many simple problems, considering only the fields of view of neighbouring

robots for each robot. Leveraging aggregate computing, we show that the algorithm can be expressed in few lines of

code by relying on the interoperability with existing languages and platforms for the centralised component (the solver

of the linear programming problem) and exploiting field-of-view fields (i.e. maps from neighbours to their fields of view)

to gather the necessary data.

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Collective Adaptive Decentralized k-Coverage 17

We formalise the mathematical model of the problem as follows:

Minimise

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑐𝑖 𝑗𝑥𝑖 𝑗 +
𝑛∑︁
𝑖=1

𝑞𝑥𝑖,𝑚+1 (4)

Subject to

𝑚+1∑︁
𝑗=1

𝑥𝑖 𝑗 = 1 𝑖 = 1, . . . , 𝑛 (5)

𝑛∑︁
𝑖=1

𝑥𝑖 𝑗 ≤ 𝑘 𝑗 = 1, . . . ,𝑚 (6)

𝑛∑︁
𝑖=1

𝑥𝑖 𝑗 ≥ min

(
1,

⌊ 𝑛
𝑚

⌋)
𝑗 = 1, . . . ,𝑚 (7)

𝑥𝑖 𝑗 ∈ {0, 1} 𝑖 = 1, . . . , 𝑛 (8)

𝑗 = 1, . . . ,𝑚 + 1

where:

• 𝑛 is the number of known neighbouring robots;

• 𝑚 is the number of targets (important objects) located within the field of view of at least one neighbouring robot;

• 𝑚 + 1 denotes a fictitious target that will be assigned to redundant cameras or when there are no targets; indeed,

the second addend of Equation (4) has the goal to permit solutions to the problem where some cameras are left

unassigned: robots assigned to that target are considered free and will adopt an exploratory behaviour;

• 𝑐𝑖 𝑗 is the cost of assigning target 𝑗 to robot 𝑖 . In our case, the Euclidean distance between the two entities

was used; however, the cost metric could be either a more elaborate notion of distance and/or could take into

account additional costs (e.g. presumed additional network communication, energy consumption for enacting

camera rotation, etc.);

• 𝑞 is the constant cost associated with the fictitious target, always set to

𝑞 = max

𝑖=1,...,𝑛
𝑗=1,...,𝑚

{𝑐𝑖 𝑗 } + 1 (9)

to ensure that keeping cameras unassigned when non-𝑘-covered targets are known is never optimal;

• 𝑘 is the desired 𝑘-coverage;

• 𝑥𝑖 𝑗 are the unknown variables. Regarding the optimal solution, they will be 1 when target 𝑗 is assigned to robot

𝑖 , or 0 otherwise;

• ⌊𝑥⌋ is the flooring of 𝑥 .

More informally, the objective is to minimise the overall cost for the cameras to reach their respective targets (4). Each

robot must be assigned one and only one target (5). Each target but the fictitious one can be assigned to up to 𝑘 robots:

assigning more than 𝑘 robots to a single target is a cost (9), as robots would be kept from exploration and possible

discovery of other targets (6). Each target must be assigned to at least one robot if the number of robots is large enough.

Otherwise, if the number of targets is greater than the number of robots, the result of the min function will be zero, and

the constraint will have no effect. This particular constraint prioritises covering all the possible targets if all robots

are already assigned and a new target is detected. (7). Finally, (8) is a non negativity constraint. Our model does not

consider objects which are currently not interesting: it only focuses on targets (interesting objects).

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Pianini et al.

rep(solver <- linProSolver()) {
let targets = foldUnion(nbr(localTargets()))
let cameras = nbr(getCenterOfFov())
let myTarget = solver.solve(cameras, targets, desiredK(), false)

.getOrDefault(getUID(), noTarget())
followOrExplore(myTarget, fieldExploration)
avoidCameraCollision(myTarget, localTargets)
solver

}

Fig. 7. Protelis code for ALinPro. This code polls the neighbouring robots for information about their position and the targets they
have in sight. The information is collected and sent to a local process, in charge of solving the linear programming problem.

In case of multiple equivalent solutions, we sort them based on the matrix collecting the resulting 𝑥𝑖 𝑗 ’s, compare

elements row-by-row and column-by-column, and pick the first one. This way, we properly deal with the case of

environments with particular symmetries, which could otherwise lead to inconsistent behaviour: for instance, if two

cameras have exactly the same distance from two shared targets, they may independently decide to move towards

the same target. If ordering were not in place and nothing broke such symmetry even after the robots’ movements

(although extremely unlikely in the real world, as the slightest error would), this unwanted behaviour could persist as

well.

The cases in which there are more robots than those required to achieve 𝑘-coverage for all targets (for instance, if

there are no targets) are dealt with by exploiting the fictitious target, that will be assigned to all robots in excess.

This model is similar to the well-known “transportation problem”[21] in which robots are the sources and targets

are the destinations. Moreover, the constraints matrix is totally unimodular, and the constant terms and the costs 𝑐𝑖 𝑗

are integers; therefore, the solutions are integers, and integral constraints are not needed [71]. It has to be highlighted

that each robot is supposed to solve the above problem with the pieces of information it knows, which are expected to

be incomplete in relation to the entire network, and that we assume that robots can estimate and share the position of

the targets in their field of view: the output of the algorithm thus includes the position that should be reached.

In our implementation, each robot executes a 1-hop broadcast in its communication range, communicating its position

and the positions of the targets it detects. With the information received from its neighbourhood, a robot can determine

local values for 𝑛,𝑚, 𝑐𝑖 𝑗 , and 𝑞, solve the above linear programming problem, and then follow the target indicated by its

optimal solution, or explore if the result yields the fictitious target. Of course, the single problems solved by each robot

individually do not represent valid solution for the global optimisation problem, (unless the network is fully connected).

Our idea is to exploit these local (and globally sub-optimal, in general) solutions to select the local robot behaviour. This

may cause situations in which some target attracts more attention than it should, and gets followed by too many robots;

however, as soon as they can communicate, some will be either allocated to other targets or freed and set in exploration

mode. Our bet is that even though the algorithm executed by each robot is not globally optimal, its re-evaluation in

face of changes (as promoted by the aggregate computing rounds) leads to a high degree of adaptation.

We implemented this algorithm with a mixture of Kotlin
14

(in order to reuse the simplex solver included in the

Apache Commons Math
15

library) and Protelis. The Kotlin part deals with solving the simplex, while the Protelis part is

14
https://kotlinlang.org/

15
http://archive.ph/wip/HVZ7O

Manuscript submitted to ACM

https://kotlinlang.org/
http://archive.ph/wip/HVZ7O

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Collective Adaptive Decentralized k-Coverage 19

responsible for the coordination of devices. We report the Protelis part in Figure 7, without imports and ancillary code.

The complete implementation is available online
16
.

5.2.1 Fair version (ALinProF). One shortcoming of ALinPro, as presented in the previous section, is that it does not try

to balance out the load among different targets, possibly leading to a situation where 𝑘 robots follow the same target at

the cost of other targets having inadequate coverage. A simple modification to the problem definition, however, can

lead to higher “fairness”. The idea is to detect the ratio between the count of robots and targets and use it as preferential

over 𝑘 in situations where the 𝑘 coverage for all targets cannot be achieved. More formally, this leads to the following

mathematical model (inheriting the notation of the previous section):

Minimise

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑐𝑖 𝑗𝑥𝑖 𝑗 +
𝑛∑︁
𝑖=1

𝑞𝑥𝑖,𝑚+1 (10)

Subject to

𝑚+1∑︁
𝑗=1

𝑥𝑖 𝑗 = 1 𝑖 = 1, . . . , 𝑛 (11)

𝑛∑︁
𝑖=1

𝑥𝑖 𝑗 ≥ min

(
𝑘,

⌊ 𝑛
𝑚

⌋)
𝑗 = 1, . . . ,𝑚 (12)

𝑛∑︁
𝑖=1

𝑥𝑖 𝑗 ≤ min

(
𝑘,

⌈ 𝑛
𝑚

⌉)
𝑗 = 1, . . . ,𝑚 (13)

𝑥𝑖 𝑗 ∈ {0, 1} 𝑖 = 1, . . . , 𝑛 (14)

𝑗 = 1, . . . ,𝑚 + 1

Where ⌈𝑥⌉ is ceiling of 𝑥 . Constraints (12) and (13) serve the purpose to limit the number of robots assigned to a target

between

⌊
𝑛
𝑚

⌋
and

⌈
𝑛
𝑚

⌉
but not greater than 𝑘 . All the other equations are the same of ALinPro.

Using ALinProF over ALinPro may be preferable when achieving a balanced cover is deemed more important than

reaching full 𝑘 coverage for a smaller number of targets.

5.3 Evaluation: experimental setup

With reference to Table 2, a set of𝑚 of objects and 𝑛 robots are randomly scattered in a square arena with edge length 𝑠

situated within a Euclidean bidimensional manifold. We simulate the 𝑘-coverage problem in a dynamic setting, where

objects move continuously within the arena using Lévy walks
19

[104] at an average speed of ®𝑣𝑜 . Every object can either

be important or unimportant, depending on the last evaluation of a predicate:

P(𝑜) = 𝑜 ∈ 𝑂 ⊕ x < P | x ∈ U(0, 1) ∧ 0 < P < 1

namely, the object changes its importance (⊕ indicates a logical exclusive disjunction operation, or xor) if a sample of

the uniform distribution in [0, 1] is lower than a number 𝑃 . Predicate P is evaluated with a Poisson process with rate 𝜆:

every time an event of the process happens. The Poisson process has been chosen due to its memory-less behaviour,

highlighting the system’s response to unpredictability. Robots move at an average speed of ®𝑣𝑐 and can rotate at a

maximum angular velocity of 𝜔 , their field of view has depthV𝑅 and angleV𝛽 . Robots are programmed to achieve

16
http://archive.ph/wip/fyfES

17
It approximates pedestrians’ preferred walking speed [14].

18
This is a conservative assumption based on the performance of modern commercial flying drones see http://archive.is/LhWCk.

19
We used Lévy walks as they reasonably approximate walking patterns of human beings [72].

Manuscript submitted to ACM

http://archive.ph/wip/fyfES

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Pianini et al.

Name Description Values

𝑚 objects count 100

𝑛 robot count 10, 20, . . . , 200

𝑠 arena edge length 500 m

®𝑣𝑜 object average speed
17

1.4𝑚/𝑠
®𝑣𝑐 robot linear velocity

18
3𝑚/𝑠

𝜔 robot’s camera angular velocity
18 𝜋/5 rad/s

𝜆 evaluation rate of predicate P 0.05 Hz

𝑃 probablity of switching importance at P evaluation 0.05

𝑚/𝑛 objects/robots ratio -

V𝑅 FOV depth
18

30 m

V𝛽 FOV angle
18

2𝜋/3 rad
𝑘 desired maximum coverage 3

𝑟 robots’ communication range 25, 50, . . . , 200 m

𝑓 round frequency 1 Hz

A coordination algorithm see section 5.3.1

𝑇 simulation end time 600 s

𝑊 Willpower for A
ForceField

40

Table 2. List of the variables and their values for the simulations.

