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We focus on the online multi-object 𝑘-coverage problem (OMOkC), where mobile robots are required to sense a mobile target from 𝑘

diverse points of view, coordinating themselves in a scalable and possibly decentralised way. There is active research on OMOkC,

particularly in the design of decentralised algorithms for solving it. We propose a new take on the issue: rather than classically

developing new algorithms; we apply a macro-level paradigm, called aggregate computing, specifically designed to directly program

the global behaviour of a whole ensemble of devices at once. To understand the potential of the application of aggregate computing to

OMOkC, we extend the Alchemist simulator (supporting aggregate computing natively) with a novel toolchain component supporting

the simulation of mobile robots. This way, we build a software engineering toolchain comprising language and simulation tooling for

addressing OMOkC. Finally, we exercise our approach and related toolchain by introducing new algorithms for OMOkC; we show that

they can be expressed concisely, reuse existing software components, and perform better than the current state of the art in terms of

coverage over time and number of objects covered overall.

CCS Concepts: • Computer systems organization→ Self-organizing autonomic computing; Robotic autonomy; • Theory of
computation → Self-organization; • Computing methodologies → Distributed programming languages; Self-organization; •

Software and its engineering→ Application specific development environments.

Additional Key Words and Phrases: Location based services Internet of things, online multi-object 𝑘-coverage, smart cameras,

multi-robot, aggregate computing
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1 INTRODUCTION

Recent technological trends foster a vision of large-scale, situated systems where devices sense and act upon their local

environment to perform some joint task and coordinate with one another to provide global, system-wide benefits. How-

ever, as the scale and density of computational collectives increase, centralised solutions become impractical, whereas

mobility and failure create a dynamicity that systems ought to partially address by themselves, i.e., autonomously [49]. In
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2 Pianini et al.

such pervasive computing scenarios, awareness of the local context and location is often leveraged to make appropriate

decisions and coordinate activity in a decentralised fashion [60].

In this paper, we address the Cooperative Multi-Robot Observation of Multiple Moving Targets (CMOMMT) problem [59]:

we consider multiple mobile robots (e.g., drones with vision sensors) able to observe or cover objects of interest (also

known as targets) and interact with other robots in order to cooperate. More specifically, we focus on the Online

Multi-Object k-Coverage (OMOkC) [29, 30] problem, where the number of cooperative robots and targets is unknown

and possibly dynamic. Our goal is to operate the system to maximise the number of 𝑘-covered mobile targets (i.e., the

number of targets covered by at least 𝑘 robots) over time, while minimising the cost of doing it (where the definition of

cost is application-specific—e.g., in terms of total movement or energy consumption). Importantly, the agents may not be

able to achieve this goal optimally. This can be due to the fact that the agents do not know some of the objects or there

are too many objects to cover all of them with 𝑘 agents. The robots have to explore the area to discover targets; once

they find one (or more), they have to choose whether to follow it or not (or which one). In other words, as the robots,

tasked with covering targets know neither the area nor the number of targets or their location they are confronted with

an explore vs exploit dilemma. However, the robots can communicate to cooperate towards the goal, which is essentially

global in nature—i.e., the robots make up a team [44].

In the literature, several algorithms have been proposed to solve OMOkC [30], and evaluated through simulation.

However, such algorithms typically use conventional techniques by which the global coordination logic is expressed

according to a local viewpoint in terms of individual message-based communication acts. Since defining local behaviours

to build a specific global behaviour (a.k.a. local-to-global mapping problem) from the bottom up tends to be difficult, in

recent years, novel paradigms and abstractions are emerging that support the development of location-based services

in a more top-down fashion [9]. These approaches internally deal with the inverse problem (a.k.a. global-to-local

mapping) and let the programmer work at the macro-level perspective, generally at the expense of a more constrained

programming model. Accordingly, in this work, we consider the latter approach and develop a method and practical

framework for implementing and simulating networks of mobile robots with vision sensors through an aggregate

perspective. We leverage the approach and the toolchain to realise and benchmark two novel algorithms: (i) one based

on the idea of moving robots as if they were subject to virtual force fields generated by known targets and other robots,

which has showed to be suitable for exploration; (ii) the other based on the idea of sharing the vision information among

neighbouring robots and using these data to solve an optimisation problem locally, which has showed to improve over

the state of the art when targets are spotted. Most specifically, our contribution is threefold.

(1) An aggregate approach to OMOkC: our main contribution is the application of an emerging paradigm

(aggregate computing) to the problem of OMOkC. We apply, for the first time, aggregate computing [94] to

OMOkC, thus modelling, engineering, and programming networks of mobile robots with vision sensors as

collective adaptive systems;

(2) Two novel OMOkC algorithms: to showcase the applicability of the approach to the problem, we devised two

novel algorithms for distributed OMOkC, and show they perform better than the pre-existing state of the art.

(3) A simulation tool for aggregate programs in networks of robots with vision sensors: the application of

the technique required a toolchain for its evaluation, that we built by extending the Alchemist simulator [65]

with new capabilities. These new features have been released and are currently part of the main distribution of

the simulator: they are as such a by-contribution of this work.
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The remainder of the paper is organised as follows: Section 2 provides a mathematical model of the problem; Section 3

describes the aggregate computing approach to designing software for systems of robots with vision sensors; Section 4

provides motivation and a description of the proposed toolchain; Section 5 describes the application of the approach

and toolchain to OMOkC, presenting two novel algorithms and validating them against the state of the art; Section 6

discusses related work; Section 7 covers limitations and future work; finally, Section 8 concludes the paper with a

wrap-up and an outline of research directions for the future.

2 MODEL AND PROBLEM DEFINITION

This section provides a mathematical model of the Online Multi-Object k-Coverage (OMOkC) problem, following the

conceptualisation and notation introduced in [29, 30]. The problem extends the Cooperative Multi-robot Observation of

Multiple Moving Targets (CMOMMT) problem [59]. Related problems are discussed in Section 6.1.

2.1 The Online Multi-Object k-Coverage (OMOkC) problem

Let 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛} be a set of 𝑛 autonomous mobile robots with vision sensors, capable of analysing their Field of

View (FoV) and communicate with others in the environment. That is, we generally assume that robots are capable of

communicating with other nearby robots, which may be captured by a (logical) neighbouring relationship (as covered

in Section 3.1), and we abstract from the enabling actual networking mechanisms and protocols. An in-depth discussion

of how the network topology can affect the collective response of decentralised systems [55] falls beyond the scope of

this paper. Further, we consider 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑚} the set of𝑚 mobile objects, and 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑙 } ⊆ 𝑂 a set of 𝑙

important objects. Objects can become important for various reasons such as specific suspicious behaviour, appearance,

or simply because an operator selected them: the set of important objects is dynamic, i.e., it can change over time as

elements become important and unimportant. In particular, targets may be identified according to some (possibly also

dynamic) predicate P, so that, e.g., 𝑜𝑖 is a target 𝑝 𝑗 if predicate P(𝑜𝑖 ) = 1.

The state of each robot with vision sensors is modelled as a 4-tuple 𝑐𝑖 = ⟨®𝑥𝑖 , ®𝑣𝑖 , 𝜔𝑖 ,V𝑖 ⟩ with location ®𝑥𝑖 = (𝑥𝑖 , 𝑦𝑖 )1,
velocity ®𝑣𝑖 = (𝑣𝑋

𝑖
, 𝑣𝑌
𝑖
) = ( 𝑑𝑥𝑖

𝑑𝑡
,
𝑑𝑦𝑖
𝑑𝑡

), angular velocity 𝜔𝑖 , and field of view (FoV) V𝑖 . We assume perfect localisation.

Angular velocity is included in the 4-tuple despite the robot being modelled as point-wise to capture a rotating field of

view in dynamic situations. The FoVV𝑖 of robot’s camera 𝑐𝑖 is described as a triple ⟨Θ𝑖 , 𝑅𝑖 ,
𝛽𝑖
2
⟩ where Θ𝑖 models the

orientation of the view with respect to some fixed reference system, 𝑅𝑖 is the range of view (modelling the maximum

range a camera can detect targets), and
𝛽𝑖
2
denotes half of the view angle (modelling the width of the FoV beyond

which there are blind spots)—where we assume that the FoV is symmetric, i.e., both sides of the directrix for a given

orientation have the same angle width and range.

An object 𝑜𝑎 is covered at a given time 𝑡 , if the object is geometrically within the field of view V𝑖 of a camera 𝑐𝑖 , as

represented in Figure 1:

𝑐𝑜𝑣 (𝑜𝑎, 𝑐𝑖 , 𝑡) =
{

1, if 𝑑𝑖,𝑎 ≤ 𝑅𝑖 ∧ |𝛼𝑖,𝑎 | ≤ | 𝛽𝑖
2
|

0, otherwise,

where 𝑑𝑖,𝑎 and 𝛼𝑖,𝑎 denote, respectively, the Euclidean distance and the angle between the object 𝑜𝑎 and the camera 𝑐𝑖 :

any object within any FoV is considered covered.

1
For simplicity, we consider a two-dimensional environment, even though extensions are possible for three-dimensional scenarios.
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Fig. 1. Illustration of an object 𝑜𝑎 inside the FoV V𝑖 of camera 𝑐𝑖 .

Since we are interested to cover each target with at least 𝑘 robots at any time, we define the 𝑘-coverage at time 𝑡 as

follows:

𝑘𝑐𝑜𝑣 (𝑜𝑎, 𝑘, 𝑡) =
{

1, if
∑𝑛
𝑖=1 𝑐𝑜𝑣 (𝑜𝑎,V𝑖 , 𝑡) ≥ 𝑘

0, otherwise.

In order to measure how well 𝑘-coverage is achieved throughout an arbitrary period, we extend the normalised

metric by Esterle and Lewis [29] considering a continuous-time flow beginning at 𝑇0 and ending at 𝑇 :

𝑂𝑀𝐶𝑘 =

∫ 𝑇

𝑇0

∑𝑚
𝑎=1 𝑘𝑐𝑜𝑣 (𝑜𝑎,𝑘,𝑡 )
𝑚𝑎𝑥 (1, |𝑃𝑡 |) 𝑑𝑡

𝑇 −𝑇0
(1)

for a given value of 𝑘 . This value is normalised by the number of elements in the set of important objects 𝑃𝑡 at time 𝑡 .

In short, the numerator of 𝑂𝑀𝐶𝑘 represents the sum of the fraction of objects covered by 𝑘 or more robot cameras

over the total time 𝑇 − 𝑇0. We need this normalisation to keep results comparable even with changing numbers of

important targets. We finally divide it for the time length to get the average coverage during the period of interest. In

this work, we assume perfect localisation and detection to focus on the problem (demonstrated to be NP-hard [29, 59])

of coordinating mobile robots with vision sensors in a decentralised fashion in such a way that at least 𝑘 of them are

tracking each important mobile target (whose movement can not be controlled by robots), where the set of important

targets is dynamic. Furthermore, we aim to maximise the number of important targets detected by the set of cameras.

