36 research outputs found

    A Global Systematic Review of Improving Crop Model Estimations by Assimilating Remote Sensing Data: Implications for Small-Scale Agricultural Systems

    Get PDF
    There is a growing effort to use access to remote sensing data (RS) in conjunction with crop model simulation capability to improve the accuracy of crop growth and yield estimates. This is critical for sustainable agricultural management and food security, especially in farming communities with limited resources and data. Therefore, the objective of this study was to provide a systematic review of research on data assimilation and summarize how its application varies by country, crop, and farming systems. In addition, we highlight the implications of using process-based crop models (PBCMs) and data assimilation in small-scale farming systems. Using a strict search term, we searched the Scopus and Web of Science databases and found 497 potential publications. After screening for relevance using predefined inclusion and exclusion criteria, 123 publications were included in the final review. Our results show increasing global interest in RS data assimilation approaches; however, 81% of the studies were from countries with relatively high levels of agricultural production, technology, and innovation. There is increasing development of crop models, availability of RS data sources, and characterization of crop parameters assimilated into PBCMs. Most studies used recalibration or updating methods to mainly incorporate remotely sensed leaf area index from MODIS or Landsat into the WOrld FOod STudies (WOFOST) model to improve yield estimates for staple crops in large-scale and irrigated farming systems. However, these methods cannot compensate for the uncertainties in RS data and crop models. We concluded that further research on data assimilation using newly available high-resolution RS datasets, such as Sentinel-2, should be conducted to significantly improve simulations of rare crops and small-scale rainfed farming systems. This is critical for informing local crop management decisions to improve policy and food security assessments

    A Detailed Review on Plant Leaf Disease Detection and Classification Methodologies using Deep Learning Techniques

    Get PDF
    The rapid emergence and evolution of deep learning methodologies in the field of plant disease classification and detection has resulted in significant progress. Their application has revolutionized the way agriculture is done. This paper provides an overview of the advancements in utilizing deep learning models to address the crucial task of identifying and categorizing plant diseases. By harnessing the power of deep convolutional neural networks (CNNs) and transfer learning, researchers have achieved remarkable accuracy in disease classification, often surpassing traditional methods. This study also delves into the challenges that persist in this field, such as the scarcity of labeled data and potential biases in models. To address these concerns, the integration of visualization techniques is explored, allowing for better model interpretation and transparency. The collaborative efforts of agricultural experts and machine learning researchers are deemed crucial for overcoming these challenges and driving the future direction of research. Looking ahead, the interdisciplinary approach is anticipated to play a pivotal role in refining deep learning models for plant disease detection. A seamless collaboration between domain-specific professionals, machine learning experts, and agricultural practitioners is essential to foster innovation, enhance the reliability of models, and create a sustainable agricultural ecosystem. With the integration of cutting-edge architectures, emerging technologies like edge computing, and broader datasets, the field is poised to bring about transformative changes in agricultural practices, bolstering crop health and productivity

    Internet of Things is a revolutionary approach for future technology enhancement: a review

    Get PDF
    Abstract Internet of Things (IoT) is a new paradigm that has changed the traditional way of living into a high tech life style. Smart city, smart homes, pollution control, energy saving, smart transportation, smart industries are such transformations due to IoT. A lot of crucial research studies and investigations have been done in order to enhance the technology through IoT. However, there are still a lot of challenges and issues that need to be addressed to achieve the full potential of IoT. These challenges and issues must be considered from various aspects of IoT such as applications, challenges, enabling technologies, social and environmental impacts etc. The main goal of this review article is to provide a detailed discussion from both technological and social perspective. The article discusses different challenges and key issues of IoT, architecture and important application domains. Also, the article bring into light the existing literature and illustrated their contribution in different aspects of IoT. Moreover, the importance of big data and its analysis with respect to IoT has been discussed. This article would help the readers and researcher to understand the IoT and its applicability to the real world

    DEVELOPMENT OF 3D WEB GIS APPLICATION WITH OPEN SOURCE LIBRARY

    Get PDF
    Today, thanks to the internet connection, the borders are disappearing and accessing information is more comfortable. Instead of desktop applications, number of web-based applications which can be seen instant changes by all users are increasing day by day. The diversity of web-based applications that are currently used in presenting spatial information to users is also spreading. Using open source libraries, developers can develop web applications for their own purposes. Three dimensional (3D) visualization on web is a commonly used approach in geographic information systems (GIS) applications. In this article, it is aimed to develop a 3D web application using open source library. Vector data layers containing attribute data on global, country and city levels are visualized on web application. The raster data layers produced in the most suitable site selection and mapping of land valuation process results are also visualized on the web application in three dimensional. It is pointed that the output products obtained from different studies can be accessed and visualized through the web browser without installing an additional program or add-ons on the users' computers

    A K-Nearest Neighbors Algorithm in Python for Visualizing the 3D Stratigraphic Architecture of the Llobregat River Delta in NE Spain