𝑘-coverage by running an aggregate algorithm A with round frequency 𝑓 . We captured a rendering of the simulated

dynamics of the scenarios and produced a video, which has been shared and is freely visible online
20
. The network

infrastructure is programmed to allow communication among robots whose distance is within communication range 𝑟 .

Variables and their values are summarised in Table 2.

Once initialised, the simulation is executed for a simulated time 𝑇 = 600𝑠 . For each combination of variable values

(namely, for each member of the set representing the Cartesian product of the possible values of each variable), 100

simulation runs were executed. Perfect localisation and communication are assumed, no errors are introduced. For all

experiments, we measure the average normalised k-coverage as per Equation (1). Data generated by the simulator has

been analysed using xarray [45]; visual reports of the data have been created via matplotlib [48].

For the sake of detailed understanding, reproducibility, and reuse, the experiment is public
21
, it has been documented

for exact reproduction of the results and charts reported in this manuscript, released as open-source, and assigned a

permanent DOI reference [35] for archival purposes.

5.3.1 Algorithms. The robot coordination algorithms compared in this work can be classified using three parameters:

(1) exploration strategy: defines the behaviour of the robot when the response model can not determine a target to

follow (for instance, in case no target is in sight and no information has been received yet from other robots);

(2) communication strategy: determines the subset of neighbours each robot communicates with;

(3) response model: determines the strategy applied by a robot in response to the available information.

In this paper, we compare the aggregate computing-based algorithms introduced in Section 5 with the state-of-the-art

algorithms analysed in [30]. This work represents the current state of the art on the problem at hand, being the online

multi-object k-coverage still a relatively new and unexplored problem. As exploration strategies, we compareA
ForceField

20
https://www.youtube.com/watch?v=yuaY_8Vr3oc

21
https://github.com/DanySK/Experiment-2019-Smartcam/

Manuscript submitted to ACM

https://www.youtube.com/watch?v=yuaY_8Vr3oc
https://github.com/DanySK/Experiment-2019-Smartcam/

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Collective Adaptive Decentralized k-Coverage 21

(FF) introduced in Section 5.1 and “ZigZag exploration” (ZZ), corresponding to the Randommovement strategy introduced

in [30]. In ZZ, robots generate a random vector and follow it, bouncing off from the arena boundaries; once they

reach their destination, they generate a new random vector. In both FF and ZZ, robots are programmed to rotate at

maximum angular velocity 𝜔 in order to increase the probability of intercepting an interesting object. We consider

three communication strategies:

• no communication (NoComm), as the name suggests, allows for no information exchange among robots and

each robot operates in isolation, this serves as baseline;

• neighbourhood broadcast (BC) allows communication with all robots within communication range;

• smooth (SM) limits communication based on a “spatio-temporal closeness” metric measuring how long robots

within communication range have been close to each other for long periods. Robots learn that they are close

if they observe the same objects at the same time. According to the metric mentioned above, the longer they

observe the same space, the closer they are. Over time, when robots move and do not observe the same objects

any more, they progressively forget their previous relationships and reduce their spatio-temporal closeness.

We use this measure as a probability to communicate with another robot; over time and space, this value tends

to zero [30, 33].

Additionally, we compare the following response models indicating the behaviour of the robot as a reaction to receiving

a request:

• Available (AV).A robot, if and only if it is not already busy following an object, attempts to cover themost recently

requested object from another robot; if multiple requests are present, the nearest is chosen (newest-nearest

approach) [30];

• Received calls (RE). A robot currently not following an object will provision the object with the least number of

requests, as this corresponds to a small number of robots currently observing it [30];

• ALinPro (LinPro). It is a linear programming-based local problem solution, as described in Section 5.2;

• ALinProF (LinProF). Fair version of ALinPro introduced in Section 5.2.1.

Since all the response models imply communication, no response model is adopted in the NoComm communication

strategy. Finally, we adopted a common and straightforward control strategy for the robots to follow targets. Once a

robot decides which target to follow based on its response model, it calculates the coordinates where it should go in

order to keep the target at the centre of its FoV. All the infinite points of a circumference centred in the target with

radius proportional to the depth of the FoV satisfy this condition; if the robot is the only known observer, it picks the

closest point of such circle. In case multiple robots have been assigned to the same target, the devices compete based on

their device id (as assigned by the aggregate program execution platform); the device with the lowest id selects the

position first, and others, in order, occupy the positions on the circumference maximising the distance among each

other: the turn angle (2𝜋) is divided by the number of assigned observers, and each robot position itself at a 2𝜋/𝑘 angle

relative to the previous robot. Then velocities are calculated to be the highest possible ones (up to ®𝑣𝑐 for movement

and 𝜔 for rotation) to reach the position but without going past it. Acceleration and inertia are not simulated. Table 3

summarises the algorithms for this comparison.

5.4 Evaluation: results

The charts in Figure 8 show the average levels of k-coverage achieved for 𝑘 = 1 and 𝑘 = 3 during the simulations,

respectively 1-cov and 3-cov. Note that 3 was set as the maximum desired value for 𝑘 . We chose 𝑘 = 3 deliberately as it

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Pianini et al.

r 255075100125150175200
n/m

0.20.40.60.81.01.21.41.61.82.0
0.0

0.2

0.4

0.6

0.8

1.0

ff_linpro

r 255075100125150175200
n/m

0.20.40.60.81.01.21.41.61.82.0

Co
ve

ra
ge

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

zz_linpro 1-cov
3-cov

r 255075100125150175200
n/m

0.20.40.60.81.01.21.41.61.82.0
0.0

0.2

0.4

0.6

0.8

1.0

ff_linproF

r 255075100125150175200
n/m

0.20.40.60.81.01.21.41.61.82.0

Co
ve

ra
ge

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

zz_linproF

r 255075100125150175200
n/m

0.20.40.60.81.01.21.41.61.82.0
0.0

0.2

0.4

0.6

0.8

1.0

ff_nocomm

r 255075100125150175200
n/m

0.20.40.60.81.01.21.41.61.82.0

Co
ve

ra
ge

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

nocomm

r 255075100125150175200
n/m

0.20.40.60.81.01.21.41.61.82.0
0.0

0.2

0.4

0.6

0.8

1.0

sm_av

r 255075100125150175200
n/m

0.20.40.60.81.01.21.41.61.82.0

Co
ve

ra
ge

 (%
)

0.0

0.2

0.4

0.6

0.8

1.0

bc_re

Fig. 8. Compact representation of the performance of the algorithms under test varying the robot/object ratio 𝑛
𝑚

and the communi-
cation radius 𝑟 . Blue surfaces are 1-coverage levels, red surfaces are 3-coverage. Linear programming-based approaches outperform in
most cases the current state of the art. Curiously, BC-RE (bottom right) performance degrade with a higher radius. This is most likely
due to increasingly large groups of robots simultaneously called in help once an interesting target is found.

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Collective Adaptive Decentralized k-Coverage 23

Name Exploration Communication Response
FF-LinPro ForceField Neighbourhood Broadcast LinPro

ZZ-LinPro ZigZag Neighbourhood Broadcast LinPro

FF-LinProF ForceField Neighbourhood Broadcast Fair LinPro

ZZ-LinProF ZigZag Neighbourhood Broadcast Fair LinPro

FF-NoComm ForceField Neighbourhood Broadcast None

NoComm ZigZag None None

SM-AV [30] ZigZag Smooth Available

BC-RE [30] ZigZag Neighbourhood Broadcast Received Calls

Table 3. Algorithms considered in our evaluation, described by component.

allows observation of objects from all angles. A higher value for 𝑘 would only be necessary if the horizontal visual

angle is very tight or if a higher redundancy is required. An approach to calculate a feasible number for 𝑘 is using the

following formula: 𝑘 = 360

𝛽
· 𝜚 where 𝜚 represents the desired redundancy (i.e., how many robots should observe the

same area at the same time at a minimum).

In our experiments, ALinPro and ALinProF show a clear improvement over previous methods found in the literature

for the scenario under test. Data shows that these algorithms are susceptible to the communication range: the more

accurate the information about the surrounding world, the closer the mathematical model is to the actual problem at

hand, the higher the chance that the adopted strategy is close to optimality. The “fair” version of LinPro differs from

the other one by attaining a higher 1- and 2-coverage at the expense of a lower of 3-coverage, matching the initial

expectation.

Figure 9 depicts detailed results for 1-coverage. Linear programming based algorithms show much better use of

a high number of robots, compared to SM-AV and BC-RE, that is, smooth (SM) communication in combination with

available (AV) response and broadcast (BC) communication and received calls (RE) response (cp. 5). The latter two, and

BR-RE in particular, also show a curious behaviour: larger communication ranges do not improve performance but

degrade it. This is most likely due to large groups of robots being called for help when a new target is discovered,

reducing the ability to discover untracked targets. For large robot/object ratios and very short communication ranges,

SM-AV and BC-RE are competitive with ALinPro and ALinProF. Detailed results for the 2-coverage presented in fig. 10

show an appreciable improvement of ALinProF over pure ALinPro. Response to higher communication ranges is similar

to those discussed for 1-coverage. Finally, Figure 11 shows detailed data on 3-coverage, which was the target coverage

for our experiment. In this case, the relation between ALinProF and ALinPro predictably reverses: ALinPro, focussing on

actual k-coverage, actually achieves better k-coverage. ALinProF, on the other hand, tries to balance the coverage over

as many targets as possible, preferring lower coverage for many targets over higher coverage for fewer.

Results depicted in Figures 8 to 11 show very similar performance across the proposed variants. To better show the

difference, we summarised the data for a fixed range 𝑟 = 100m in Figure 12, where we also tested for a robots/objects

ratio
𝑛
𝑚 > 1. The proposed algorithms can better scale with a larger number of robots compared to the baseline. Data

also shows how the “fair” version achieves higher 2-coverage at the cost of lower 3-coverage.

Table 4 compares the average coverage achieved across the board. Both the novel algorithms outperform SM-AV and

BC-RE under most conditions. SM-AV shows poor performances in every case but with the shortest communication

range. This is likely due to two leading causes. First, the algorithm does not consider the maximum desired value for

k, assigning too many robots to each target. Second, the 𝑃𝑠𝑚𝑜𝑜𝑡ℎ formula [30], which computes the probability that

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Pianini et al.