This makes coverage of each target with exactly 𝑘 cameras the dominant strategy for the collective as cameras not

tracking known targets are free the explore and detect new targets. However, when there are not enough agents 𝑛

to cover all objects 𝑚 this goal cannot be achieved, i.e., 𝑚 × 𝑘 > 𝑛. In Figure 2, we show a sequence of snapshots

exemplifying an instance of the problem
2
.

We utilise the OMOkC problem as it brings about an interesting trade-off between exploration vs. exploitation. This

dilemma requires decisions on the coordination to be considered continuously at runtime. Precisely, individual robots

2
Snapshots are from the video publicly available at https://www.youtube.com/watch?v=yuaY_8Vr3oc
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Collective Adaptive Decentralized k-Coverage 5

Fig. 2. Sequence of snapshots exemplifying an instance of the OMOkC problem. Green dots represent uninteresting targets, red dots
are interesting targets, black dots are robots, and blue wedges their field of view. Targets move in the arena (black square), and they
may randomly switch their “interesting” status. Robots must explore the area in search of interesting targets and, once some are
found, they must organise (in a decentralised fashion) to follow the target from 𝑘 points of view.

Symbol Description

𝐶 set of cameras

𝑂 set of objects

𝑃 ⊆ 𝑂 set of important objects (targets)

𝑛 number of robots with cameras

𝑚 number of objects

𝑙 number of targets

𝑐𝑖 = ⟨®𝑥𝑖 , ®𝑣𝑖 , 𝜔𝑖 ,V𝑖 ⟩ i-th camera/robot

𝑜𝑖 i-th object

𝑝𝑖 i-th object of interest

®𝑥𝑖 = (𝑥𝑖 , 𝑦𝑖 ) i-th robot’s location vector

®𝑣𝑖 i-th robot’s velocity vector

𝜔𝑖 i-th cameras’s angular velocity

V𝑖 = ⟨Θ𝑖 , 𝑅𝑖 ,
𝛽𝑖
2
⟩ i-th cameras’s field of view

𝑅𝑖 range of the i-th cameras’s field of view

Θ𝑖 orientation of the i-th cameras’s field of view

𝛽𝑖 angle of the i-th cameras’s field of view

𝛼𝑖 𝑗 angle of the j-th object wrt the i-th camera’s field of view

𝑑𝑖 𝑗 distance of the j-th object wrt the i-th robot

Table 1. Summary of notation.

must decide whether to follow a specific target to improve the quality of its coverage or search for another to increase

the total number of detected targets. As targets can change their state, becoming important or unimportant at random

times, mobile robots have to re-evaluate their decisions continuously.

3 AN AGGREGATE APPROACH FOR OMOKC

All the methods tackling OMOkC in a decentralised fashion found in the literature (of which we provide an extensive

review in Section 6.2) share a common trait: the solution is designed by focussing on the interaction among single

robots, on the messages they should exchange, and on the ways they may form coalitions dynamically. In this work, we

propose a different take: building on the idea on which aggregate computing is rooted, we advocate that the ensemble

comprising all robots could and should be programmed as a single, distributed computational entity. To understand

Manuscript submitted to ACM
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6 Pianini et al.

how this can be done, we briefly introduce
3
aggregate computing (Section 3.1) and motivate its application to the

decentralised OMOkC problem (Section 3.2).

3.1 Designing collective behaviours with Aggregate Computing

3.1.1 Approach overview. Aggregate computing is a paradigm and engineering approach for developing collective

adaptive systems from a global perspective. The core functional language that formally founds aggregate computing is

the (computational) field calculus [5]. As its name suggests, it is a calculus of (computational) fields, which are essentially

(dynamic) maps from (a domain of) devices to computational values. In particular, a field can be seen as a distributed

data structure that represents, over time, the result of a collective computation. Aggregate programming languages [94]

provide the field calculus primitives and library functions to manipulate these distributed data structures. Following this

approach, the designer does not need to focus on single devices or communication protocols but instead on how fields

evolve and compose: it is up to the language’s interpreter (or compiler) to determine the appropriate local interaction

schema generating the desired global effect.

Most notably, the calculus (and, thus, the derived languages) provides the primary mechanisms for the predictable

composition of emergent behaviour. Self-stabilising building blocks can be defined leveraging functional abstractions [93],

and an entire library of collective behaviours [36] can get built upon them. The paradigm has been implemented in several

languages: Protelis [67], a stand-alone, Java-interoperable, and JVM-hosted language; ScaFi [18], a domain-specific

language (DSL) embedded in the Scala programming language; and FCPP [2], a lightweight native implementation

designed to run on low-resource devices.

3.1.2 Aggregate computing model (structure, behaviour, interaction). Structurally, a logical4 aggregate system consists

of a set of (uniquely identified) devices; each device can communicate with other devices as per some neighbouring

relationship. As a device moves in the environment, its set of neighbours might change. Notice that neighbourhoods

are defined at a logically and independently of physical connectivity and spatial proximity (although it is natural to

leverage those).

From the point of view of (global) behaviour , the aggregate system is instructed to continuously:

(1) update the context by sensing the environment and gathering coordination messages;

(2) interpret some aggregate program expressing the collective logic;

(3) act onto the environment as a consequence.

From a local, discrete perspective, every device works at asynchronous rounds of execution; in each round, an individual

device gets data from its sensors and messages from neighbours, locally interprets the aggregate program against such

input data, and triggers its actuators on the program local output (including data broadcasting to neighbours).

From the point of view of interaction, the devices continuously exchange coordination data with neighbour devices.

The data to be exchanged results from the interpretation of the aggregate program.

3.2 Networked robots as Aggregate Systems

Aggregate computing is a natural framework for expressing collective algorithms in a decentralised fashion [94]. The

aggregate computing aspects and abstractions can be mapped to the problem considered in this paper as follows.

3
A full treatise of the approach is beyond the scope of this work; the interested reader can refer to the dedicated literature [5, 10, 94].

4
Namely, not related to an actual system implementation: it can be shown [17] that an aggregate system admits different kinds of deployments and

execution architectures, ranging from purely decentralised (e.g., ad-hoc, peer-to-peer) to fully centralised (e.g., cloud-based).
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• Aggregate system. The aggregate system logically consists in a network of mobile robots with vision sensors.

Being in aggregate system, the set of interacting robots can be programmed as a whole, conceptually.

• Individual node. A mobile robot with vision sensors is an individual node of the aggregate system. It has identity,

state, sensors, actuators, runs an aggregate program, and interacts with other robots by sending messages as

prescribed by the semantical interpretation of the aggregate program.

• Neighbouring relationship. It depends on the particular application and deployment. It can merely mirror physical

connectivity (e.g., to support programming of situated systems), or can be used to set up a logical overlay

network [17] reflecting the spatial distribution of devices, or even purely logical relationships. For the scenario

considered in Section 5, we consider robots connected if they are close by a certain threshold (hence simulating

short-range radio communication).

• Aggregate program. It describes the behaviour of a network of mobile robots. The actual behaviour emerges

from the combination of the environmental dynamics, the dynamics of the evaluation of the program by each

robot against its context, and the dynamics of inter-robot communication.

• Sensors. The set of required sensors depends on the program. For the algorithms considered in the following

(Section 5), a robot has a vision sensor, a sensor for estimating the distance to neighbours, and a sensor for

estimating the direction towards neighbours.

• Actuators. The set of required actuators depends on the application. For the considered problem, a robot has

movement actuators (for rotating and going forward).

• State. A robot, at a minimum, must have sensors and actuators. In principle, state and aggregate program

computations can be offloaded to other machines [17]. The state of a robot would include the data implied by

the local aggregate program execution, plus configuration data which could also be modelled via sensors.

• Local computational behaviour. The local computational behaviour of a robot consists of the application of the

aggregate execution protocol as described in Section 3.1.2, which involves sensing the local context, running

the aggregate program against the local context, and then acting on the local context by sending messages to

neighbours and running actuations. The overall local behaviour, hence, emerges from the local computational

behaviour and interaction with the environment (e.g., the detection of a target through the visual sensors).

• Scheduling and execution details. There is large flexibility regarding when computational rounds and com-

munications are performed [17]. Typically, no synchronicity and message delivery guarantees are required:

rounds and communications may be asynchronous, and the computation would tend to self-stabilise [93] once

up-to-date data is available. As a rule of thumb, the frequency of computation and communications should be

adequate to the dynamics of the phenomenon to be monitored or dealt with—in this case, the speed of targets.

Of course, such details may significantly affect the overall performance. However, since the aggregate behaviour

is emergent, it may not be easy to determine the optimal execution strategy, especially when also considering

the costs in term of energy and bandwidth consumption. Such a detailed analysis of the performance is beyond

the scope of this work, which instead focusses on the overall approach.

3.2.1 Benefits. Modelling networked robots as an aggregate system allows to enjoy the features that aggregate

computing offers over other approaches, mainly:

(1) abstraction from device-to-device communication: in aggregate computing, communication protocols are a

consequence of the structure of the program—the designer does not need to figure out messages to be exchanged,

their order, and similar low-level details;
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8 Pianini et al.

(2) functional compositionality [93]: aggregate programs are written in a functional language and can (and should)

be encapsulated into reusable functions.

Thus, from a design point of view, describing the behaviour of the mobile robot network as an aggregate program

introduces abstractions closer to the problem than messages and protocols. From an engineering point of view, the

ability to encapsulate behaviour into functions in a reusable fashion opens the door to further simplification.

On the one hand, the designer can reuse an extensive API of collective behaviours [36] shipped as a standard library

for the languages; the availability of aggregate library functions with proven guarantees [93] can reduce significantly

the time and effort required to build and debug complex behaviours, as these reusable building blocks capture many

low-level details. On the other hand, reusable blocks of specialised behaviour can be encapsulated into reusable functions,

collected, and shared as blocks upon which more complex programs can be constructed, enabling guarantees and

fine-grained control over growing complexity, ultimately promoting the creation of more and more refined behaviours.

4 A TOOLCHAIN FOR DEVELOPING SOLUTIONS TO OMOKCWITH AGGREGATE COMPUTING

Reaping the benefits of aggregate computing into the multi-robot coordination domain requires appropriate development

tools. In particular, simulation platforms supporting aggregate computing and networks of robots with vision sensors

are essential, as they enable evaluation and testing of the algorithms being developed in a low-cost and time-efficient

fashion. We first analysed the state of the art and found that, to the best of our knowledge, no simulator supported both

aggregate computing specifications and the simulation of multi-robot systems with a field of view. We thus took the

subsequent step and extended an existing simulation platform, choosing between integrating aggregate programming

into an existing simulator for networked robots with vision sensors or extending an existing aggregate computing

simulator with the capabilities to support networked robots with vision sensors. This section first discusses the available

options for a viable simulation tool (Sections 4.1 and 4.2), motivating our choice for the tool, and finally explaining how

the extension has been realised in the selected product (Section 4.3).