    Get PDF
    The k-nearest neighbors (KNN) algorithm is a non-parametric supervised machine learning classifier; which uses proximity and similarity to make classifications or predictions about the grouping of an individual data point. This ability makes the KNN algorithm ideal for classifying datasets of geological variables and parameters prior to 3D visualization. This paper introduces a machine learning KNN algorithm and Python libraries for visualizing the 3D stratigraphic architecture of sedimentary porous media in the Quaternary onshore Llobregat River Delta (LRD) in northeastern Spain. A first HTML model showed a consecutive 5 m-equispaced set of horizontal sections of the granulometry classes created with the KNN algorithm from 0 to 120 m below sea level in the onshore LRD. A second HTML model showed the 3D mapping of the main Quaternary gravel and coarse sand sedimentary bodies (lithosomes) and the basement (Pliocene and older rocks) top surface created with Python libraries. These results reproduce well the complex sedimentary structure of the LRD reported in recent scientific publications and proves the suitability of the KNN algorithm and Python libraries for visualizing the 3D stratigraphic structure of sedimentary porous media, which is a crucial stage in making decisions in different environmental and economic geology disciplines.Research Project PID2020-114381GB-100 of the Spanish Ministry of Science and Innovation, Research Groups and Projects of the Generalitat Valenciana from the University of Alicante (CTMA-IGA), and Research Groups FQM-343 and RNM-188 of the Junta de AndalucĂ­a

    A K-Nearest Neighbors Algorithm in Python for Visualizing the 3D Stratigraphic Architecture of the Llobregat River Delta in NE Spain

    Get PDF
    The k-nearest neighbors (KNN) algorithm is a non-parametric supervised machine learning classifier; which uses proximity and similarity to make classifications or predictions about the grouping of an individual data point. This ability makes the KNN algorithm ideal for classifying datasets of geological variables and parameters prior to 3D visualization. This paper introduces a machine learning KNN algorithm and Python libraries for visualizing the 3D stratigraphic architecture of sedimentary porous media in the Quaternary onshore Llobregat River Delta (LRD) in northeastern Spain. A first HTML model showed a consecutive 5 m-equispaced set of horizontal sections of the granulometry classes created with the KNN algorithm from 0 to 120 m below sea level in the onshore LRD. A second HTML model showed the 3D mapping of the main Quaternary gravel and coarse sand sedimentary bodies (lithosomes) and the basement (Pliocene and older rocks) top surface created with Python libraries. These results reproduce well the complex sedimentary structure of the LRD reported in recent scientific publications and proves the suitability of the KNN algorithm and Python libraries for visualizing the 3D stratigraphic structure of sedimentary porous media, which is a crucial stage in making decisions in different environmental and economic geology disciplines.Junta de Andalucia FQM-343 RNM-188Spanish Government PID2020-114381GB-100Generalitat Valenciana from the University of Alicante (CTMAIGA

    Monitoring tomato leaf disease through convolutional neural networks

    Get PDF
    Agriculture plays an essential role in Mexico’s economy. The agricultural sector has a 2.5% share of Mexico’s gross domestic product. Specifically, tomatoes have become the country’s most exported agricultural product. That is why there is an increasing need to improve crop yields. One of the elements that can considerably affect crop productivity is diseases caused by agents such as bacteria, fungi, and viruses. However, the process of disease identification can be costly and, in many cases, time-consuming. Deep learning techniques have begun to be applied in the process of plant disease identification with promising results. In this paper, we propose a model based on convolutional neural networks to identify and classify tomato leaf diseases using a public dataset and complementing it with other photographs taken in the fields of the country. To avoid overfitting, generative adversarial networks were used to generate samples with the same characteristics as the training data. The results show that the proposed model achieves a high performance in the process of detection and classification of diseases in tomato leaves: the accuracy achieved is greater than 99% in both the training dataset and the test dataset.This work was partially funded by the State Research Agency of Spain under grant number PID2020-116377RB-C21.Peer ReviewedPostprint (published version

    Using 1st derivative reflectance signatures within a remote sensing framework to identify macroalgae in marine environments

    Get PDF
    Macroalgae blooms (MABs) are a global natural hazard that are likely to increase in occurrence with climate change and increased agricultural runoff. MABs can cause major issues for indigenous species, fish farms, nuclear power stations, and tourism activities. This project focuses on the impacts of MABs on the operations of a British nuclear power station. However, the outputs and findings are also of relevance to other coastal operators with similar problems. Through the provision of an early-warning detection system for MABs, it should be possible to minimize the damaging effects and possibly avoid them altogether. Current methods based on satellite imagery cannot be used to detect low-density mobile vegetation at various water depths. This work is the first step towards providing a system that can warn a coastal operator 6–8 h prior to a marine ingress event. A fundamental component of such a warning system is the spectral reflectance properties of the problematic macroalgae species. This is necessary to optimize the detection capability for the problematic macroalgae in the marine environment. We measured the reflectance signatures of eight species of macroalgae that we sampled in the vicinity of the power station. Only wavelengths below 900 nm (700 nm for similarity percentage (SIMPER)) were analyzed, building on current methodologies. We then derived 1st derivative spectra of these eight sampled species. A multifaceted univariate and multivariate approach was used to visualize the spectral reflectance, and an analysis of similarities (ANOSIM) provided a species-level discrimination rate of 85% for all possible pairwise comparisons. A SIMPER analysis was used to detect wavebands that consistently contributed to the simultaneous discrimination of all eight sampled macroalgae species to both a group level (535–570 nm), and to a species level (570–590 nm). Sampling locations were confirmed using a fixed-wing unmanned aerial vehicle (UAV), with the collected imagery being used to produce a single orthographic image via standard photogrammetric processes. The waveband found to contribute consistently to group-level discrimination has previously been found to be associated with photosynthetic pigmentation, whereas the species-level discriminatory waveband did not share this association. This suggests that the photosynthetic pigments were not spectrally diverse enough to successfully distinguish all eight species. We suggest that future work should investigate a Charge-Coupled Device (CCD)-based sensor using the wavebands highlighted above. This should facilitate the development of a regional-scale early-warning MAB detection system using UAVs, and help inform optimum sensor filter selection.
    corecore