10
25

50
10

0
20

0
r

ff_linpro zz_linpro

0.0

0.2

0.4

0.6

0.8

1.0

1-
co

ve
ra

ge
 (%

)

10
25

50
10

0
20

0
r

ff_linproF zz_linproF

0.0

0.2

0.4

0.6

0.8

1.0

1-
co

ve
ra

ge
 (%

)

10
25

50
10

0
20

0
r

ff_nocomm nocomm

0.0

0.2

0.4

0.6

0.8

1.0

1-
co

ve
ra

ge
 (%

)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
n/m

10
25

50
10

0
20

0
r

sm_av

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
n/m

bc_re

0.0

0.2

0.4

0.6

0.8

1.0

1-
co

ve
ra

ge
 (%

)

Fig. 9. Detailed 1-coverage performance for the algorithms under testing. ALinPro and ALinProF primarily benefit from greater
communication ranges, while both BC-RE and SM-AV begin to suffer in case too many devices must coordinate at once. As expected,
ALinProF shows (marginally) better performance for 1-coverage than pure ALinPro in some cases. Force field-based exploration does
not impact results.

Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Collective Adaptive Decentralized k-Coverage 25

10
25

50
10

0
20

0
r

ff_linpro zz_linpro

0.0

0.2

0.4

0.6

0.8

1.0

2-
co

ve
ra

ge
 (%

)

10
25

50
10

0
20

0
r

ff_linproF zz_linproF

0.0

0.2

0.4

0.6

0.8

1.0

2-
co

ve
ra

ge
 (%

)

10
25

50
10

0
20

0
r

ff_nocomm nocomm

0.0

0.2

0.4

0.6

0.8

1.0

2-
co

ve
ra

ge
 (%

)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
n/m

10
25

50
10

0
20

0
r

sm_av

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
n/m

bc_re

0.0

0.2

0.4

0.6

0.8

1.0

2-
co

ve
ra

ge
 (%

)

Fig. 10. Detailed 2-coverage performance for the algorithms under testing. ALinPro and ALinProF show better performance than
baselines in almost all conditions. Both benefit from larger communication ranges, while on the contrary BC-RE and SM-AV suffer
this condition. As expected, ALinProF performance for 2-coverage is superior to ALinPro. Force field-based exploration does not impact
results perceptibly.

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Pianini et al.

10
25

50
10

0
20

0
r

ff_linpro zz_linpro

0.0

0.2

0.4

0.6

0.8

1.0

3-
co

ve
ra

ge
 (%

)

10
25

50
10

0
20

0
r

ff_linproF zz_linproF

0.0

0.2

0.4

0.6

0.8

1.0

3-
co

ve
ra

ge
 (%

)

10
25

50
10

0
20

0
r

ff_nocomm nocomm

0.0

0.2

0.4

0.6

0.8

1.0

3-
co

ve
ra

ge
 (%

)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
n/m

10
25

50
10

0
20

0
r

sm_av

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
n/m

bc_re

0.0

0.2

0.4

0.6

0.8

1.0

3-
co

ve
ra

ge
 (%

)

Fig. 11. Detailed 3-coverage performance for the algorithms under testing. ALinPro shows better performance in all conditions.
ALinProF still outperforms the baseline algorithms, but obtains lower 3-coverage w.r.t. plain ALinPro due to its “fair” nature favouring
some coverage for most targets over actual k-coverage over few. Force field-based exploration does not impact results perceptibly.

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Collective Adaptive Decentralized k-Coverage 27

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0
Co

ve
ra

ge
 (%

)
ff_linpro

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

zz_linpro
1-cov
2-cov
3-cov

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (%
)

ff_linproF

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

zz_linproF

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (%
)

ff_nocomm

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

nocomm

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
n/m

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

 (%
)

sm_av

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
n/m

bc_re

Fig. 12. Mean𝑂𝑀𝐶𝑘 by varying the ratio between the number of robots and objects, with a fixed communication range of 100m.
Linear programming based algorithms can deal much better than alternatives when the ratio between robots and targets grows. The
“fair” version of these algorithms obtains similar 1-coverage, outperforms the base one for 2-coverage, but achieves worse results for
3-coverage.

Manuscript submitted to ACM

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Pianini et al.

𝑟 Approach

Ratio𝑛/𝑚
0.2 0.6 1.0 1.2 1.6 2.0

25

ff_linpro 0.03 (0.02) 0.21 (0.04) 0.43 (0.05) 0.50 (0.05) 0.65 (0.05) 0.74 (0.05)

zz_linpro 0.03 (0.02) 0.21 (0.04) 0.42 (0.04) 0.51 (0.05) 0.65 (0.05) 0.75 (0.04)

ff_linproF 0.03 (0.02) 0.20 (0.04) 0.41 (0.05) 0.49 (0.04) 0.62 (0.05) 0.72 (0.05)

zz_linproF 0.02 (0.02) 0.21 (0.04) 0.40 (0.05) 0.50 (0.06) 0.64 (0.05) 0.74 (0.05)

ff_nocomm 0.03 (0.02) 0.19 (0.04) 0.30 (0.04) 0.35 (0.04) 0.41 (0.05) 0.47 (0.05)

nocomm 0.04 (0.02) 0.20 (0.03) 0.32 (0.04) 0.36 (0.05) 0.43 (0.04) 0.48 (0.05)

sm_av 0.04 (0.02) 0.20 (0.03) 0.32 (0.04) 0.35 (0.04) 0.42 (0.05) 0.46 (0.05)

bc_re 0.04 (0.02) 0.16 (0.03) 0.24 (0.04) 0.27 (0.04) 0.30 (0.05) 0.33 (0.05)

50

ff_linpro 0.05 (0.02) 0.27 (0.04) 0.51 (0.05) 0.60 (0.05) 0.73 (0.05) 0.82 (0.04)

zz_linpro 0.05 (0.02) 0.26 (0.04) 0.50 (0.06) 0.60 (0.05) 0.73 (0.05) 0.83 (0.04)

ff_linproF 0.04 (0.02) 0.21 (0.05) 0.43 (0.06) 0.53 (0.06) 0.68 (0.06) 0.78 (0.05)

zz_linproF 0.03 (0.02) 0.21 (0.05) 0.42 (0.06) 0.52 (0.06) 0.68 (0.06) 0.79 (0.05)

ff_nocomm 0.04 (0.02) 0.20 (0.03) 0.30 (0.04) 0.34 (0.04) 0.40 (0.05) 0.44 (0.05)

nocomm 0.04 (0.02) 0.20 (0.03) 0.32 (0.04) 0.36 (0.05) 0.43 (0.04) 0.48 (0.05)

sm_av 0.04 (0.02) 0.21 (0.04) 0.30 (0.04) 0.34 (0.04) 0.39 (0.04) 0.43 (0.04)

bc_re 0.06 (0.02) 0.15 (0.03) 0.19 (0.03) 0.20 (0.03) 0.22 (0.04) 0.23 (0.04)

100

ff_linpro 0.07 (0.03) 0.32 (0.05) 0.58 (0.05) 0.66 (0.05) 0.80 (0.05) 0.89 (0.04)

zz_linpro 0.07 (0.03) 0.30 (0.05) 0.55 (0.06) 0.65 (0.05) 0.80 (0.05) 0.87 (0.04)

ff_linproF 0.04 (0.02) 0.20 (0.06) 0.46 (0.09) 0.59 (0.07) 0.78 (0.05) 0.88 (0.04)

zz_linproF 0.04 (0.02) 0.19 (0.07) 0.43 (0.08) 0.57 (0.07) 0.77 (0.05) 0.87 (0.04)

ff_nocomm 0.05 (0.02) 0.20 (0.03) 0.30 (0.04) 0.34 (0.05) 0.40 (0.04) 0.45 (0.05)

nocomm 0.04 (0.02) 0.20 (0.03) 0.32 (0.04) 0.36 (0.05) 0.43 (0.04) 0.48 (0.05)

sm_av 0.04 (0.02) 0.21 (0.03) 0.30 (0.04) 0.33 (0.04) 0.38 (0.05) 0.40 (0.05)

bc_re 0.07 (0.02) 0.10 (0.03) 0.12 (0.03) 0.13 (0.03) 0.13 (0.03) 0.13 (0.03)

Table 4. Comparison of mean𝑂𝑀𝐶𝑘 achieved by different approaches with different communications ranges 𝑟 and different ratios
for objects/cameras, the standard deviation is indicated in brackets.

a robot will call another one for help to follow a target, asymptotically converges to zero. Consequently, the longer

the simulation runs and the more the robots encounter each other, the higher is the number of notifications sent;

moreover, algorithms are executed with a frequency of 1Hz, thus generating a high number of notifications. Lower

frequencies might allow improvement by preventing calling for help too often. BC-RE shows the same problems as

SM-AV, considerably worsened by the fact that it performs broadcasts. Despite these problems, BC-RE remains a simple

approach and still works better than NoComm for short communication ranges.

Force field-based exploration deserves some discussion as well. Apparently, it does not show any tangible effect on

the coverage along the whole experiment. The main reason is that it is used as an exploration strategy in the initial

phase, then replaced by other algorithms for most of the time. As such, its impact is lesser and lesser with the experiment

length. To better understand if there is any benefit for the initial exploration, we isolated in Figure 13 the first 100

seconds of simulation. Data shows that force field-based exploration outperforms the baseline ZZ algorithm during the

bootstrap phase, however, this edge gets lower and lower with time. Data shows that force field exploration is a valid

companion for any response model compared to the baseline: this is most likely due to robots repelling each other from

the beginning, and thus covering a larger area in the attempt to maximise the distance from each other.

6 RELATEDWORK

6.1 Problems related to OMOkC

This section briefly mentions well-known problems related to OMOkC and CMOMMT, providing corresponding

references for the reader to be acquainted with the current state of the art. The first problem is the coverage maximisation

problem, addressed when deploying camera networks and deciding where to position and orient each camera to maximise

the observed area. This problem, also known as the Art Gallery problem, has been researched quite intensively [47, 68, 79,

83]. To cover an area with a defined number of cameras, Fusco and Gupta [38] utilise a simple greedy algorithm. Dieber

et al. [25] utilise an evolutionary algorithm to identify the optimal location and orientation for PTZ cameras. They

further combine this with market-based approaches to assign moving targets to static cameras [74]. Rudolph et al. [76]

Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Collective Adaptive Decentralized k-Coverage 29

0.0

0.2

0.4

0.6

0.8

1.0
1-

co
ve

ra
ge

 (%
)

n/m = 0.4 n/m = 0.8

ff_linpro
zz_linpro
ff_nocomm
nocomm

20 40 60 80 100
t

0.0

0.2

0.4

0.6

0.8

1.0

1-
co

ve
ra

ge
 (%

)

n/m = 1.2

20 40 60 80 100
t

n/m = 1.8

0.0

0.2

0.4

0.6

0.8

1.0

3-
co

ve
ra

ge
 (%

)

n/m = 0.4 n/m = 0.8
ff_linpro
zz_linpro
ff_nocomm
nocomm

20 40 60 80 100
t

0.0

0.2

0.4

0.6

0.8

1.0

3-
co

ve
ra

ge
 (%

)

n/m = 1.2

20 40 60 80 100
t

n/m = 1.8

Fig. 13. Mean𝑂𝑀𝐶𝑘 observed during the first 100s of simulation with a fixed communication range of 100m. Results show that
force-field-based exploration (blue and green lines) perform better than zig-zag based exploration (yellow and red lines) during the
initial phase of the simulation, when exploration algorithms are more exercised.