4.1 Simulators for networked robots with vision sensors

Deploying and maintaining networks of mobile robots with vision sensors in the real world is generally cumbersome,

time-intensive, and requires manual labour. Testing new approaches in real networks can be costly and problematic—as

experiments often cannot be reproduced precisely. Various simulation tools for robotic systems have been developed

over the past several years to overcome this problem [78]. These different simulators, however, often come with a

trade-off between resource efficiency and fidelity [92]. Additionally, we identify three macro areas where a simulation

tool can focus:

(1) interaction among physical objects and with the physical world in general;

(2) network evaluation and performance;

(3) robot behaviour and software.

Usually, tools focus on one of these areas. Consequently, multiple simulation tools may be used during development,

depending on the current development stage: a tool focussing on behavioural and software aspects is necessary from the

beginning to assess the functional correctness of the programs being designed and implemented; a network simulator

is helpful to understand whether the designed software may induce excessive stress on the communication channels;

a simulator specialised in physical interactions can be used to test and debug issues with the sensing and actuation

before deployment.
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In this work, we focus on simulators meant to be leveraged in the initial phase of software design, as we need a tool

focussing on the behaviour of many devices, even if at the expense of simplified physical interactions. These kinds

of tools allow for rapid prototyping, quick interception of possible mistakes, and streamlined acquisition of synthetic

benchmarks: our goal is to understand the technical feasibility and convenience of aggregate computing as a means

to tackle decentralised OMOkC. For the sake of completeness, we also review, in Section 6.4, simulators dedicated to

measuring network performance and simulators focussing on a realistic reproduction of the physical world where

robots work. These were not considered practical targets for our investigation, but they were considered, and we believe

they could be leveraged in the future for more in-depth analyses.

The leading example of a simulator dedicated to quick prototyping and benchmarking of OMOkC algorithms is

CamSim [31], focussing on the agent-based behaviour of networked robots with vision sensors. Initially developed for

static cameras, CamSim has been extended towards Pan-Tilt-Zoom (PTZ) cameras and later even enabled networked

mobile robots equipped with cameras to study coordination, individual self-adaption in collectives, and self-organisation

properties. The simulator does not represent physical aspects of the real world except the vision sensors themselves;

similarly, objects are represented as dots.

4.2 Simulators supporting aggregate programming

The ecosystem of simulators that natively support aggregate programming is still in its infancy. Typically, since an

aggregate system with a single device is considered a degenerate case, languages rooted in the aggregate computing

paradigm also feature a simulation system whose goal is to run code on a simulated network of devices. This is the case,

for instance, for ScaFi [18] and FCPP [2], both of which ship with a lightweight simulation infrastructure for quick

prototyping [2, 95]. This follows the tradition of MIT Proto [8], an early language for spatial computing (we review

approaches similar to aggregate computing in Section 6.3), whose language interpreter and internal simulator were

inextricably intertwined. However, these integrated simulators are not meant to be used for extensive benchmarking

and generally do not provide means for extending them to simulate complex scenarios.

Consequently, most of the experiments with simulations that leveraged aggregate programming have been executed,

so far, by integrating aggregate programming into an existing simulation platform
5
, or by creating custom environments

tailored to the specific analysis [11], or by leveraging the Alchemist simulator [65]. Thus, Alchemist is, to the best of

our knowledge, the only stand-alone tool with first-class native support for aggregate programming (limited to the

Protelis and ScaFi implementations).

Alchemist is a modular general-purpose meta-simulator for multi-agent systems. The core of Alchemist is an event-

based engine derived from chemistry-oriented simulators, and its computational meta-model in part reflects these

origins. The initial idea behind the simulator was to provide a lightweight core of abstractions, with few assumptions

necessary to make the simulation engine work efficiently (a performance comparison with Repast is available in [65]),

and providing a framework for easy extension in such a way that the meta-model entities could be refined differently

depending on the case at hand.

4.3 Supporting multi-robot systems with vision sensors in Alchemist

After extensive evaluation of the possibilities, we were left with the choice between extending a simulator supporting

aggregate computing with the tooling needed for robots with vision sensors, or extending a simulator supporting robots

5
https://archive.ph/cI2QN
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10 Pianini et al.

with the capabilities to run aggregate programs. In any case, it was paramount to execute the aggregate specification

using the original interpreter: we did not want to perform paradigmatic conversions to fit aggregate computing into an

alternative paradigm, as it would likely introduce errors and limit expressiveness.

We needed a system allowing for quick prototyping, and thus a tool focussing on behaviour and software, belonging

to the first of the three categories identified in Section 4.1. Our choice was thus quickly restricted to (i) Alchemist,

supporting aggregate computing on mobile nodes, but missing support for fields of view; and (ii) CamSim, with mature

support for mobile robots with vision sensors, but lacking aggregate computing integration. Ultimately, we decided to

tackle the creation of the toolchain by extending Alchemist; three dominant factors drove the choice:

(1) we deemed extending the Alchemist simulation model easier than integrating aggregate computing into

CamSim;

(2) while Alchemist is actively developed, with the official repository
6
registering new commits at least weekly,

CamSim appears to have been discontinued, as the latest commit on the official repository
7
being (at the time

of writing) from 2017
8
; and

(3) we expected better performance, as Alchemist has been exercised in the past with tens of thousands of simulated

devices [12], while all works leveraging CamSim used few dozen devices, and in no case (to the best of our

knowledge) has ever been used with more than a hundred.

4.3.1 The Alchemist simulator meta-model. To better understand how we extended the original model of Alchemist,

we briefly introduce its computational model. In Alchemist, every simulation is the event-driven evolution of an

environment. An environment defines a coordinate system, the concept of position, and contains nodes and obstacles.

We call 𝑁𝑡 the set of nodes belonging to some environment at time 𝑡 , and ℘(𝑁𝑡 ) its power set. Environments are

programmed with a network model, a function 𝑛 : 𝑁𝑡 → ℘(𝑁𝑡 ) such as:

𝑦 ∈ 𝑛(𝑥) ⇔ 𝑥 ∈ 𝑛(𝑦) ∀ 𝑥 ∈ 𝑁𝑡 , 𝑦 ∈ 𝑁𝑡 , 𝑥 ≠ 𝑦

defining, for each node in the environment, the set of nodes considered neighbours, with the restriction that if some

node 𝑥 is neighbour to a node 𝑦 at time 𝑡 , then node 𝑦 must be neighbour of node 𝑥 at the same time (neighbourhood

relationships are symmetric). Every node in 𝑁𝑡 is situated, i.e., it has a valid position in the environment. Nodes are

containers of reactions and molecules. Both nodes and obstacles have a shape; the environment does not allow shapes

belonging to diverse objects to overlap. Molecules are symbolic names that can be associated with a concentration

(i.e., a value). Reactions are atomic events that can affect the environment. They are guarded by a set of conditions,

namely boolean functions deciding whether the reaction can be executed or not. Every reaction is associated with a time

distribution, providing putative execution times (or infinity, if conditions are unsatisfied). When a reaction is executed,

it triggers a sequence of actions. Actions are arbitrary modifications of the environment. It has been proven that this

abstract model allows for reuse of an extended version of the Gibson-Bruck stochastic Monte Carlo Algorithm [40],

providing a performance edge over classic, agent-based engines [65], and consequently allowing better scaling with the

count of simulated nodes. A so-called incarnation in Alchemist is a software component in charge of defining the actual

type of data items being manipulated (the concentration type), possibly along with some other concrete Alchemist

entities that manipulate it. This way, a precise trade-off can be achieved between generalisation and performance.

6
https://github.com/AlchemistSimulator/Alchemist

7
https://github.com/EPiCS/CamSim

8
https://web.archive.org/web/20210908134925/https://github.com/EPiCS/CamSim
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<<Interface>>
Vector

dimensions: Int

getCoordinate(Int): Double
plus(S): S
minus(S): S

<<Interface>>
GeometricTransformation

origin(S)

<<Interface>>
GeometricShape

diameter: Double

intersects(GeometricShape<S, T>): Boolean
contains(S): Boolean
transformed(A): GeometricShape<S>

Euclidean2DPosition

(from Alchemist)

<<Interface>>
Position2D

(from Alchemist)

<<bind>> S -> Vector<Euclidean2DPosition>

<<Interface>>
Euclidean2DTransformation

rotate(Double)
rotate(Euclidean2DPosition)

<<bind>> S -> Euclidean2DPosition

S: Vector<S>
A: GeometricTransformation<S>

S: Vector<S>

S: Vector<S>

<<bind>>
S -> Euclidean2DPosition

A -> Euclidean2DTransformation

<<Interface>>
Euclidean2DShape

<<Interface>>
Environment

(from Alchemist)

<<bind>> P -> Position2D<Euclidean2DPosition>

P: Position2D<P>

T
P: Position<P>

1 *has

centroid

<<Interface>>
GeometricShapeFactory

adimensional(): GeometricShape<S, A>

S: Vector<S>
A: GeometricTransformation<S>

<<Interface>>
Euclidean2DShapeFactory

circle(): Euclidean2DShape
rectangle(): Euclidean2DShape

<<bind>>
S -> Euclidean2DPosition

A -> Euclidean2DTransformation

<<Interface>>
EuclideanPhysics2DEnvironment

<<Interface>>
PhysicsEnvironment

getHeading(Node): S
setHeading(Node): S
getShape(Node): GeometricShape<S, A>
getNodesWithin(GeometricShape<S, A>): Node [0..*]
canNodeFitPosition(Node, P): Boolean

S: Vector<S>
A: GeometricTransformation<S>
F: GeometricShapeFactory<S, A>

1

*

offers a

factory

<<bind>>
S -> Euclidean2DPosition

A -> Euclidean2DTransformation
F -> Euclidean2DShapeFactory

1

<<Interface>>
Node

shape: GeometricShape

Fig. 3. Structural view of the implementation of the essential physical components into the existing simulator. Entities inherited
from the original implementation are annotated with “(from Alchemist)”. We associated Nodes with a shape and a heading. To
preserve a coherent view of the global coordinates system, this information is added to the Environment (as it originally was in
charge of tracking the node position as well). Since the simulator is generic concerning the number of dimensions and the details of
the manifold (as far as it is a Riemannian manifold), we had also to introduce means for rotation and translation of non-pointwise
objects; hence we enriched the model with the possibility of expressing GeometricTransformations, and we implemented the
required machinery for these transformations to happen in bidimensional Euclidean spaces.

4.3.2 Contribution: two novel modules for Alchemist. In Alchemist, a module is a software component extending the

capabilities of the simulator. The multi-robot with vision sensors support for Alchemist is composed of two such

modules: (i) the alchemist-influence-sphere9 module, introducing necessary physical interactions among

9
http://bit.ly/alchemist-influence-sphere-maven-central
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<<Interface>>
Action

(from Alchemist)

AbstractAction
(from Alchemist)

has

FieldOfView2D

distance
angle
- shape: GeometricShape

see(): VisibleNode[0..*]

subject

1

*

<<Interface>>
Molecule

(from Alchemist)

<<Interface>>
Reaction

(from Alchemist)

in
<<Interface>>
VisibleNode

<<Interface>>
Position

(from Alchemist)

output

See

ToggleMolecule

<<Interface>>
EuclideanPhysics2DEnvironment

getHeading(Node): Euclidean2DPosition
setHeading(Node): Euclidean2DPosition
getNodesWithin(GeometricShape): Node [0..*]
getPosition(Node): Euclidean2DPosition
setPosition(Node): Euclidean2DPosition

1 *

<<Interface>>
Node

shape: GeometricShape

target target

which

HeadTowardTarget

angularSpeed

FollowAtDistance

speed

distance
RandomlyToggleMolecule

odds

1

1 1 1

*

*

*

*

1

1

Fig. 4. Structural view of part of the implementation of the robots’ vision and control system into the existing simulator. Entities
inherited from the original implementation are annotated with “(from Alchemist)”. The basic Node was extended with the concept of
visibility, which enables some objects to be perceived by others (besides the neighbourhood relationship, which was built-in). We then
introduced the sensing capabilities by modelling a FieldOfView2D; the field of view orientation is bound to the robot’s heading
(as heading and position are captured in the environment, see Figure 3). Consistently with the original model of Alchemist, access to
the novel capabilities is modelled as a set of Actions—for the sake of conciseness, here we show some examples from the more
extensive library: vision sensor reading (See) and target following (FollowAtDistance).

objects and enriching the concept of node with a perception area (de facto generalising the concept of field of view);

and (ii) the alchemist-smartcam10 module, which collects actions that allow for controlling, moving robots,

and rotating their camera. For the sake of brevity, we do not delve into the implementation details of the simulator

extension; however, to help the interested reader navigate the code, we provide a structural UML schema for the physical

interactions in Figure 3 and a similar diagram for the robot controls in Figure 4.

10
http://bit.ly/alchemist-smartcam-maven-central
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The final result improves over the existing state of the art in several areas, in particular:

• Environment model. Alchemist supports a more detailed (yet still lightweight) model of the world, includ-

ing support for indoor environments (by importing floor plans images) and modelling objects obstructing

communication, movement, and view.

• Programming abstractions. Alchemist agents can be programmed with various approaches, including the

aggregate computing languages Protelis [67] and Scafi [95]; moreover, the architecture allows for plugging in

new languages in the future and using them for driving smart cameras with no case-specific code. The main

benefit of this feature is the possibility of experimenting with a variety of different approaches and compare

them.

• Scalability. Alchemist demonstrated to efficiently scale up to the order of tenths of thousands of devices on

conventional consumer hardware [12]. By contrast, CamSim has never been exercised with more than a few

dozen robots to the best of our knowledge.

• Target behaviour. Alchemist supports many advanced behaviours, such as movements accounting for cognitive,

sociocultural, and emotional elements as defined by existing models in the literature [89].

• Parallelism and distribution. Alchemist supports parallel and distributed execution and statistical analysis [66].

Once the modules are available in the classpath, the simulation can be expressed declaratively in a YAML file
11
.

YAML is a data serialisation format, superset of JSON, commonly used for non-trivial and human-readable configuration

files. A commented example simulation descriptor is given in Figure 5, giving the reader an idea of the complexity

of writing simulations. Alchemist is designed to allow third parties to extend the simulator and reuse the existing

specification language. Due to space constraints, we will not unravel all the details of the specification language in this

paper: the interested reader can refer to a recent tutorial [61]. By leveraging the pre-existing extension mechanisms

of Alchemist, we were able to write our extension in terms of new environments and nodes (containing the physical

properties, see Figure 3) and new actions (defining the behaviour of the camera sensors and exposing the actuators for

its control, see Figure 4).

The software developed as part of this work has been integrated into the main Alchemist distribution and is available

to the entire scientific community. Additional examples and a more extensive user guide are out of this work’s scope:

further (and up to date) details are provided on the Alchemist Simulator website
12
.

5 AGGREGATE COMPUTING FOR ONLINE MULTI-OBJECT K-COVERAGE (OMOKC) IN ACTION

This section shows the potential of aggregate computing applied to OMOkC by exercising the proposed toolchain.

We leverage aggregate computing capabilities to introduce two novel algorithmic solutions for the OMOkC problem

that we show to improve over the state of the art. The first algorithm leverages for the first time the notion of

computational field to build distributed data structures working as force fields, and then letting robots move according

to them. This algorithm was a natural candidate for our initial investigation, as aggregate computing is particularly

well-suited at expressing computations on field-like distributed data structures. We find that this algorithm is well-suited

for the initial exploration of the environment (especially in the bootstrap phase), while it is not particularly effective in

allocating cameras to targets. The algorithm, in fact, outputs a desired position for the robot, regardless of the existence

of known targets or other robots. The second algorithm exploits aggregate computing to share the field of view among

11
https://yaml.org/spec/1.2.1/

12
https://alchemistsimulator.github.io/
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# Incarnation to be used. Dictates which data types can be used and how nodes can be programmed.
incarnation: protelis # Enables support for the Protelis programming language.

# Variables: parameters of the simulation. They can be used to reduce repetitions.
# They can be referenced (as per YAML specification) by their anchor name (starting with '&'),
# by prefixing a string with the special character '*'.
# When containing the 'formula: "code"' mapping, "code" is fed to a Groovy interpreter for evaluation.
variables:
humans: &humans

formula: "20" # Target count
cameras: &cameras

formula: 10 # Robot count
size: &size

formula: 400 # Arena side length, in meters
origin: &origin

formula: "-size/2" # Where the arena bottom-right corner should be for the origin to be (0, 0)
FOVangle: &FOVangle

formula: 60 # Field of view angle, in degrees
FOVdistance: &FOVdistance

formula: 20 # Field of view distance, in meters

# The kind of environment
environment:
# The type/parameters syntax allows runtime loading of arbitrary simulation extensions: the
# simulator searches the runtime classpath for a class that implements the necessary API, named
# as the string passed for 'type', and whose constructor can produce a valid instance when fed
# contextual information and the provided parameters.
type: Rectangular2DEnvironment # an environment with an unpassable rectangular arena
parameters: [*size, *size] # the horizontal and vertical dimensions of the arena, in meters

# Declaration of nodes together with their position and content
displacements:
# Randomly place potential targets into the arena
- type: Rectangle

parameters: [*humans, *origin, *origin, *size, *size]
nodes: # Defines the class of nodes representing potential targets within the simulation
type: CircleNode # An alchemist node with a physical size (part of our extension)
parameters: [1] # Dimension of the circular node (in meters)

- type: Rectangle
parameters: [*cameras, *origin, *origin, *size, *size]
programs: # Robots get programmed here
- time-distribution: 1 # Loads a negative exponential distribution with lambda=1

type: Event
actions:

type: See # Custom action enabling the camera sensing (part of our extension).
parameters: [*FOVdistance, *FOVangle, "inSight"]

# The 'program' syntax is alternative to the type/parameter syntax for Alchemist's
# reactions/events, the provided string is passed down to the incarnation for interpretation
- program: "some:protelis:module" # Loads the omonym protelis program
- program: send # Special action, enabling networking with the Protelis incarnation

Fig. 5. An Alchemist YAML simulation descriptor using the newly developed modules. It configures an environment with 20 potential
targets and 10 robots with vision sensors in a 400mx400m square room. Robots are programmed (via the See action) to sense all the
perceived nodes (humans and other robots) and write all the associated metadata to the inSight molecule.

neighbouring devices, allowing each one to “see” with multiple fields of view. This information is then leveraged to

build a linear optimisation problem (describing only the system in the vicinity of the device) whose solution dictates

the device’s behaviour. The approach does not define an exploration strategy (as it outputs the position of the target

assigned to the robot only if the robot is being assigned) and must thus be coupled with some other approach that does

(including the previously presented force field-based algorithm). Data shows that this approach consistently improves

over the state of the art in allocating robots to targets.
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The proposed algorithms output positions, not orientations; selecting the latter can be done with an arbitrary strategy

during exploration and keeping the target object at the centre of the field of view during tracking. Before exercising our

new algorithms, in Section 5.3.1 we discuss our selected strategies for orientating the cameras.

5.1 Force Field Exploration (AForceField)

The A
ForceField

algorithm is inspired by the idea of attraction and repulsion fields, notions widely used in force-directed

graph drawing [7, 52]. Each robot generates a repulsive force field 𝜙𝑐 , whereas every known target (i.e., targets that

are currently in the field of view of at least one robot) generates an attractive force field 𝜙𝑜 . Of course, targets outside

all the fields of view are unknown to the robots, and since targets are not part of the aggregate computational systems,

they cannot emit any field and are thus unknown to the robots. The direction of movement of a robot is given by the

vector sum of the force fields involved. Moreover, to avoid the system from getting stuck into static situations, we

also consider an additional notion, willpower (symbol:𝑊 ), leveraged by robots to stick to the previous resolution

despite the current force fields. The force fields are defined as functions of the distance (symbol: 𝑑 ) between entities,

as follows:

𝜙𝑐 (𝑑) =
𝑊

2

(2V𝑅)2
max(1, 𝑑)2

(2)

𝜙𝑜 (𝑑) = −𝑘 4𝜙𝑐 (𝑑)
max(1, 𝑑) (3)

whereV𝑅 is the distance of the field of view, and 𝑘 is the desired maximum coverage (namely, the 𝑘 in 𝑘-coverage).

This algorithm is a form of coordinated exploration that can be expressed directly as a collective field computation. The

aggregate computing approach is particularly effective at expressing this kind of computation succinctly. As such, we

attach a Protelis-written implementation in Figure 6. A complete implementation including code interacting with the

simulated robot with vision sensors is available online
13
.

5.2 Linear Programming-based Algorithm (ALinPro)

ALinPro is rooted in the idea of continuously solving multiple local linear programming problems defining the target

selection strategy to minimise the robots’ movements while attaining coverage. This approach is motivated by the

idea that the problem could be broken down into smaller pieces (the neighbourhood of a robot, for each robot), and

then a solution could be searched for each smaller problem. Although this kind of modelling does not preserve the

possibility to reach a globally optimal solution, our intuition is that it should provide reasonably good local behaviour if

the robots can access the fields of view of their neighbours. The approach we propose thus builds an aggregate view

of the local system, sharing for each robot the fields of view of all neighbouring robots. The shared view is leveraged to

build a classic optimisation problem that we solve locally for each device on every round (recall the local view of the

behavioural description of aggregate computing introduced in Section 3.1).