Manuscript submitted to ACM

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Pianini et al.

enable individual PTZ cameras, able to change their orientation, to learn their local performance using W-Learning.

By exchanging information about their current state, they can optimise their orientation over time. Arslan et al. [1]

propose novel conic Voronoi diagrams based on the visual quality of cameras. They utilise the information from all

cameras to determine the optimal orientation to maximise the coverage of a given area. Using a density estimation,

Hatanaka et al. [42] utilise a distributed gradient descent algorithm to define the optimal orientation of cameras to

cover all targets in the area. To optimally place and orient a set of cameras, several approaches rely on Particle Swarm

Optimisation in a centralised as well as distributed fashion [26, 56, 100–102].

An extension to the coverage maximisation problem is the 𝑘-coverage problem. Here a set of sensors needs to be

placed to cover specific points in the environment with 𝑘 sensors [46]. This not only allows to turn off individual sensors

without leaving the area uncovered, but also increases the amount of gathered information and, therefore, accuracy

and precision when multiple sensors are operational simultaneously. Hefeeda and Bagheri [43] propose a distributed

approximate algorithm for omnidirectional sensors allowing close to optimal sensor placement. Li and Kao [53] utilise

Voronoi diagrams to estimate the location of individual sensors and hence adjust their location accordingly. Similarly,

Stergiopoulos and Tzes [85] use Voronoi-alike distance measures to guide mobile, non-uniform but omnidirectional,

sensors for optimal coverage of an area.

The last related problems are search-and-rescue operations, also known as the detect-and-track problem. Here, a set of

agents is tasked to find objects or targets in a given area. Targets might be stationary (search-and-rescue) [41] or mobile

(detect-and-track) [39]. Stormont [86] presents different types of robots and how to employ them as a swarm to quickly

cover an area and find potential victims in a disaster scenario. Waharte and Trigoni [97] explicitly use unmanned aerial

vehicles (UAVs) to support ground robots and cover a defined area faster. Using the RSSI value of individual UAVs,

Ruetten et al. [77] enable UAVs to find optimal locations to cover a given area. Path planning is at the core of the work

of Macwan et al. [54] to optimise the movement of all UAVs in the area and ensure the entire environment is covered at

the end of the operation. Scherer et al. [80] propose a hybrid approach between centralised and decentralised decisions

for different tasks in search-and-rescue operations, while Yanmaz et al. [103] focus on generating ad-hoc networks for

localised coordination and decision-making for subsets of UAVs.

6.2 State of the art in decentralised OMOkC

There is a wide range of coordination and control algorithms for multi-camera and multi-robot systems [57, 75]. Usually,

they differ according to the task to be accomplished and whether the approach relies on a central component, gathering

information and coordinating individual robots, or is purely distributed and self-organised. In this article, we focus on

the online multi-object 𝑘-coverage problem (OMOkC). While closely related to the cooperative multi-robot observation

of multiple moving targets (CMOMMT), whose state-of-the-art solutions are surveyed by Khan et al. [50], it differs

significantly: the number of cooperative robots is unknown, and the number of objects is neither constant nor known

to the robots. Furthermore, OMOkC requires multiple cameras to observe the same target simultaneously. While this

is positive for the observation of the object as targets can be observed from different angles, the robots need to be

coordinated to ensure over-provisioning, that is, the case in which too many robots observe a single target is avoided.

A related sub-problem is autonomous search and rescue (ASR) operations, often tackled by swarms of (collaborative)

robots [6, 58, 77, 86]. However, in ASR, the targets are often stationary and do not require multiple robots to attend

them simultaneously. Nevertheless, to initially cover and observe the area, swarming techniques can be utilised.

In [32], Esterle and Lewis rely on purely distributed approaches. They enable the individual robots to learn about

their local environment, including other robots and analyse the potential of the topological neighbourhood of interaction.

Manuscript submitted to ACM

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Collective Adaptive Decentralized k-Coverage 31

Later on, Esterle and Lewis also compare the performance of the distributed approaches against a naive centralised

approach, gathering all information of all robots to coordinate them [29]. While the centralised approach dominates the

distributed approaches when it comes to achieved coverage, the centralisation generates an additional overhead in

communication.

Another distributed approach incorporates the observed behaviour of other robots in the network into their decision

processes [34], using ideas of networked self-awareness [28]. King et al. [51] use entropy to attract robots towards

individual objects. To avoid over-compensation, they also introduce a suppression signal. Rather than attracting robots

towards individual objects, Frashieri et al. [37] enable robots to join a coalition for each object based on their individual

willingness to interact. While this approach generates good results on the𝑂𝑀𝐶𝑘 metric, the coalition formation requires

additional communication.

When all robots in a network operate towards the common goal of covering all objects with 𝑘 cameras, they can

quickly cluster in specific areas. This makes objects appearing in the remaining environment prone to remain undetected

and missed by the network. To overcome this, dynamic team formation can be used, where each team has a different

goal, i.e. following objects or covering the remaining area to ensure a majority of appearing objects are detected [27].

6.3 Similar and competing programming models

The aggregate computing paradigm adopted in this paper has its roots in spatial computing and collective adaptive

systems research, surveyed in [9] and more recently, from the point of view of coordination, in [94]. Research fields

recognising the importance of the spatial and collective aspect for computing and interaction include multi-agent

systems [99], where various organisational paradigms [44] have emerged to take into account the social dimension, as

well as mobile ad-hoc networks (MANETs) and wireless sensor networks (WSNs) [87], where it is common to program the

collective behaviour of large networks of devices producing and collecting information. Such an amount of related

work can be classified along multiple dimensions.

First, there are extensions to traditional approaches that aim to simplify the development of networked applications

through proper abstractions. For instance, Abstract Regions [98] provides a collective communication interface for

region- and neighbourhood-oriented data propagation and collection.

At a step further, some approaches address so-called ensembles, i.e., dynamic formations of devices. Examples include

DEECo (Distributed Emergent Ensembles of Components) [15], where components can only communicate by dynamically

binding together through ensembles (formed according to a membership condition), and SCEL (Service Component

Ensemble Language) [24], which leverages attribute-based communication.

Finally, there are so-called macro-programming approaches, which consider an entire network of devices as the

programming target. Examples of this family include Chronus [96], a spatio-temporal DSL for data gathering and event

detection in WSNs, and Sense2P [20], a logic macro-programming system for solving queries in WSNs.

6.4 Simulators for network performance and physical interactions

Once the software reaches reasonable maturity, interaction among devices must be validated as compatible with

the available networking infrastructure. A network-focussed simulator is the right tool for the job. An example is

Mobile MultiMedia Wireless Sensor Network (M3WSN) [106], which focuses on the network-level simulation of image

transmissions, and can easily be adapted as a camera network simulator by using real-world video streams to mimic

the simulated cameras. Similarly, WiSE-Mnet++ [78] combines these ideas of real-world and synthetic videos with

Manuscript submitted to ACM

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Pianini et al.

improved network simulation. This is done by employing the dedicated network-simulator OMNet++ [90] for discrete

events and Castalia [13] for wireless networks and modelling radio channels.

Finally, simulators with higher fidelity to the real-world can help produce and inspect corner cases before deployment

and provide a platform for developing software closer to the hardware (e.g., object detection from a video feed). However,

generating a complex virtual world is usually resource expensive. Several tools for camera networks simulation leverage

recent developments in rendering synthetic worlds realistically in three dimensions [81, 84, 88]. We also remark that

there is an ongoing e-robotics trend in (swarm) robotics research where increasingly sophisticated 3D-graphical and

physics-rich simulators (e.g., Gazebo [70], ARGoS [69], AirSim [82]) – sometimes building on game engines such

as Unreal Engine or Unity 3D [23] – are exploited to develop simulations with a certain degree of physical fidelity.

However, to keep computational expenses low, we perform simulations in 2D. An extension to 3D can be achieved by

incorporating the third dimension in the location and velocity vectors for objects and robots with vision sensors and

adding a vertical angle to the field of view.

7 LIMITATIONS AND FUTUREWORK

In this article, we focus our contribution on the following aspects:

(1) demonstrating the feasibility of engineering distributed solutions for the OMOkC problem within the aggregate

computing framework;

(2) provide evidence that solutions built in this way are competitive with the current state of the art;

(3) making the tools for developing and evaluating solutions available to other researchers.

Naturally, some issues are not considered in the evaluation presented in this work. In this section, we aim to state such

limitations clearly and outline potential future work.

7.1 Evaluation

7.1.1 Robot simulation. Our evaluation does not consider energy consumption even though mobile devices (e.g.,

drones) rely on energy stored in batteries to operate, thus their working time is generally limited. While we do not

focus on energy consumption in this work, taking the energy consumption and limits into account could lead to an

extended version of LinPro where these costs are factored in and considered in the solution. Under the point of view

of the proposed simulation framework, we note that the level of abstraction proposed abstracts away the realistic

modelling of the robot’s hardware (electric engines, control electronics, and so on). Depending on the degree of realism

that is required, the following strategies can be pursued:

• estimation of energy cost via proxy metrics; or

• extension of the simulation model.

In the former case, power consumption may be estimated by relying on data already available in the simulator, such as

the travelled length. This strategy allows using the currently provided toolchain at the price of realism. In the latter case,

a detailed model of the robots, including a model of the energy consumption, is required. How detailed depends on the

required level of realism, up to the point that the proposed simulation platform is not equipped to provide support to.

For instance, realistically modelling the engines’ work, or physically challenging and possibly evolving conditions (such

as wind for flying devices or terrain asperities for ground vehicles), fall outside the kind of details the simulator has

been designed to support. In these cases, it is probably worth extending a different simulator, with a realistic hardware

model in place, with the required capabilities. We note, however, that the more detailed is a model, the harder it is to

Manuscript submitted to ACM

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Collective Adaptive Decentralized k-Coverage 33

scale up. Our goal in this work is to demonstrate that it is possible (and practical and convenient indeed) to consider the

ensemble of robots as an aggregate system. To this end, we believe it is more valuable to show that it is indeed possible

to reach coordination among a high number of mobile devices rather than precisely measuring their power drain.

In this work, we consider the same FOV and attributes for all robots. However, a real system may be composed of

several different device types, differing e.g., for mobility (static, predefined paths, angular or translational mobility),

field of view (depth, width, single or multiple), and several miscellaneous factors (power usage and source, zooming

capabilities, processing power, etc.). Different mobility capabilities and field of view changes can be simulated within

the proposed toolchain, preserving the ability to scale up to thousands of (different) devices. Despite that, the evaluation

of this paper is intended to provide insights on the feasibility of an aggregate computing-based approach to OMOkC,

and as such, we did not include several different device types, which can be targeted in future works. Furthermore,

some investigations involving more realistic modelling of the world are outside of what is readily reproducible in the

proposed toolchain. Considerations similar to those previously made for realistically modelling how the hardware

works for power use apply to several other features, for instance, image recognition capabilities: in this work, we

consider devices to be able to tell whether a target is interesting with precision, and to be able to locate and recognise it.