This algorithm is different from a classic resolution of the global optimisation problem, as it works with partial

information and needs to be continuously updated due to the intrinsic dynamicity of the system. In fact, the absence

of a central leader means that the problem runs under partial information, and although the movement of robots can

be controlled and programmed, no control can be exerted by the program over the target’s behaviour. As such, the

optimisation is somewhat aiming at a moving target; in other words, it is not just simple optimisation, but continuous

optimisation towards an ever-changing optimum. Although techniques exist for building increasingly large alliances

13
http://archive.is/wip/MxJ5h
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def will() = ...
def repulsion(distance) = will()/2 *
((fovDistance() * 2)^2) / (max(1, distance)^2)

def attraction(distance) = if(distance >= fovDistance()/3) {
-((desiredK() * repulsion(distance) * 4) / max(1, distance))

} else { 0 }

def boundaries() { ... }

public def fieldExploration() {
let cameraForces = repulsion(nbrRange()) * nbrVersor()
let targetForces = foldUnion(nbr(vision()))

.map { attraction(distanceFrom(it)) * versor(position(self) - position(it))
}
.reduce([0,0]) { a, b -> a + b }

let sumOfForces = foldSum(cameraForces) + boundaries() + targetForces
rep(myDirectionAngle <- randomAngle()){ // Start with a random angle

let myDirection = angleToVersor(myDirectionAngle)
let myForce = myDirection * will()
let destination = position(self) + sumOfForces + myForce
let newAngle = directionToAngle(destination - position(self))
env.put("destination", destination +
[step() * cos(newAngle), step() * sin(newAngle)])

newAngle
}

}

Fig. 6. Protelis code for AForceField executed independently by each robot, stripped of low level details.

of robots with a central leader, up to the point where the whole network has a single leader where all information is

centralised [63], this comes with several downsides:

• the communication time with the leader, using these techniques on opportunistic networks, grows linearly

with the network diameter;

• data collection into a leader in mobile networks has its own sets of significant limitations that a growing body

of literature is analysing [3, 4, 105];

• the leader robot must solve the global optimisation problem for all devices, which may introduce scaling

problems (the more robots, the more difficult is the problem) and issues of asymmetric power consumption

among robots.

We thus preferred to experiment with solving many simple problems, considering only the fields of view of neighbouring

robots for each robot. Leveraging aggregate computing, we show that the algorithm can be expressed in few lines of

code by relying on the interoperability with existing languages and platforms for the centralised component (the solver

of the linear programming problem) and exploiting field-of-view fields (i.e. maps from neighbours to their fields of view)

to gather the necessary data.
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We formalise the mathematical model of the problem as follows:

Minimise

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑐𝑖 𝑗𝑥𝑖 𝑗 +
𝑛∑︁
𝑖=1

𝑞𝑥𝑖,𝑚+1 (4)

Subject to

𝑚+1∑︁
𝑗=1

𝑥𝑖 𝑗 = 1 𝑖 = 1, . . . , 𝑛 (5)

𝑛∑︁
𝑖=1

𝑥𝑖 𝑗 ≤ 𝑘 𝑗 = 1, . . . ,𝑚 (6)

𝑛∑︁
𝑖=1

𝑥𝑖 𝑗 ≥ min

(
1,

⌊ 𝑛
𝑚

⌋ )
𝑗 = 1, . . . ,𝑚 (7)

𝑥𝑖 𝑗 ∈ {0, 1} 𝑖 = 1, . . . , 𝑛 (8)

𝑗 = 1, . . . ,𝑚 + 1

where:

• 𝑛 is the number of known neighbouring robots;

• 𝑚 is the number of targets (important objects) located within the field of view of at least one neighbouring robot;

• 𝑚 + 1 denotes a fictitious target that will be assigned to redundant cameras or when there are no targets; indeed,

the second addend of Equation (4) has the goal to permit solutions to the problem where some cameras are left

unassigned: robots assigned to that target are considered free and will adopt an exploratory behaviour;

• 𝑐𝑖 𝑗 is the cost of assigning target 𝑗 to robot 𝑖 . In our case, the Euclidean distance between the two entities

was used; however, the cost metric could be either a more elaborate notion of distance and/or could take into

account additional costs (e.g. presumed additional network communication, energy consumption for enacting

camera rotation, etc.);

• 𝑞 is the constant cost associated with the fictitious target, always set to

𝑞 = max

𝑖=1,...,𝑛
𝑗=1,...,𝑚

{𝑐𝑖 𝑗 } + 1 (9)

to ensure that keeping cameras unassigned when non-𝑘-covered targets are known is never optimal;

• 𝑘 is the desired 𝑘-coverage;

• 𝑥𝑖 𝑗 are the unknown variables. Regarding the optimal solution, they will be 1 when target 𝑗 is assigned to robot

𝑖 , or 0 otherwise;

• ⌊𝑥⌋ is the flooring of 𝑥 .

More informally, the objective is to minimise the overall cost for the cameras to reach their respective targets (4). Each

robot must be assigned one and only one target (5). Each target but the fictitious one can be assigned to up to 𝑘 robots:

assigning more than 𝑘 robots to a single target is a cost (9), as robots would be kept from exploration and possible

discovery of other targets (6). Each target must be assigned to at least one robot if the number of robots is large enough.

Otherwise, if the number of targets is greater than the number of robots, the result of the min function will be zero, and

the constraint will have no effect. This particular constraint prioritises covering all the possible targets if all robots

are already assigned and a new target is detected. (7). Finally, (8) is a non negativity constraint. Our model does not

consider objects which are currently not interesting: it only focuses on targets (interesting objects).
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rep(solver <- linProSolver()) {
let targets = foldUnion(nbr(localTargets()))
let cameras = nbr(getCenterOfFov())
let myTarget = solver.solve(cameras, targets, desiredK(), false)

.getOrDefault(getUID(), noTarget())
followOrExplore(myTarget, fieldExploration)
avoidCameraCollision(myTarget, localTargets)
solver

}

Fig. 7. Protelis code for ALinPro. This code polls the neighbouring robots for information about their position and the targets they
have in sight. The information is collected and sent to a local process, in charge of solving the linear programming problem.

In case of multiple equivalent solutions, we sort them based on the matrix collecting the resulting 𝑥𝑖 𝑗 ’s, compare

elements row-by-row and column-by-column, and pick the first one. This way, we properly deal with the case of

environments with particular symmetries, which could otherwise lead to inconsistent behaviour: for instance, if two

cameras have exactly the same distance from two shared targets, they may independently decide to move towards

the same target. If ordering were not in place and nothing broke such symmetry even after the robots’ movements

(although extremely unlikely in the real world, as the slightest error would), this unwanted behaviour could persist as

well.

The cases in which there are more robots than those required to achieve 𝑘-coverage for all targets (for instance, if

there are no targets) are dealt with by exploiting the fictitious target, that will be assigned to all robots in excess.

This model is similar to the well-known “transportation problem”[21] in which robots are the sources and targets

are the destinations. Moreover, the constraints matrix is totally unimodular, and the constant terms and the costs 𝑐𝑖 𝑗

are integers; therefore, the solutions are integers, and integral constraints are not needed [71]. It has to be highlighted

that each robot is supposed to solve the above problem with the pieces of information it knows, which are expected to

be incomplete in relation to the entire network, and that we assume that robots can estimate and share the position of

the targets in their field of view: the output of the algorithm thus includes the position that should be reached.

In our implementation, each robot executes a 1-hop broadcast in its communication range, communicating its position

and the positions of the targets it detects. With the information received from its neighbourhood, a robot can determine

local values for 𝑛,𝑚, 𝑐𝑖 𝑗 , and 𝑞, solve the above linear programming problem, and then follow the target indicated by its

optimal solution, or explore if the result yields the fictitious target. Of course, the single problems solved by each robot

individually do not represent valid solution for the global optimisation problem, (unless the network is fully connected).

Our idea is to exploit these local (and globally sub-optimal, in general) solutions to select the local robot behaviour. This

may cause situations in which some target attracts more attention than it should, and gets followed by too many robots;

however, as soon as they can communicate, some will be either allocated to other targets or freed and set in exploration

mode. Our bet is that even though the algorithm executed by each robot is not globally optimal, its re-evaluation in

face of changes (as promoted by the aggregate computing rounds) leads to a high degree of adaptation.

We implemented this algorithm with a mixture of Kotlin
14

(in order to reuse the simplex solver included in the

Apache Commons Math
15

library) and Protelis. The Kotlin part deals with solving the simplex, while the Protelis part is

14
https://kotlinlang.org/

15
http://archive.ph/wip/HVZ7O
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responsible for the coordination of devices. We report the Protelis part in Figure 7, without imports and ancillary code.

The complete implementation is available online
16
.

5.2.1 Fair version (ALinProF). One shortcoming of ALinPro, as presented in the previous section, is that it does not try

to balance out the load among different targets, possibly leading to a situation where 𝑘 robots follow the same target at

the cost of other targets having inadequate coverage. A simple modification to the problem definition, however, can

lead to higher “fairness”. The idea is to detect the ratio between the count of robots and targets and use it as preferential

over 𝑘 in situations where the 𝑘 coverage for all targets cannot be achieved. More formally, this leads to the following

mathematical model (inheriting the notation of the previous section):

Minimise

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑐𝑖 𝑗𝑥𝑖 𝑗 +
𝑛∑︁
𝑖=1

𝑞𝑥𝑖,𝑚+1 (10)

Subject to

𝑚+1∑︁
𝑗=1

𝑥𝑖 𝑗 = 1 𝑖 = 1, . . . , 𝑛 (11)

𝑛∑︁
𝑖=1

𝑥𝑖 𝑗 ≥ min

(
𝑘,

⌊ 𝑛
𝑚

⌋ )
𝑗 = 1, . . . ,𝑚 (12)

𝑛∑︁
𝑖=1

𝑥𝑖 𝑗 ≤ min

(
𝑘,

⌈ 𝑛
𝑚

⌉)
𝑗 = 1, . . . ,𝑚 (13)

𝑥𝑖 𝑗 ∈ {0, 1} 𝑖 = 1, . . . , 𝑛 (14)

𝑗 = 1, . . . ,𝑚 + 1

Where ⌈𝑥⌉ is ceiling of 𝑥 . Constraints (12) and (13) serve the purpose to limit the number of robots assigned to a target

between

⌊
𝑛
𝑚

⌋
and

⌈
𝑛
𝑚

⌉
but not greater than 𝑘 . All the other equations are the same of ALinPro.

Using ALinProF over ALinPro may be preferable when achieving a balanced cover is deemed more important than

reaching full 𝑘 coverage for a smaller number of targets.

5.3 Evaluation: experimental setup

With reference to Table 2, a set of𝑚 of objects and 𝑛 robots are randomly scattered in a square arena with edge length 𝑠

situated within a Euclidean bidimensional manifold. We simulate the 𝑘-coverage problem in a dynamic setting, where

objects move continuously within the arena using Lévy walks
19

[104] at an average speed of ®𝑣𝑜 . Every object can either

be important or unimportant, depending on the last evaluation of a predicate:

P(𝑜) = 𝑜 ∈ 𝑂 ⊕ x < P | x ∈ U(0, 1) ∧ 0 < P < 1

namely, the object changes its importance (⊕ indicates a logical exclusive disjunction operation, or xor) if a sample of

the uniform distribution in [0, 1] is lower than a number 𝑃 . Predicate P is evaluated with a Poisson process with rate 𝜆:

every time an event of the process happens. The Poisson process has been chosen due to its memory-less behaviour,

highlighting the system’s response to unpredictability. Robots move at an average speed of ®𝑣𝑐 and can rotate at a

maximum angular velocity of 𝜔 , their field of view has depthV𝑅 and angleV𝛽 . Robots are programmed to achieve

16
http://archive.ph/wip/fyfES

17
It approximates pedestrians’ preferred walking speed [14].

18
This is a conservative assumption based on the performance of modern commercial flying drones see http://archive.is/LhWCk.

19
We used Lévy walks as they reasonably approximate walking patterns of human beings [72].
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Name Description Values

𝑚 objects count 100

𝑛 robot count 10, 20, . . . , 200

𝑠 arena edge length 500 m

®𝑣𝑜 object average speed
17

1.4𝑚/𝑠
®𝑣𝑐 robot linear velocity

18
3𝑚/𝑠

𝜔 robot’s camera angular velocity
18 𝜋/5 rad/s

𝜆 evaluation rate of predicate P 0.05 Hz

𝑃 probablity of switching importance at P evaluation 0.05

𝑚/𝑛 objects/robots ratio -

V𝑅 FOV depth
18

30 m

V𝛽 FOV angle
18

2𝜋/3 rad
𝑘 desired maximum coverage 3

𝑟 robots’ communication range 25, 50, . . . , 200 m

𝑓 round frequency 1 Hz

A coordination algorithm see section 5.3.1

𝑇 simulation end time 600 s

𝑊 Willpower for A
ForceField

40

Table 2. List of the variables and their values for the simulations.

𝑘-coverage by running an aggregate algorithm A with round frequency 𝑓 . We captured a rendering of the simulated

dynamics of the scenarios and produced a video, which has been shared and is freely visible online
20
. The network

infrastructure is programmed to allow communication among robots whose distance is within communication range 𝑟 .

Variables and their values are summarised in Table 2.

Once initialised, the simulation is executed for a simulated time 𝑇 = 600𝑠 . For each combination of variable values

(namely, for each member of the set representing the Cartesian product of the possible values of each variable), 100

simulation runs were executed. Perfect localisation and communication are assumed, no errors are introduced. For all

experiments, we measure the average normalised k-coverage as per Equation (1). Data generated by the simulator has

been analysed using xarray [45]; visual reports of the data have been created via matplotlib [48].

For the sake of detailed understanding, reproducibility, and reuse, the experiment is public
21
, it has been documented

for exact reproduction of the results and charts reported in this manuscript, released as open-source, and assigned a

permanent DOI reference [35] for archival purposes.

5.3.1 Algorithms. The robot coordination algorithms compared in this work can be classified using three parameters:

(1) exploration strategy: defines the behaviour of the robot when the response model can not determine a target to

follow (for instance, in case no target is in sight and no information has been received yet from other robots);

(2) communication strategy: determines the subset of neighbours each robot communicates with;

(3) response model: determines the strategy applied by a robot in response to the available information.

In this paper, we compare the aggregate computing-based algorithms introduced in Section 5 with the state-of-the-art

algorithms analysed in [30]. This work represents the current state of the art on the problem at hand, being the online

multi-object k-coverage still a relatively new and unexplored problem. As exploration strategies, we compareA
ForceField

20
https://www.youtube.com/watch?v=yuaY_8Vr3oc

21
https://github.com/DanySK/Experiment-2019-Smartcam/
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(FF) introduced in Section 5.1 and “ZigZag exploration” (ZZ), corresponding to the Randommovement strategy introduced

in [30]. In ZZ, robots generate a random vector and follow it, bouncing off from the arena boundaries; once they

reach their destination, they generate a new random vector. In both FF and ZZ, robots are programmed to rotate at

maximum angular velocity 𝜔 in order to increase the probability of intercepting an interesting object. We consider

three communication strategies:

• no communication (NoComm), as the name suggests, allows for no information exchange among robots and

each robot operates in isolation, this serves as baseline;

• neighbourhood broadcast (BC) allows communication with all robots within communication range;

• smooth (SM) limits communication based on a “spatio-temporal closeness” metric measuring how long robots

within communication range have been close to each other for long periods. Robots learn that they are close

if they observe the same objects at the same time. According to the metric mentioned above, the longer they

observe the same space, the closer they are. Over time, when robots move and do not observe the same objects

any more, they progressively forget their previous relationships and reduce their spatio-temporal closeness.

We use this measure as a probability to communicate with another robot; over time and space, this value tends

to zero [30, 33].

Additionally, we compare the following response models indicating the behaviour of the robot as a reaction to receiving

a request:

• Available (AV).A robot, if and only if it is not already busy following an object, attempts to cover themost recently

requested object from another robot; if multiple requests are present, the nearest is chosen (newest-nearest

approach) [30];

• Received calls (RE). A robot currently not following an object will provision the object with the least number of

requests, as this corresponds to a small number of robots currently observing it [30];

• ALinPro (LinPro). It is a linear programming-based local problem solution, as described in Section 5.2;

• ALinProF (LinProF). Fair version of ALinPro introduced in Section 5.2.1.

Since all the response models imply communication, no response model is adopted in the NoComm communication

strategy. Finally, we adopted a common and straightforward control strategy for the robots to follow targets. Once a

robot decides which target to follow based on its response model, it calculates the coordinates where it should go in

order to keep the target at the centre of its FoV. All the infinite points of a circumference centred in the target with

radius proportional to the depth of the FoV satisfy this condition; if the robot is the only known observer, it picks the

closest point of such circle. In case multiple robots have been assigned to the same target, the devices compete based on

their device id (as assigned by the aggregate program execution platform); the device with the lowest id selects the

position first, and others, in order, occupy the positions on the circumference maximising the distance among each

other: the turn angle (2𝜋 ) is divided by the number of assigned observers, and each robot position itself at a 2𝜋/𝑘 angle

relative to the previous robot. Then velocities are calculated to be the highest possible ones (up to ®𝑣𝑐 for movement

and 𝜔 for rotation) to reach the position but without going past it. Acceleration and inertia are not simulated. Table 3

summarises the algorithms for this comparison.

5.4 Evaluation: results

The charts in Figure 8 show the average levels of k-coverage achieved for 𝑘 = 1 and 𝑘 = 3 during the simulations,

respectively 1-cov and 3-cov. Note that 3 was set as the maximum desired value for 𝑘 . We chose 𝑘 = 3 deliberately as it
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Fig. 8. Compact representation of the performance of the algorithms under test varying the robot/object ratio 𝑛
𝑚

and the communi-
cation radius 𝑟 . Blue surfaces are 1-coverage levels, red surfaces are 3-coverage. Linear programming-based approaches outperform in
most cases the current state of the art. Curiously, BC-RE (bottom right) performance degrade with a higher radius. This is most likely
due to increasingly large groups of robots simultaneously called in help once an interesting target is found.
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Name Exploration Communication Response
FF-LinPro ForceField Neighbourhood Broadcast LinPro

ZZ-LinPro ZigZag Neighbourhood Broadcast LinPro

FF-LinProF ForceField Neighbourhood Broadcast Fair LinPro

ZZ-LinProF ZigZag Neighbourhood Broadcast Fair LinPro

FF-NoComm ForceField Neighbourhood Broadcast None

NoComm ZigZag None None

SM-AV [30] ZigZag Smooth Available

BC-RE [30] ZigZag Neighbourhood Broadcast Received Calls

Table 3. Algorithms considered in our evaluation, described by component.

allows observation of objects from all angles. A higher value for 𝑘 would only be necessary if the horizontal visual

angle is very tight or if a higher redundancy is required. An approach to calculate a feasible number for 𝑘 is using the

following formula: 𝑘 = 360

𝛽
· 𝜚 where 𝜚 represents the desired redundancy (i.e., how many robots should observe the

same area at the same time at a minimum).

In our experiments, ALinPro and ALinProF show a clear improvement over previous methods found in the literature

for the scenario under test. Data shows that these algorithms are susceptible to the communication range: the more

accurate the information about the surrounding world, the closer the mathematical model is to the actual problem at

hand, the higher the chance that the adopted strategy is close to optimality. The “fair” version of LinPro differs from

the other one by attaining a higher 1- and 2-coverage at the expense of a lower of 3-coverage, matching the initial

expectation.

Figure 9 depicts detailed results for 1-coverage. Linear programming based algorithms show much better use of

a high number of robots, compared to SM-AV and BC-RE, that is, smooth (SM) communication in combination with

available (AV) response and broadcast (BC) communication and received calls (RE) response (cp. 5). The latter two, and

BR-RE in particular, also show a curious behaviour: larger communication ranges do not improve performance but

degrade it. This is most likely due to large groups of robots being called for help when a new target is discovered,

reducing the ability to discover untracked targets. For large robot/object ratios and very short communication ranges,

SM-AV and BC-RE are competitive with ALinPro and ALinProF. Detailed results for the 2-coverage presented in fig. 10

show an appreciable improvement of ALinProF over pure ALinPro. Response to higher communication ranges is similar

to those discussed for 1-coverage. Finally, Figure 11 shows detailed data on 3-coverage, which was the target coverage

for our experiment. In this case, the relation between ALinProF and ALinPro predictably reverses: ALinPro, focussing on

actual k-coverage, actually achieves better k-coverage. ALinProF, on the other hand, tries to balance the coverage over

as many targets as possible, preferring lower coverage for many targets over higher coverage for fewer.

Results depicted in Figures 8 to 11 show very similar performance across the proposed variants. To better show the

difference, we summarised the data for a fixed range 𝑟 = 100m in Figure 12, where we also tested for a robots/objects

ratio
𝑛
𝑚 > 1. The proposed algorithms can better scale with a larger number of robots compared to the baseline. Data

also shows how the “fair” version achieves higher 2-coverage at the cost of lower 3-coverage.

Table 4 compares the average coverage achieved across the board. Both the novel algorithms outperform SM-AV and

BC-RE under most conditions. SM-AV shows poor performances in every case but with the shortest communication

range. This is likely due to two leading causes. First, the algorithm does not consider the maximum desired value for

k, assigning too many robots to each target. Second, the 𝑃𝑠𝑚𝑜𝑜𝑡ℎ formula [30], which computes the probability that

Manuscript submitted to ACM



1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Pianini et al.