While accounting for an error with some well-known distribution would be feasible within the proposed framework, an

in-depth analysis including authentic imagery and on-the-fly recognition is beyond the scope of the proposed tools.

We simulate on a fixed-sized arena, and we change density by changing the device count. Further investigation

could be devoted to analysing the impact of different device speeds and arena sizes. This would explore the impact of

different arena sizes and the relation of different device movement speeds to the OMOkC problem.

7.1.2 Environment simulation.

Physical environment. In future work, it would be interesting to run experiments using more realistic arenas. The

simulator is already equipped to import floor maps and model static obstacles (a capability already exploited in

other works, see, e.g., [95]), which should allow for collecting evidence of how the system can perform in an actual

deployment.

Network. The current simulation infrastructure abstracts from realistic modelling of the underlying network. A

possible extension to this work includes integrating Alchemist with a dedicated network simulator such as NS3 [73] or

Omnet++ [91]. This would produce a hybrid environment that provides insights both for large-scale, highly dynamic

experiments (focussing on algorithmic evaluation) and for smaller-scale evaluationswith realistic networking (simulation

oriented to predict after-deployment performance).

7.2 Software evolution

Approaching device coordination at the aggregate level simplifies coordination by hiding details under-the-hood, thus

promoting the development of richer software. However, such development requires the correct abstractions in terms of

mechanisms and whole libraries providing easy access to advanced coordination mechanisms [36]. Potential future work

is thus the development of a domain-specific API of aggregate behaviour, designed explicitly for coordinating networks

of robots with vision sensors. In particular, it would be interesting to leverage the notion of aggregate process [19] to

regulate the formation of dynamic coalitions of robots and consider adopting a full-fledged version of the self-organising

coordination regions pattern [63] to organise the coordination and decision-making at larger scales.

Manuscript submitted to ACM

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Pianini et al.

This evolution may include an evolution of the proposed LinPro algorithm. As discussed in Section 7, the algorithm

could be extended to capture costs related to moving robots (e.g., battery power consumption). Also, different techniques

could be used for the optimisation phase: since the problem is solved using partial information, the capability of the

optimisation algorithm to provide suitable solutions with limited information is critical. Examples of different possible

heuristics are particle swarm optimisation and simulated annealing. Finally, the proposed version ALinPro does not

consider objects that are marked as not important, even though they may become targets in the future. This information

could be exploited by future works, improving the performance.

7.3 Safety and security

Aggregate computing provides basic support for resiliency, based on abstraction from low-level details of device

distribution and networking [12], and on a continuous execution model where changes in context automatically trigger

local (and, consequently, global) adaptation. However, future work is required to verify the actual robustness of the

proposed algorithms in front of unpredicted failures. Little work is instead available on security, namely, detecting,

isolating, and counteracting proactive malicious behaviour, such as hijacked robots. Some preliminary work has been

proposed based on computational trust [16] at the application level or by delegating most of the security to the underlying

platform [64]; however, further work is necessary to establish solid security practices [62]. This is especially true in

case the robot system is deployed to perform collective surveillance [22].

8 CONCLUSION

In this paper, we address the online multi-object 𝑘-coverage problem and accordingly provide a contribution in terms

of (i) an aggregate computing solution to decentralised multi-robots with vision sensors coordination; (ii) a toolchain

for experimentation and development, including a publicly available extension to an existing simulator for large-scale

systems of multi-robots with vision sensors; and (iii) two novel 𝑘-coverage algorithms that improve over the state of the

art. Systems situated in the real-world environment often have to perform actions related to their physical location. In

this paper, we use a novel paradigm called aggregate computing to implement the behaviour of entire ensembles instead

of individual devices. We validate our approach via simulation; to this end, we extend the Alchemist simulator with

features specific to the simulation of robots with vision sensors, enabling large-scale simulations of mobile vision sensor

networks. By gathering information of the robot proximity and modelling it as an optimisation problem, we leverage

a linear programming-based heuristic to enable the set of autonomous robots to outperform previously proposed

approaches in covering objects over a period of time with 𝑘 robots.

9 ACKNOWLEDGEMENT

The idea and initial effort behind this work originated from the discussion during the GI-Dagstuhl Seminar 18343

“Software Engineering for Intelligent and Autonomous Systems (SEfIAS)”. This work has been partially supported by

the Italian PRIN project N. 2017KRC7KT “Fluidware”.

REFERENCES
[1] Omur Arslan, Hancheng Min, and Daniel E Koditschek. 2018. Voronoi-based coverage control of pan/tilt/zoom camera networks. In 2018 IEEE

International Conference on Robotics and Automation (ICRA). IEEE, 1–8.
[2] Giorgio Audrito. 2020. FCPP: an efficient and extensible Field Calculus framework. In IEEE International Conference on Autonomic Computing and Self-

Organizing Systems, ACSOS 2020, Washington, DC, USA, August 17-21, 2020. IEEE, 153–159. DOI:http://dx.doi.org/10.1109/ACSOS49614.2020.00037

Manuscript submitted to ACM

http://dx.doi.org/10.1109/ACSOS49614.2020.00037

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Collective Adaptive Decentralized k-Coverage 35

[3] Giorgio Audrito, Sergio Bergamini, Ferruccio Damiani, and Mirko Viroli. 2020. Resilient Distributed Collection Through Information Speed

Thresholds. In Coordination Models and Languages - 22nd IFIP WG 6.1 International Conference, COORDINATION 2020, Held as Part of the 15th
International Federated Conference on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta, June 15-19, 2020, Proceedings (Lecture Notes in
Computer Science), Simon Bliudze and Laura Bocchi (Eds.), Vol. 12134. Springer, 211–229. DOI:http://dx.doi.org/10.1007/978-3-030-50029-0_14

[4] Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Danilo Pianini, and Mirko Viroli. 2021. Optimal resilient distributed data collection in mobile

edge environments. Comput. Electr. Eng. 96, Part (2021), 107580. DOI:http://dx.doi.org/10.1016/j.compeleceng.2021.107580

[5] Giorgio Audrito, Mirko Viroli, Ferruccio Damiani, Danilo Pianini, and Jacob Beal. 2019. A Higher-Order Calculus of Computational Fields. ACM
Trans. Comput. Log. 20, 1 (2019), 5:1–5:55. DOI:http://dx.doi.org/10.1145/3285956

[6] M. Bakhshipour, M. [Jabbari Ghadi], and F. Namdari. 2017. Swarm robotics search & rescue: A novel artificial intelligence-inspired optimization

approach. Applied Soft Computing 57 (2017), 708 – 726. DOI:http://dx.doi.org/https://doi.org/10.1016/j.asoc.2017.02.028

[7] Michael J. Bannister, David Eppstein, Michael T. Goodrich, and Lowell Trott. 2012. Force-Directed Graph Drawing Using Social Gravity and

Scaling. In Proceedings of the 20th International Conference on Graph Drawing (GD’12). Springer-Verlag, Berlin, Heidelberg, 414–425. DOI:

http://dx.doi.org/10.1007/978-3-642-36763-2_37

[8] Jacob Beal and Jonathan Bachrach. 2006. Infrastructure for Engineered Emergence on Sensor/Actuator Networks. IEEE Intell. Syst. 21, 2 (2006),
10–19. DOI:http://dx.doi.org/10.1109/MIS.2006.29

[9] Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Nikolaus Correll. 2012. Organizing the Aggregate: Languages for Spatial Computing. Vol.

abs/1202.5509. http://arxiv.org/abs/1202.5509

[10] Jacob Beal, Danilo Pianini, and Mirko Viroli. 2015. Aggregate Programming for the Internet of Things. IEEE Computer 48, 9 (2015), 22–30. DOI:
http://dx.doi.org/10.1109/MC.2015.261

[11] Jacob Beal, Kyle Usbeck, Joseph P. Loyall, and James M. Metzler. 2016. Opportunistic Sharing of Airborne Sensors. In International Conference
on Distributed Computing in Sensor Systems, DCOSS 2016, Washington, DC, USA, May 26-28, 2016. IEEE Computer Society, 25–32. DOI:http:

//dx.doi.org/10.1109/DCOSS.2016.43

[12] Jacob Beal, Mirko Viroli, Danilo Pianini, and Ferruccio Damiani. 2017. Self-Adaptation to Device Distribution in the Internet of Things. ACM Trans.
Auton. Adapt. Syst. 12, 3, Article 12 (Sept. 2017), 29 pages. DOI:http://dx.doi.org/10.1145/3105758

[13] Athanassios Boulis. 2007. Castalia: revealing pitfalls in designing distributed algorithms in WSN. In Proceedings of the 5th International Conference
on Embedded Networked Sensor Systems, SenSys 2007, Sydney, NSW, Australia, November 6-9, 2007. 407–408. DOI:http://dx.doi.org/10.1145/1322263.
1322318

[14] Raymond C. Browning, Emily A. Baker, Jessica A. Herron, and Rodger Kram. 2006. Effects of obesity and sex on the energetic cost and preferred

speed of walking. Journal of Applied Physiology 100, 2 (Feb. 2006), 390–398. DOI:http://dx.doi.org/10.1152/japplphysiol.00767.2005

[15] Tomás Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal Kit, and Frantisek Plasil. 2013. DEECO: an ensemble-based

component system. In CBSE’13, Proceedings of the 16th ACM SIGSOFT Symposium on Component Based Software Engineering, part of Comparch
’13, Vancouver, BC, Canada, June 17-21, 2013, Philippe Kruchten, Dimitra Giannakopoulou, and Massimo Tivoli (Eds.). ACM, 81–90. DOI:http:

//dx.doi.org/10.1145/2465449.2465462

[16] Roberto Casadei, Alessandro Aldini, and Mirko Viroli. 2018. Towards attack-resistant Aggregate Computing using trust mechanisms. Sci. Comput.
Program. 167 (2018), 114–137. DOI:http://dx.doi.org/10.1016/j.scico.2018.07.006

[17] Roberto Casadei, Danilo Pianini, Andrea Placuzzi, Mirko Viroli, and Danny Weyns. 2020a. Pulverization in Cyber-Physical Systems: Engineering

the Self-Organizing Logic Separated from Deployment. Future Internet 12, 11 (2020), 203. DOI:http://dx.doi.org/10.3390/fi12110203
[18] Roberto Casadei, Mirko Viroli, Giorgio Audrito, and Ferruccio Damiani. 2020b. FScaFi : A Core Calculus for Collective Adaptive Systems

Programming. In Leveraging Applications of Formal Methods, Verification and Validation: Engineering Principles - 9th International Symposium on
Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part II (Lecture Notes in Computer Science),
Tiziana Margaria and Bernhard Steffen (Eds.), Vol. 12477. Springer, 344–360. DOI:http://dx.doi.org/10.1007/978-3-030-61470-6_21

[19] Roberto Casadei, Mirko Viroli, Giorgio Audrito, Danilo Pianini, and Ferruccio Damiani. 2019. Aggregate Processes in Field Calculus. In Coordination
Models and Languages - 21st IFIP WG 6.1 International Conference, COORDINATION 2019, Held as Part of the 14th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2019, Kongens Lyngby, Denmark, June 17-21, 2019, Proceedings (Lecture Notes in Computer Science),
Hanne Riis Nielson and Emilio Tuosto (Eds.), Vol. 11533. Springer, 200–217. DOI:http://dx.doi.org/10.1007/978-3-030-22397-7_12

[20] Supasate Choochaisri, Nuttanart Pornprasitsakul, and Chalermek Intanagonwiwat. 2012. Logic Macroprogramming for Wireless Sensor Networks.