10
25

50
10

0
20

0
r

ff_linpro zz_linpro

0.0

0.2

0.4

0.6

0.8

1.0

1-
co

ve
ra

ge
 (%

)

10
25

50
10

0
20

0
r

ff_linproF zz_linproF

0.0

0.2

0.4

0.6

0.8

1.0

1-
co

ve
ra

ge
 (%

)

10
25

50
10

0
20

0
r

ff_nocomm nocomm

0.0

0.2

0.4

0.6

0.8

1.0

1-
co

ve
ra

ge
 (%

)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
n/m

10
25

50
10

0
20

0
r

sm_av

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
n/m

bc_re

0.0

0.2

0.4

0.6

0.8

1.0

1-
co

ve
ra

ge
 (%

)

Fig. 9. Detailed 1-coverage performance for the algorithms under testing. ALinPro and ALinProF primarily benefit from greater
communication ranges, while both BC-RE and SM-AV begin to suffer in case too many devices must coordinate at once. As expected,
ALinProF shows (marginally) better performance for 1-coverage than pure ALinPro in some cases. Force field-based exploration does
not impact results.
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Fig. 10. Detailed 2-coverage performance for the algorithms under testing. ALinPro and ALinProF show better performance than
baselines in almost all conditions. Both benefit from larger communication ranges, while on the contrary BC-RE and SM-AV suffer
this condition. As expected, ALinProF performance for 2-coverage is superior to ALinPro. Force field-based exploration does not impact
results perceptibly.
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Fig. 11. Detailed 3-coverage performance for the algorithms under testing. ALinPro shows better performance in all conditions.
ALinProF still outperforms the baseline algorithms, but obtains lower 3-coverage w.r.t. plain ALinPro due to its “fair” nature favouring
some coverage for most targets over actual k-coverage over few. Force field-based exploration does not impact results perceptibly.
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Fig. 12. Mean𝑂𝑀𝐶𝑘 by varying the ratio between the number of robots and objects, with a fixed communication range of 100m.
Linear programming based algorithms can deal much better than alternatives when the ratio between robots and targets grows. The
“fair” version of these algorithms obtains similar 1-coverage, outperforms the base one for 2-coverage, but achieves worse results for
3-coverage.
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𝑟 Approach

Ratio𝑛/𝑚
0.2 0.6 1.0 1.2 1.6 2.0

25

ff_linpro 0.03 (0.02) 0.21 (0.04) 0.43 (0.05) 0.50 (0.05) 0.65 (0.05) 0.74 (0.05)

zz_linpro 0.03 (0.02) 0.21 (0.04) 0.42 (0.04) 0.51 (0.05) 0.65 (0.05) 0.75 (0.04)

ff_linproF 0.03 (0.02) 0.20 (0.04) 0.41 (0.05) 0.49 (0.04) 0.62 (0.05) 0.72 (0.05)

zz_linproF 0.02 (0.02) 0.21 (0.04) 0.40 (0.05) 0.50 (0.06) 0.64 (0.05) 0.74 (0.05)

ff_nocomm 0.03 (0.02) 0.19 (0.04) 0.30 (0.04) 0.35 (0.04) 0.41 (0.05) 0.47 (0.05)

nocomm 0.04 (0.02) 0.20 (0.03) 0.32 (0.04) 0.36 (0.05) 0.43 (0.04) 0.48 (0.05)

sm_av 0.04 (0.02) 0.20 (0.03) 0.32 (0.04) 0.35 (0.04) 0.42 (0.05) 0.46 (0.05)

bc_re 0.04 (0.02) 0.16 (0.03) 0.24 (0.04) 0.27 (0.04) 0.30 (0.05) 0.33 (0.05)

50

ff_linpro 0.05 (0.02) 0.27 (0.04) 0.51 (0.05) 0.60 (0.05) 0.73 (0.05) 0.82 (0.04)

zz_linpro 0.05 (0.02) 0.26 (0.04) 0.50 (0.06) 0.60 (0.05) 0.73 (0.05) 0.83 (0.04)

ff_linproF 0.04 (0.02) 0.21 (0.05) 0.43 (0.06) 0.53 (0.06) 0.68 (0.06) 0.78 (0.05)

zz_linproF 0.03 (0.02) 0.21 (0.05) 0.42 (0.06) 0.52 (0.06) 0.68 (0.06) 0.79 (0.05)

ff_nocomm 0.04 (0.02) 0.20 (0.03) 0.30 (0.04) 0.34 (0.04) 0.40 (0.05) 0.44 (0.05)

nocomm 0.04 (0.02) 0.20 (0.03) 0.32 (0.04) 0.36 (0.05) 0.43 (0.04) 0.48 (0.05)

sm_av 0.04 (0.02) 0.21 (0.04) 0.30 (0.04) 0.34 (0.04) 0.39 (0.04) 0.43 (0.04)

bc_re 0.06 (0.02) 0.15 (0.03) 0.19 (0.03) 0.20 (0.03) 0.22 (0.04) 0.23 (0.04)

100

ff_linpro 0.07 (0.03) 0.32 (0.05) 0.58 (0.05) 0.66 (0.05) 0.80 (0.05) 0.89 (0.04)

zz_linpro 0.07 (0.03) 0.30 (0.05) 0.55 (0.06) 0.65 (0.05) 0.80 (0.05) 0.87 (0.04)

ff_linproF 0.04 (0.02) 0.20 (0.06) 0.46 (0.09) 0.59 (0.07) 0.78 (0.05) 0.88 (0.04)

zz_linproF 0.04 (0.02) 0.19 (0.07) 0.43 (0.08) 0.57 (0.07) 0.77 (0.05) 0.87 (0.04)

ff_nocomm 0.05 (0.02) 0.20 (0.03) 0.30 (0.04) 0.34 (0.05) 0.40 (0.04) 0.45 (0.05)

nocomm 0.04 (0.02) 0.20 (0.03) 0.32 (0.04) 0.36 (0.05) 0.43 (0.04) 0.48 (0.05)

sm_av 0.04 (0.02) 0.21 (0.03) 0.30 (0.04) 0.33 (0.04) 0.38 (0.05) 0.40 (0.05)

bc_re 0.07 (0.02) 0.10 (0.03) 0.12 (0.03) 0.13 (0.03) 0.13 (0.03) 0.13 (0.03)

Table 4. Comparison of mean𝑂𝑀𝐶𝑘 achieved by different approaches with different communications ranges 𝑟 and different ratios
for objects/cameras, the standard deviation is indicated in brackets.

a robot will call another one for help to follow a target, asymptotically converges to zero. Consequently, the longer

the simulation runs and the more the robots encounter each other, the higher is the number of notifications sent;

moreover, algorithms are executed with a frequency of 1Hz, thus generating a high number of notifications. Lower

frequencies might allow improvement by preventing calling for help too often. BC-RE shows the same problems as

SM-AV, considerably worsened by the fact that it performs broadcasts. Despite these problems, BC-RE remains a simple

approach and still works better than NoComm for short communication ranges.

Force field-based exploration deserves some discussion as well. Apparently, it does not show any tangible effect on

the coverage along the whole experiment. The main reason is that it is used as an exploration strategy in the initial

phase, then replaced by other algorithms for most of the time. As such, its impact is lesser and lesser with the experiment

length. To better understand if there is any benefit for the initial exploration, we isolated in Figure 13 the first 100

seconds of simulation. Data shows that force field-based exploration outperforms the baseline ZZ algorithm during the

bootstrap phase, however, this edge gets lower and lower with time. Data shows that force field exploration is a valid

companion for any response model compared to the baseline: this is most likely due to robots repelling each other from

the beginning, and thus covering a larger area in the attempt to maximise the distance from each other.

6 RELATEDWORK

6.1 Problems related to OMOkC

This section briefly mentions well-known problems related to OMOkC and CMOMMT, providing corresponding

references for the reader to be acquainted with the current state of the art. The first problem is the coverage maximisation

problem, addressed when deploying camera networks and deciding where to position and orient each camera to maximise

the observed area. This problem, also known as the Art Gallery problem, has been researched quite intensively [47, 68, 79,

83]. To cover an area with a defined number of cameras, Fusco and Gupta [38] utilise a simple greedy algorithm. Dieber

et al. [25] utilise an evolutionary algorithm to identify the optimal location and orientation for PTZ cameras. They

further combine this with market-based approaches to assign moving targets to static cameras [74]. Rudolph et al. [76]
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Fig. 13. Mean𝑂𝑀𝐶𝑘 observed during the first 100s of simulation with a fixed communication range of 100m. Results show that
force-field-based exploration (blue and green lines) perform better than zig-zag based exploration (yellow and red lines) during the
initial phase of the simulation, when exploration algorithms are more exercised.
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enable individual PTZ cameras, able to change their orientation, to learn their local performance using W-Learning.

By exchanging information about their current state, they can optimise their orientation over time. Arslan et al. [1]

propose novel conic Voronoi diagrams based on the visual quality of cameras. They utilise the information from all

cameras to determine the optimal orientation to maximise the coverage of a given area. Using a density estimation,

Hatanaka et al. [42] utilise a distributed gradient descent algorithm to define the optimal orientation of cameras to

cover all targets in the area. To optimally place and orient a set of cameras, several approaches rely on Particle Swarm

Optimisation in a centralised as well as distributed fashion [26, 56, 100–102].

An extension to the coverage maximisation problem is the 𝑘-coverage problem. Here a set of sensors needs to be

placed to cover specific points in the environment with 𝑘 sensors [46]. This not only allows to turn off individual sensors

without leaving the area uncovered, but also increases the amount of gathered information and, therefore, accuracy

and precision when multiple sensors are operational simultaneously. Hefeeda and Bagheri [43] propose a distributed

approximate algorithm for omnidirectional sensors allowing close to optimal sensor placement. Li and Kao [53] utilise

Voronoi diagrams to estimate the location of individual sensors and hence adjust their location accordingly. Similarly,

Stergiopoulos and Tzes [85] use Voronoi-alike distance measures to guide mobile, non-uniform but omnidirectional,

sensors for optimal coverage of an area.

The last related problems are search-and-rescue operations, also known as the detect-and-track problem. Here, a set of

agents is tasked to find objects or targets in a given area. Targets might be stationary (search-and-rescue) [41] or mobile

(detect-and-track) [39]. Stormont [86] presents different types of robots and how to employ them as a swarm to quickly

cover an area and find potential victims in a disaster scenario. Waharte and Trigoni [97] explicitly use unmanned aerial

vehicles (UAVs) to support ground robots and cover a defined area faster. Using the RSSI value of individual UAVs,

Ruetten et al. [77] enable UAVs to find optimal locations to cover a given area. Path planning is at the core of the work

of Macwan et al. [54] to optimise the movement of all UAVs in the area and ensure the entire environment is covered at

the end of the operation. Scherer et al. [80] propose a hybrid approach between centralised and decentralised decisions

for different tasks in search-and-rescue operations, while Yanmaz et al. [103] focus on generating ad-hoc networks for

localised coordination and decision-making for subsets of UAVs.

6.2 State of the art in decentralised OMOkC

There is a wide range of coordination and control algorithms for multi-camera and multi-robot systems [57, 75]. Usually,

they differ according to the task to be accomplished and whether the approach relies on a central component, gathering

information and coordinating individual robots, or is purely distributed and self-organised. In this article, we focus on

the online multi-object 𝑘-coverage problem (OMOkC). While closely related to the cooperative multi-robot observation

of multiple moving targets (CMOMMT), whose state-of-the-art solutions are surveyed by Khan et al. [50], it differs

significantly: the number of cooperative robots is unknown, and the number of objects is neither constant nor known

to the robots. Furthermore, OMOkC requires multiple cameras to observe the same target simultaneously. While this

is positive for the observation of the object as targets can be observed from different angles, the robots need to be

coordinated to ensure over-provisioning, that is, the case in which too many robots observe a single target is avoided.

A related sub-problem is autonomous search and rescue (ASR) operations, often tackled by swarms of (collaborative)

robots [6, 58, 77, 86]. However, in ASR, the targets are often stationary and do not require multiple robots to attend

them simultaneously. Nevertheless, to initially cover and observe the area, swarming techniques can be utilised.