IJDSN 8 (2012). DOI:http://dx.doi.org/10.1155/2012/171738

[21] George B. Dantzig and Mukund N. Thapa. 1997. Linear Programming 1: Introduction (Springer Series in Operations Research and Financial Engineering)
(v. 1). Springer.

[22] Rustem Dautov, Salvatore Distefano, Dario Bruneo, Francesco Longo, Giovanni Merlino, Antonio Puliafito, and Rajkumar Buyya. 2018. Metropolitan

intelligent surveillance systems for urban areas by harnessing IoT and edge computing paradigms. Software: Practice and Experience 48, 8 (may

2018), 1475–1492. DOI:http://dx.doi.org/10.1002/spe.2586

[23] Mirella Santos Pessoa de Melo, José Gomes da Silva Neto, Pedro Jorge Lima da Silva, João Marcelo Xavier Natario Teixeira, and Veronica Teichrieb.

2019. Analysis and Comparison of Robotics 3D Simulators. In 2019 21st Symposium on Virtual and Augmented Reality (SVR). IEEE, 242–251.
[24] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. 2014. A Formal Approach to Autonomic Systems Programming: The SCEL

Language. TAAS 9, 2 (2014), 7:1–7:29. DOI:http://dx.doi.org/10.1145/2619998

Manuscript submitted to ACM

http://dx.doi.org/10.1007/978-3-030-50029-0_14
http://dx.doi.org/10.1016/j.compeleceng.2021.107580
http://dx.doi.org/10.1145/3285956
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2017.02.028
http://dx.doi.org/10.1007/978-3-642-36763-2_37
http://dx.doi.org/10.1109/MIS.2006.29
http://arxiv.org/abs/1202.5509
http://dx.doi.org/10.1109/MC.2015.261
http://dx.doi.org/10.1109/DCOSS.2016.43
http://dx.doi.org/10.1109/DCOSS.2016.43
http://dx.doi.org/10.1145/3105758
http://dx.doi.org/10.1145/1322263.1322318
http://dx.doi.org/10.1145/1322263.1322318
http://dx.doi.org/10.1152/japplphysiol.00767.2005
http://dx.doi.org/10.1145/2465449.2465462
http://dx.doi.org/10.1145/2465449.2465462
http://dx.doi.org/10.1016/j.scico.2018.07.006
http://dx.doi.org/10.3390/fi12110203
http://dx.doi.org/10.1007/978-3-030-61470-6_21
http://dx.doi.org/10.1007/978-3-030-22397-7_12
http://dx.doi.org/10.1155/2012/171738
http://dx.doi.org/10.1002/spe.2586
http://dx.doi.org/10.1145/2619998

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Pianini et al.

[25] B. Dieber, C. Micheloni, and B. Rinner. 2011. Resource-Aware Coverage and Task Assignment in Visual Sensor Networks. IEEE Transactions on
Circuits and Systems for Video Technology 21, 10 (2011), 1424–1437.

[26] L. Esterle. 2017. Centralised, Decentralised, and Self-Organised Coverage Maximisation in Smart Camera Networks. In 2017 IEEE 11th International
Conference on Self-Adaptive and Self-Organizing Systems (SASO). 1–10.

[27] Lukas Esterle. 2018. Goal-Aware Team Affiliation in Collectives of Autonomous Robots. In 12th IEEE International Conference on Self-Adaptive and
Self-Organizing Systems, SASO 2018, Trento, Italy, September 3-7, 2018. IEEE, 90–99. DOI:http://dx.doi.org/10.1109/SASO.2018.00020

[28] Lukas Esterle and John N A Brown. 2020. I Think Therefore You Are: Models for Interaction in Collectives of Self-Aware Cyber-physical Systems.

ACM Transactions on Cyber-Physical Systems (2020), 1–24. In Press.

[29] Lukas Esterle and Peter R. Lewis. Distributed autonomy and trade-offs in online multiobject k-coverage. Computational Intelligence n/a, n/a (????).
DOI:http://dx.doi.org/10.1111/coin.12264

[30] Lukas Esterle and Peter R. Lewis. 2017. Online Multi-object k-coverage with Mobile Smart Cameras. In Proceedings of the 11th International
Conference on Distributed Smart Cameras, Stanford, CA, USA, September 5-7, 2017. 107–112. DOI:http://dx.doi.org/10.1145/3131885.3131909

[31] Lukas Esterle, Peter R. Lewis, Horatio Caine, Xin Yao, and Bernhard Rinner. 2013. CamSim: A Distributed Smart Camera Network Simulator. In 7th
IEEE International Conference on Self-Adaptation and Self-Organizing Systems Workshops, SASOW, 2013, Philadelphia, PA, USA, September 9-13, 2013.
19–20. DOI:http://dx.doi.org/10.1109/SASOW.2013.11

[32] Lukas Esterle, Peter R. Lewis, Richie McBride, and Xin Yao. 2017. The Future of Camera Networks: Staying Smart in a Chaotic World. In Proceedings
of the 11th International Conference on Distributed Smart Cameras, Stanford, CA, USA, September 5-7, 2017, Miguel O. Arias-Estrada, Christian

Micheloni, Hamid K. Aghajan, Octavia I. Camps, and Victor M. Brea (Eds.). ACM, 163–168. DOI:http://dx.doi.org/10.1145/3131885.3131931

[33] Lukas Esterle, Peter R. Lewis, Xin Yao, and Bernhard Rinner. 2014. Socio-economic vision graph generation and handover in distributed smart

camera networks. TOSN 10, 2 (2014), 20:1–20:24. DOI:http://dx.doi.org/10.1145/2530001

[34] Lukas Esterle and Bernhard Rinner. 2018. An Architecture for Self -Aware IOT Applications. In 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2018, Calgary, AB, Canada, April 15-20, 2018. IEEE, 6588–6592. DOI:http://dx.doi.org/10.1109/ICASSP.2018.8462005

[35] Fedpet and Danilo Pianini. 2021. DanySK/Experiment-2019-Smartcam: 1.0.1. (2021). DOI:http://dx.doi.org/10.5281/ZENODO.5506710

[36] Matteo Francia, Danilo Pianini, Jacob Beal, and Mirko Viroli. 2017. Towards a Foundational API for Resilient Distributed Systems Design. In 2nd
IEEE International Workshops on Foundations and Applications of Self* Systems, FAS*W@SASO/ICCAC 2017, Tucson, AZ, USA, September 18-22, 2017.
27–32. DOI:http://dx.doi.org/10.1109/FAS-W.2017.116

[37] Mirgita Frasheri, Lukas Esterle, and Alessandro Vittorio Papadopoulos. 2020. Modeling the Willingness to Interact in Cooperative Multi-robot

Systems. In Proceedings of the 12th International Conference on Agents and Artificial Intelligence, ICAART 2020, Volume 1, Valletta, Malta, February
22-24, 2020. 62–72. DOI:http://dx.doi.org/10.5220/0008951900620072

[38] G. Fusco and H. Gupta. 2009. Selection and Orientation of Directional Sensors for Coverage Maximization. In Proc. of the Conf. on Sensor, Mesh and
Ad Hoc Communications and Networks. 1–9. DOI:http://dx.doi.org/10.1109/SAHCN.2009.5168968

[39] José M. Gascueña and Antonio Fernández-Caballero. 2009. Agent-Based Modeling of a Mobile Robot to Detect and Follow Humans. In Agent and
Multi-Agent Systems: Technologies and Applications, Anne Håkansson, Ngoc Thanh Nguyen, Ronald L. Hartung, Robert J. Howlett, and Lakhmi C.

Jain (Eds.). Springer Berlin Heidelberg, 80–89.

[40] Michael A. Gibson and Jehoshua Bruck. 2000. Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels.

The Journal of Physical Chemistry A 104, 9 (March 2000), 1876–1889. DOI:http://dx.doi.org/10.1021/jp993732q

[41] M. Guarnieri, R. Debenest, T. Inoh, E. Fukushima, and S. Hirose. 2004. Development of Helios VII: an arm-equipped tracked vehicle for search and

rescue operations. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 39–45.
[42] Takeshi Hatanaka, Riku Funada, and Masayuki Fujita. 2019. Visual Surveillance of Human Activities via Gradient-Based Coverage Control on

Matrix Manifolds. IEEE Transactions on Control Systems Technology (2019).

[43] Mohamed Hefeeda and Majid Bagheri. 2007. Randomized k-Coverage Algorithms For Dense Sensor Networks. In INFOCOM 2007. 26th IEEE
International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, 6-12 May 2007, Anchorage,
Alaska, USA. 2376–2380. DOI:http://dx.doi.org/10.1109/INFCOM.2007.284

[44] Bryan Horling and Victor R. Lesser. 2004. A survey of multi-agent organizational paradigms. Knowledge Eng. Review 19, 4 (2004), 281–316. DOI:

http://dx.doi.org/10.1017/S0269888905000317

[45] S. Hoyer and J. Hamman. 2017. xarray: N-D labeled arrays and datasets in Python. Journal of Open Research Software 5, 1 (2017). DOI:

http://dx.doi.org/10.5334/jors.148

[46] Chi-Fu Huang and Yu-Chee Tseng. 2005. The coverage problem in a wireless sensor network. Mobile Networks and Applications 10, 4 (2005),

519–528.

[47] S. Huang, R. S. H. Teo, and W. L. Leong. 2017. Review of coverage control of multi unmanned aerial vehicles. In 2017 11th Asian Control Conference
(ASCC). 228–232.

[48] J. D. Hunter. 2007. Matplotlib: A 2D Graphics Environment. Computing in Science Engineering 9, 3 (May 2007), 90–95. DOI:http://dx.doi.org/10.

1109/MCSE.2007.55

[49] Jeffrey O. Kephart and David M. Chess. 2003. The Vision of Autonomic Computing. IEEE Computer 36, 1 (2003), 41–50. DOI:http://dx.doi.org/10.
1109/MC.2003.1160055

[50] Asif Khan, Bernhard Rinner, and Andrea Cavallaro. 2018. Cooperative Robots to Observe Moving Targets: Review. IEEE Trans. Cybernetics 48, 1

Manuscript submitted to ACM

http://dx.doi.org/10.1109/SASO.2018.00020
http://dx.doi.org/10.1111/coin.12264
http://dx.doi.org/10.1145/3131885.3131909
http://dx.doi.org/10.1109/SASOW.2013.11
http://dx.doi.org/10.1145/3131885.3131931
http://dx.doi.org/10.1145/2530001
http://dx.doi.org/10.1109/ICASSP.2018.8462005
http://dx.doi.org/10.5281/ZENODO.5506710
http://dx.doi.org/10.1109/FAS-W.2017.116
http://dx.doi.org/10.5220/0008951900620072
http://dx.doi.org/10.1109/SAHCN.2009.5168968
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1109/INFCOM.2007.284
http://dx.doi.org/10.1017/S0269888905000317
http://dx.doi.org/10.5334/jors.148
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/MC.2003.1160055

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

Collective Adaptive Decentralized k-Coverage 37

(2018), 187–198. DOI:http://dx.doi.org/10.1109/TCYB.2016.2628161

[51] David W. King, Lukas Esterle, and Gilbert L. Peterson. 2019. Entropy-Based Team Self-Organization with Signal Suppression. (2019). DOI:

http://dx.doi.org/10.1162/isal_a_00154

[52] Stephen G. Kobourov. 2012. Spring Embedders and Force Directed Graph Drawing Algorithms. CoRR abs/1201.3011 (2012). http://arxiv.org/abs/

1201.3011

[53] J. S. Li and H. C. Kao. 2010. Distributed K-coverage self-location estimation scheme based on Voronoi diagram. IET Communications 4, 2 (2010),
167–177.

[54] A. Macwan, J. Vilela, G. Nejat, and B. Benhabib. 2015. A Multirobot Path-Planning Strategy for Autonomous Wilderness Search and Rescue. IEEE
Transactions on Cybernetics 45, 9 (2015), 1784–1797.

[55] David Mateo, Nikolaj Horsevad, Vahid Hassani, Mohammadreza Chamanbaz, and Roland Bouffanais. 2019. Optimal network topology for responsive

collective behavior. Science advances 5, 4 (2019), eaau0999.
[56] Yacine Morsly, Nabil Aouf, Mohand Said Djouadi, and Mark Richardson. 2011. Particle swarm optimization inspired probability algorithm for

optimal camera network placement. IEEE Sensors Journal 12, 5 (2011), 1402–1412.
[57] Prabhu Natarajan, Pradeep K. Atrey, and Mohan S. Kankanhalli. 2015. Multi-Camera Coordination and Control in Surveillance Systems: A Survey.

TOMM 11, 4 (2015), 57:1–57:30. DOI:http://dx.doi.org/10.1145/2710128

[58] John Page, Robert Armstrong, and Faqihza Mukhlish. 2019. Simulating Search and Rescue Operations Using Swarm Technology to Determine How

Many Searchers Are Needed to Locate Missing Persons/Objects in the Shortest Time. In Intersections in Simulation and Gaming: Disruption and
Balance, Anjum Naweed, Lorelle Bowditch, and Cyle Sprick (Eds.). Springer Singapore, Singapore, 106–112.

[59] Lynne E. Parker and Brad A. Emmons. 1997. Cooperative multi-robot observation of multiple moving targets. In Proceedings of the 1997 IEEE
International Conference on Robotics and Automation, Albuquerque, New Mexico, USA, April 20-25, 1997. 2082–2089. DOI:http://dx.doi.org/10.1109/
ROBOT.1997.619270

[60] Veljko Pejovic and Mirco Musolesi. 2015. Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges. ACM Comput.
Surv. 47, 3 (2015), 47:1–47:29. DOI:http://dx.doi.org/10.1145/2693843

[61] Danilo Pianini. 2021. Simulation of Large Scale Computational Ecosystems with Alchemist: A Tutorial. In Distributed Applications and Interoperable
Systems - 21st IFIP WG 6.1 International Conference, DAIS 2021, Held as Part of the 16th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings (Lecture Notes in Computer Science), Miguel Matos and Fabíola Greve (Eds.),

Vol. 12718. Springer, 145–161. DOI:http://dx.doi.org/10.1007/978-3-030-78198-9_10

[62] Danilo Pianini, Roberto Casadei, and Mirko Viroli. 2019. Security in Collective Adaptive Systems: A Roadmap. In IEEE 4th International Workshops
on Foundations and Applications of Self* Systems, FAS*W@SASO/ICCAC 2019, Umea, Sweden, June 16-20, 2019. IEEE, 86–91. DOI:http://dx.doi.org/
10.1109/FAS-W.2019.00034

[63] Danilo Pianini, Roberto Casadei, Mirko Viroli, and Antonio Natali. 2021. Partitioned integration and coordination via the self-organising coordination

regions pattern. Future Generation Computer Systems 114 (2021), 44 – 68. DOI:http://dx.doi.org/https://doi.org/10.1016/j.future.2020.07.032

[64] Danilo Pianini, Giovanni Ciatto, Roberto Casadei, Stefano Mariani, Mirko Viroli, and Andrea Omicini. 2018. Transparent Protection of Aggregate

Computations from Byzantine Behaviours via Blockchain. In Proceedings of the 4th EAI International Conference on Smart Objects and Technologies
for Social Good, GOODTECHS 2018, Bologna, Italy, November 28-30, 2018. 271–276. DOI:http://dx.doi.org/10.1145/3284869.3284870

[65] Danilo Pianini, Sara Montagna, and Mirko Viroli. 2013. Chemical-oriented simulation of computational systems with ALCHEMIST. J. Simulation 7,

3 (2013), 202–215. DOI:http://dx.doi.org/10.1057/jos.2012.27

[66] Danilo Pianini, Stefano Sebastio, and Andrea Vandin. 2014. Distributed statistical analysis of complex systems modeled through a chemical

metaphor. In International Conference on High Performance Computing & Simulation, HPCS 2014, Bologna, Italy, 21-25 July, 2014. 416–423. DOI:
http://dx.doi.org/10.1109/HPCSim.2014.6903715

[67] Danilo Pianini, Mirko Viroli, and Jacob Beal. 2015. Protelis: practical aggregate programming. In Proceedings of the 30th Annual ACM Symposium on
Applied Computing, Salamanca, Spain, April 13-17, 2015. 1846–1853. DOI:http://dx.doi.org/10.1145/2695664.2695913

[68] C. Piciarelli, L. Esterle, A. Khan, B. Rinner, and G. L. Foresti. 2016. Dynamic Reconfiguration in Camera Networks: A Short Survey. IEEE Trans.
Circuits and Systems for Video Technology 26, 5 (2016), 965–977.

[69] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne Brutschy, Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di Caro,

Frederick Ducatelle, Mauro Birattari, Luca Maria Gambardella, and Marco Dorigo. 2012. ARGoS: a modular, parallel, multi-engine simulator for

multi-robot systems. Swarm Intelligence 6, 4 (2012), 271–295.
[70] Lenka Pitonakova, Manuel Giuliani, Anthony G. Pipe, and Alan F. T. Winfield. 2018. Feature and Performance Comparison of the V-REP, Gazebo

and ARGoS Robot Simulators. In TAROS (Lecture Notes in Computer Science), Vol. 10965. Springer, 357–368.
[71] Kenneth R. Rebman. 1974. Total unimodularity and the transportation problem: a generalization. Linear Algebra Appl. 8, 1 (Feb. 1974), 11–24. DOI:

http://dx.doi.org/10.1016/0024-3795(74)90003-2

[72] Injong Rhee, Minsu Shin, Seongik Hong, Kyunghan Lee, Seong Joon Kim, and Song Chong. 2011. On the Levy-Walk Nature of Human Mobility.

IEEE/ACM Transactions on Networking 19, 3 (June 2011), 630–643. DOI:http://dx.doi.org/10.1109/tnet.2011.2120618

[73] George F. Riley and Thomas R. Henderson. 2010. The ns-3 Network Simulator. In Modeling and Tools for Network Simulation. Springer Berlin
Heidelberg, 15–34. DOI:http://dx.doi.org/10.1007/978-3-642-12331-3_2

[74] B. Rinner, B. Dieber, L. Esterle, P. R. Lewis, and X. Yao. 2012. Resource-aware configuration in smart camera networks. In 2012 IEEE Computer

Manuscript submitted to ACM

http://dx.doi.org/10.1109/TCYB.2016.2628161
http://dx.doi.org/10.1162/isal_a_00154
http://arxiv.org/abs/1201.3011
http://arxiv.org/abs/1201.3011
http://dx.doi.org/10.1145/2710128
http://dx.doi.org/10.1109/ROBOT.1997.619270
http://dx.doi.org/10.1109/ROBOT.1997.619270
http://dx.doi.org/10.1145/2693843
http://dx.doi.org/10.1007/978-3-030-78198-9_10
http://dx.doi.org/10.1109/FAS-W.2019.00034
http://dx.doi.org/10.1109/FAS-W.2019.00034
http://dx.doi.org/https://doi.org/10.1016/j.future.2020.07.032
http://dx.doi.org/10.1145/3284869.3284870
http://dx.doi.org/10.1057/jos.2012.27
http://dx.doi.org/10.1109/HPCSim.2014.6903715
http://dx.doi.org/10.1145/2695664.2695913
http://dx.doi.org/10.1016/0024-3795(74)90003-2
http://dx.doi.org/10.1109/tnet.2011.2120618
http://dx.doi.org/10.1007/978-3-642-12331-3_2

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

38 Pianini et al.

Society Conference on Computer Vision and Pattern Recognition Workshops. 58–65.
[75] Cyril Robin and Simon Lacroix. 2016. Multi-robot target detection and tracking: taxonomy and survey. Auton. Robots 40, 4 (2016), 729–760. DOI:

http://dx.doi.org/10.1007/s10514-015-9491-7

[76] Stefan Rudolph, Sarah Edenhofer, Sven Tomforde, and Jörg Hähner. 2014. Reinforcement Learning for Coverage Optimization Through PTZ

Camera Alignment in Highly Dynamic Environments. In Proc. of the Int. Conf. on Distributed Smart Cameras. Article 19, 6 pages. DOI:http:

//dx.doi.org/10.1145/2659021.2659052

[77] L. Ruetten, P. A. Regis, D. Feil-Seifer, and S. Sengupta. 2020. Area-Optimized UAV Swarm Network for Search and Rescue Operations. In 2020 10th
Annual Computing and Communication Workshop and Conference (CCWC). 0613–0618.