In [32], Esterle and Lewis rely on purely distributed approaches. They enable the individual robots to learn about

their local environment, including other robots and analyse the potential of the topological neighbourhood of interaction.
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Later on, Esterle and Lewis also compare the performance of the distributed approaches against a naive centralised

approach, gathering all information of all robots to coordinate them [29]. While the centralised approach dominates the

distributed approaches when it comes to achieved coverage, the centralisation generates an additional overhead in

communication.

Another distributed approach incorporates the observed behaviour of other robots in the network into their decision

processes [34], using ideas of networked self-awareness [28]. King et al. [51] use entropy to attract robots towards

individual objects. To avoid over-compensation, they also introduce a suppression signal. Rather than attracting robots

towards individual objects, Frashieri et al. [37] enable robots to join a coalition for each object based on their individual

willingness to interact. While this approach generates good results on the𝑂𝑀𝐶𝑘 metric, the coalition formation requires

additional communication.

When all robots in a network operate towards the common goal of covering all objects with 𝑘 cameras, they can

quickly cluster in specific areas. This makes objects appearing in the remaining environment prone to remain undetected

and missed by the network. To overcome this, dynamic team formation can be used, where each team has a different

goal, i.e. following objects or covering the remaining area to ensure a majority of appearing objects are detected [27].

6.3 Similar and competing programming models

The aggregate computing paradigm adopted in this paper has its roots in spatial computing and collective adaptive

systems research, surveyed in [9] and more recently, from the point of view of coordination, in [94]. Research fields

recognising the importance of the spatial and collective aspect for computing and interaction include multi-agent

systems [99], where various organisational paradigms [44] have emerged to take into account the social dimension, as

well as mobile ad-hoc networks (MANETs) and wireless sensor networks (WSNs) [87], where it is common to program the

collective behaviour of large networks of devices producing and collecting information. Such an amount of related

work can be classified along multiple dimensions.

First, there are extensions to traditional approaches that aim to simplify the development of networked applications

through proper abstractions. For instance, Abstract Regions [98] provides a collective communication interface for

region- and neighbourhood-oriented data propagation and collection.

At a step further, some approaches address so-called ensembles, i.e., dynamic formations of devices. Examples include

DEECo (Distributed Emergent Ensembles of Components) [15], where components can only communicate by dynamically

binding together through ensembles (formed according to a membership condition), and SCEL (Service Component

Ensemble Language) [24], which leverages attribute-based communication.

Finally, there are so-called macro-programming approaches, which consider an entire network of devices as the

programming target. Examples of this family include Chronus [96], a spatio-temporal DSL for data gathering and event

detection in WSNs, and Sense2P [20], a logic macro-programming system for solving queries in WSNs.

6.4 Simulators for network performance and physical interactions

Once the software reaches reasonable maturity, interaction among devices must be validated as compatible with

the available networking infrastructure. A network-focussed simulator is the right tool for the job. An example is

Mobile MultiMedia Wireless Sensor Network (M3WSN) [106], which focuses on the network-level simulation of image

transmissions, and can easily be adapted as a camera network simulator by using real-world video streams to mimic

the simulated cameras. Similarly, WiSE-Mnet++ [78] combines these ideas of real-world and synthetic videos with
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improved network simulation. This is done by employing the dedicated network-simulator OMNet++ [90] for discrete

events and Castalia [13] for wireless networks and modelling radio channels.

Finally, simulators with higher fidelity to the real-world can help produce and inspect corner cases before deployment

and provide a platform for developing software closer to the hardware (e.g., object detection from a video feed). However,

generating a complex virtual world is usually resource expensive. Several tools for camera networks simulation leverage

recent developments in rendering synthetic worlds realistically in three dimensions [81, 84, 88]. We also remark that

there is an ongoing e-robotics trend in (swarm) robotics research where increasingly sophisticated 3D-graphical and

physics-rich simulators (e.g., Gazebo [70], ARGoS [69], AirSim [82]) – sometimes building on game engines such

as Unreal Engine or Unity 3D [23] – are exploited to develop simulations with a certain degree of physical fidelity.

However, to keep computational expenses low, we perform simulations in 2D. An extension to 3D can be achieved by

incorporating the third dimension in the location and velocity vectors for objects and robots with vision sensors and

adding a vertical angle to the field of view.

7 LIMITATIONS AND FUTUREWORK

In this article, we focus our contribution on the following aspects:

(1) demonstrating the feasibility of engineering distributed solutions for the OMOkC problem within the aggregate

computing framework;

(2) provide evidence that solutions built in this way are competitive with the current state of the art;

(3) making the tools for developing and evaluating solutions available to other researchers.

Naturally, some issues are not considered in the evaluation presented in this work. In this section, we aim to state such

limitations clearly and outline potential future work.

7.1 Evaluation

7.1.1 Robot simulation. Our evaluation does not consider energy consumption even though mobile devices (e.g.,

drones) rely on energy stored in batteries to operate, thus their working time is generally limited. While we do not

focus on energy consumption in this work, taking the energy consumption and limits into account could lead to an

extended version of LinPro where these costs are factored in and considered in the solution. Under the point of view

of the proposed simulation framework, we note that the level of abstraction proposed abstracts away the realistic

modelling of the robot’s hardware (electric engines, control electronics, and so on). Depending on the degree of realism

that is required, the following strategies can be pursued:

• estimation of energy cost via proxy metrics; or

• extension of the simulation model.

In the former case, power consumption may be estimated by relying on data already available in the simulator, such as

the travelled length. This strategy allows using the currently provided toolchain at the price of realism. In the latter case,

a detailed model of the robots, including a model of the energy consumption, is required. How detailed depends on the

required level of realism, up to the point that the proposed simulation platform is not equipped to provide support to.

For instance, realistically modelling the engines’ work, or physically challenging and possibly evolving conditions (such

as wind for flying devices or terrain asperities for ground vehicles), fall outside the kind of details the simulator has

been designed to support. In these cases, it is probably worth extending a different simulator, with a realistic hardware

model in place, with the required capabilities. We note, however, that the more detailed is a model, the harder it is to
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scale up. Our goal in this work is to demonstrate that it is possible (and practical and convenient indeed) to consider the

ensemble of robots as an aggregate system. To this end, we believe it is more valuable to show that it is indeed possible

to reach coordination among a high number of mobile devices rather than precisely measuring their power drain.

In this work, we consider the same FOV and attributes for all robots. However, a real system may be composed of

several different device types, differing e.g., for mobility (static, predefined paths, angular or translational mobility),

field of view (depth, width, single or multiple), and several miscellaneous factors (power usage and source, zooming

capabilities, processing power, etc.). Different mobility capabilities and field of view changes can be simulated within

the proposed toolchain, preserving the ability to scale up to thousands of (different) devices. Despite that, the evaluation

of this paper is intended to provide insights on the feasibility of an aggregate computing-based approach to OMOkC,

and as such, we did not include several different device types, which can be targeted in future works. Furthermore,

some investigations involving more realistic modelling of the world are outside of what is readily reproducible in the

proposed toolchain. Considerations similar to those previously made for realistically modelling how the hardware

works for power use apply to several other features, for instance, image recognition capabilities: in this work, we

consider devices to be able to tell whether a target is interesting with precision, and to be able to locate and recognise it.

While accounting for an error with some well-known distribution would be feasible within the proposed framework, an

in-depth analysis including authentic imagery and on-the-fly recognition is beyond the scope of the proposed tools.

We simulate on a fixed-sized arena, and we change density by changing the device count. Further investigation

could be devoted to analysing the impact of different device speeds and arena sizes. This would explore the impact of

different arena sizes and the relation of different device movement speeds to the OMOkC problem.

7.1.2 Environment simulation.

Physical environment. In future work, it would be interesting to run experiments using more realistic arenas. The

simulator is already equipped to import floor maps and model static obstacles (a capability already exploited in

other works, see, e.g., [95]), which should allow for collecting evidence of how the system can perform in an actual

deployment.

Network. The current simulation infrastructure abstracts from realistic modelling of the underlying network. A

possible extension to this work includes integrating Alchemist with a dedicated network simulator such as NS3 [73] or

Omnet++ [91]. This would produce a hybrid environment that provides insights both for large-scale, highly dynamic

experiments (focussing on algorithmic evaluation) and for smaller-scale evaluationswith realistic networking (simulation

oriented to predict after-deployment performance).

7.2 Software evolution

Approaching device coordination at the aggregate level simplifies coordination by hiding details under-the-hood, thus

promoting the development of richer software. However, such development requires the correct abstractions in terms of

mechanisms and whole libraries providing easy access to advanced coordination mechanisms [36]. Potential future work

is thus the development of a domain-specific API of aggregate behaviour, designed explicitly for coordinating networks

of robots with vision sensors. In particular, it would be interesting to leverage the notion of aggregate process [19] to

regulate the formation of dynamic coalitions of robots and consider adopting a full-fledged version of the self-organising

coordination regions pattern [63] to organise the coordination and decision-making at larger scales.
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This evolution may include an evolution of the proposed LinPro algorithm. As discussed in Section 7, the algorithm

could be extended to capture costs related to moving robots (e.g., battery power consumption). Also, different techniques

could be used for the optimisation phase: since the problem is solved using partial information, the capability of the

optimisation algorithm to provide suitable solutions with limited information is critical. Examples of different possible

heuristics are particle swarm optimisation and simulated annealing. Finally, the proposed version ALinPro does not

consider objects that are marked as not important, even though they may become targets in the future. This information

could be exploited by future works, improving the performance.

7.3 Safety and security

Aggregate computing provides basic support for resiliency, based on abstraction from low-level details of device

distribution and networking [12], and on a continuous execution model where changes in context automatically trigger

local (and, consequently, global) adaptation. However, future work is required to verify the actual robustness of the

proposed algorithms in front of unpredicted failures. Little work is instead available on security, namely, detecting,

isolating, and counteracting proactive malicious behaviour, such as hijacked robots. Some preliminary work has been

proposed based on computational trust [16] at the application level or by delegating most of the security to the underlying

platform [64]; however, further work is necessary to establish solid security practices [62]. This is especially true in

case the robot system is deployed to perform collective surveillance [22].

8 CONCLUSION

In this paper, we address the online multi-object 𝑘-coverage problem and accordingly provide a contribution in terms

of (i) an aggregate computing solution to decentralised multi-robots with vision sensors coordination; (ii) a toolchain

for experimentation and development, including a publicly available extension to an existing simulator for large-scale

systems of multi-robots with vision sensors; and (iii) two novel 𝑘-coverage algorithms that improve over the state of the

art. Systems situated in the real-world environment often have to perform actions related to their physical location. In

this paper, we use a novel paradigm called aggregate computing to implement the behaviour of entire ensembles instead

of individual devices. We validate our approach via simulation; to this end, we extend the Alchemist simulator with

features specific to the simulation of robots with vision sensors, enabling large-scale simulations of mobile vision sensor

networks. By gathering information of the robot proximity and modelling it as an optimisation problem, we leverage

a linear programming-based heuristic to enable the set of autonomous robots to outperform previously proposed

approaches in covering objects over a period of time with 𝑘 robots.
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