[78] Juan C. SanMiguel and Andrea Cavallaro. 2017. Networked Computer Vision: The Importance of a Holistic Simulator. IEEE Computer 50, 7 (2017),
35–43. DOI:http://dx.doi.org/10.1109/MC.2017.213

[79] J. C. SanMiguel, C. Micheloni, K. Shoop, G. L. Foresti, and A. Cavallaro. 2014. Self-Reconfigurable Smart Camera Networks. Computer 47, 5 (2014),
67–73.

[80] Jürgen Scherer, Saeed Yahyanejad, Samira Hayat, Evsen Yanmaz, Torsten Andre, Asif Khan, Vladimir Vukadinovic, Christian Bettstetter, Hermann

Hellwagner, and Bernhard Rinner. 2015. An Autonomous Multi-UAV System for Search and Rescue. In Proceedings of the First Workshop on Micro
Aerial Vehicle Networks, Systems, and Applications for Civilian Use. Association for Computing Machinery, New York, NY, USA, 33–38. DOI:

http://dx.doi.org/10.1145/2750675.2750683

[81] Melanie Schranz and Bernhard Rinner. 2014. Demo: VSNsim - A Simulator for Control and Coordination in Visual Sensor Networks. In Proceedings
of the International Conference on Distributed Smart Cameras, ICDSC ’14, Venezia Mestre, Italy, November 4-7, 2014, Andrea Prati and Niki Martinel

(Eds.). ACM, 44:1–44:3. DOI:http://dx.doi.org/10.1145/2659021.2669475

[82] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. 2018. Airsim: High-fidelity visual and physical simulation for autonomous vehicles.

In Field and service robotics. Springer, 621–635.
[83] Stanislava Soro and Wendi Heinzelman. 2009. A survey of visual sensor networks. Advances in Multimedia 2009 (2009).
[84] Wiktor Starzyk and Faisal Z. Qureshi. 2013. Software Laboratory for Camera Networks Research. IEEE J. Emerg. Sel. Topics Circuits Syst. 3, 2 (2013),

284–293. DOI:http://dx.doi.org/10.1109/JETCAS.2013.2256827

[85] Yiannis Stergiopoulos and Anthony Tzes. 2014. Cooperative positioning/orientation control of mobile heterogeneous anisotropic sensor networks

for area coverage. In 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 1106–1111.
[86] D. P. Stormont. 2005. Autonomous rescue robot swarms for first responders. In Proceedings of the 2005 IEEE International Conference on Computational

Intelligence for Homeland Security and Personal Safety, 2005. 151–157.
[87] Ryo Sugihara and Rajesh K. Gupta. 2008. Programming models for sensor networks: A survey. TOSN 4, 2 (2008), 8:1–8:29. DOI:http://dx.doi.org/10.

1145/1340771.1340774

[88] Geoffrey R. Taylor, Andrew J. Chosak, and Paul C. Brewer. 2007. OVVV: Using Virtual Worlds to Design and Evaluate Surveillance Systems. In 2007
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), 18-23 June 2007, Minneapolis, Minnesota, USA. IEEE
Computer Society. DOI:http://dx.doi.org/10.1109/CVPR.2007.383518

[89] C. Natalie van der Wal, Daniel Formolo, Mark A. Robinson, Michael Minkov, and Tibor Bosse. 2017. Simulating Crowd Evacuation with Socio-

Cultural, Cognitive, and Emotional Elements. Trans. Computational Collective Intelligence 27 (2017), 139–177. DOI:http://dx.doi.org/10.1007/978-3-
319-70647-4_11

[90] András Varga and Rudolf Hornig. 2008a. An overview of the OMNeT++ simulation environment. In Proceedings of the 1st International Conference
on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, SimuTools 2008, Marseille, France, March 3-7, 2008. 60.
DOI:http://dx.doi.org/10.4108/ICST.SIMUTOOLS2008.3027

[91] András Varga and Rudolf Hornig. 2008b. An overview of the OMNeT++ simulation environment. In Proceedings of the 1st International Conference on
Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, SimuTools 2008, Marseille, France, March 3-7, 2008, Sándor
Molnár, John R. Heath, Olivier Dalle, and Gabriel A. Wainer (Eds.). ICST/ACM, 60. DOI:http://dx.doi.org/10.4108/ICST.SIMUTOOLS2008.3027

[92] Arezoo Vejdanparast, Peter R. Lewis, and Lukas Esterle. 2018. Online Zoom Selection Approaches for Coverage Redundancy in Visual Sensor

Networks. In Proceedings of the 12th International Conference on Distributed Smart Cameras, ICDSC 2018, Eindhoven, The Netherlands, September 3-4,
2018. 15:1–15:6. DOI:http://dx.doi.org/10.1145/3243394.3243697

[93] Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Danilo Pianini. 2018a. Engineering Resilient Collective Adaptive Systems by

Self-Stabilisation. ACM Trans. Model. Comput. Simul. 28, 2 (2018), 16:1–16:28. DOI:http://dx.doi.org/10.1145/3177774
[94] Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto Casadei, and Danilo Pianini. 2018b. From Field-Based Coordination to

Aggregate Computing. In Coordination Models and Languages - 20th IFIP WG 6.1 International Conference, COORDINATION 2018, Held as Part of the
13th International Federated Conference on Distributed Computing Techniques, DisCoTec 2018, Madrid, Spain, June 18-21, 2018. Proceedings. 252–279.
DOI:http://dx.doi.org/10.1007/978-3-319-92408-3_12

[95] Mirko Viroli, Roberto Casadei, and Danilo Pianini. 2016. Simulating Large-scale Aggregate MASs with Alchemist and Scala. In Proceedings of the
2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11-14, 2016. 1495–1504. DOI:
http://dx.doi.org/10.15439/2016F407

[96] Hiroshi Wadaa, Pruet Boonmab, and Junichi Suzukic. 2010. Chronus: A spatiotemporal macroprogramming language for autonomic wireless sensor

networks. Autonomic Network Management Principles: From Concepts to Applications (2010), 167.

Manuscript submitted to ACM

http://dx.doi.org/10.1007/s10514-015-9491-7
http://dx.doi.org/10.1145/2659021.2659052
http://dx.doi.org/10.1145/2659021.2659052
http://dx.doi.org/10.1109/MC.2017.213
http://dx.doi.org/10.1145/2750675.2750683
http://dx.doi.org/10.1145/2659021.2669475
http://dx.doi.org/10.1109/JETCAS.2013.2256827
http://dx.doi.org/10.1145/1340771.1340774
http://dx.doi.org/10.1145/1340771.1340774
http://dx.doi.org/10.1109/CVPR.2007.383518
http://dx.doi.org/10.1007/978-3-319-70647-4_11
http://dx.doi.org/10.1007/978-3-319-70647-4_11
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2008.3027
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2008.3027
http://dx.doi.org/10.1145/3243394.3243697
http://dx.doi.org/10.1145/3177774
http://dx.doi.org/10.1007/978-3-319-92408-3_12
http://dx.doi.org/10.15439/2016F407

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

Collective Adaptive Decentralized k-Coverage 39

[97] S. Waharte and N. Trigoni. 2010. Supporting Search and Rescue Operations with UAVs. In 2010 International Conference on Emerging Security
Technologies. 142–147.

[98] Matt Welsh and Geoffrey Mainland. 2004. Programming Sensor Networks Using Abstract Regions. In 1st Symposium on Networked Systems Design
and Implementation (NSDI 2004), March 29-31, 2004, San Francisco, California, USA, Proceedings. 29–42. http://www.usenix.org/events/nsdi04/tech/

welsh.html

[99] Michael J. Wooldridge. 2009. An Introduction to MultiAgent Systems, Second Edition. Wiley.

[100] Yichun Xu, Bangjun Lei, Shuifa Sun, Fangmin Dong, and Chilan Chai. 2010. Three particle swarm algorithms to improve coverage of camera

networks with mobile nodes. In 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA). IEEE,
816–820.

[101] Yi-Chun Xu, Bangjun Lei, and Emile A Hendriks. 2011. Camera network coverage improving by particle swarm optimization. EURASIP Journal on
Image and Video Processing 2011, 1 (2011), 458283.

[102] Yi-Chun Xu, Bangjun Lei, and Emile A Hendriks. 2013. Constrained particle swarm algorithms for optimizing coverage of large-scale camera

networks with mobile nodes. Soft computing 17, 6 (2013), 1047–1057.

[103] Evşen Yanmaz, Saeed Yahyanejad, Bernhard Rinner, Hermann Hellwagner, and Christian Bettstetter. 2018. Drone networks: Communications,

coordination, and sensing. Ad Hoc Networks 68 (2018), 1–15.
[104] V. Zaburdaev, S. Denisov, and J. Klafter. 2015. Lévy walks. Reviews of Modern Physics 87, 2 (Jun 2015), 483–530. DOI:http://dx.doi.org/10.1103/

revmodphys.87.483

[105] Hunza Zainab, Giorgio Audrito, Soura Dasgupta, and Jacob Beal. 2020. Improving Collection Dynamics by Monotonic Filtering. In 2020 IEEE
International Conference on Autonomic Computing and Self-Organizing Systems, ACSOS 2020, Companion Volume, Washington, DC, USA, August 17-21,
2020. IEEE, 127–132. DOI:http://dx.doi.org/10.1109/ACSOS-C51401.2020.00043

[106] Zhongliang Zhao, Denis Rosario, Torsten Braun, and Eduardo Cerqueira. 2015. A Tutorial of the Mobile Multimedia Wireless Sensor Network

OMNeT++ Framework. (2015).

Received January 2021

Manuscript submitted to ACM

http://www.usenix.org/events/nsdi04/tech/welsh.html
http://www.usenix.org/events/nsdi04/tech/welsh.html
http://dx.doi.org/10.1103/revmodphys.87.483
http://dx.doi.org/10.1103/revmodphys.87.483
http://dx.doi.org/10.1109/ACSOS-C51401.2020.00043

	Abstract
	1 Introduction
	2 Model and Problem Definition
	2.1 The Online Multi-Object k-Coverage (OMOkC) problem

	3 An aggregate approach for OMOkC
	3.1 Designing collective behaviours with Aggregate Computing
	3.2 Networked robots as Aggregate Systems

	4 A toolchain for developing solutions to OMOkC with aggregate computing
	4.1 Simulators for networked robots with vision sensors
	4.2 Simulators supporting aggregate programming
	4.3 Supporting multi-robot systems with vision sensors in Alchemist

	5 Aggregate computing for Online Multi-Object k-Coverage (OMOkC) in action
	5.1 Force Field Exploration (AForceField)
	5.2 Linear Programming-based Algorithm (ALinPro)
	5.3 Evaluation: experimental setup
	5.4 Evaluation: results

	6 Related work
	6.1 Problems related to OMOkC
	6.2 State of the art in decentralised OMOkC
	6.3 Similar and competing programming models
	6.4 Simulators for network performance and physical interactions

	7 Limitations and Future Work
	7.1 Evaluation
	7.2 Software evolution
	7.3 Safety and security

	8 Conclusion
	9 Acknowledgement
	References

