14 research outputs found

    Hybrid satellite–terrestrial networks toward 6G : key technologies and open issues

    Get PDF
    Future wireless networks will be required to provide more wireless services at higher data rates and with global coverage. However, existing homogeneous wireless networks, such as cellular and satellite networks, may not be able to meet such requirements individually, especially in remote terrain, including seas and mountains. One possible solution is to use diversified wireless networks that can exploit the inter-connectivity between satellites, aerial base stations (BSs), and terrestrial BSs over inter-connected space, ground, and aerial networks. Hence, enabling wireless communication in one integrated network has attracted both the industry and the research fraternities. In this work, we provide a comprehensive survey of the most recent work on hybrid satellite–terrestrial networks (HSTNs), focusing on system architecture, performance analysis, design optimization, and secure communication schemes for different cooperative and cognitive HSTN network architectures. Different key technologies are compared. Based on this comparison, several open issues for future research are discussed

    6G Cellular Networks and Connected Autonomous Vehicles

    Get PDF
    With 5G mobile communication systems been commercially rolled out, research discussions on next generation mobile systems, i.e., 6G, have started. On the other hand, vehicular technologies are also evolving rapidly, from connected vehicles as coined by V2X (vehicle to everything) to autonomous vehicles to the combination of the two, i.e., the networks of connected autonomous vehicles (CAV). How fast the evolution of these two areas will go head-in-head is of great importance, which is the focus of this paper. After a brief overview on technological evolution of V2X to CAV and 6G key technologies, this paper explores two complementary research directions, namely, 6G for CAVs versus CAVs for 6G. The former investigates how various 6G key enablers, such as THz, cell free communication and artificial intelligence (AI), can be utilized to provide CAV mission-critical services. The latter discusses how CAVs can facilitate effective deployment and operation of 6G systems. This paper attempts to investigate the interactions between the two technologies to spark more research efforts in these areas

    Opportunistic Reflection in Reconfigurable Intelligent Surface-Assisted Wireless Networks

    Full text link
    This paper focuses on multiple-access protocol design in a wireless network assisted by multiple reconfigurable intelligent surfaces (RISs). By extending the existing approaches in single-user or single-RIS cases, we present two benchmark schemes for this multi-user multi-RIS scenario. Inspecting their shortcomings, a simple but efficient method coined opportunistic multi-user reflection (OMUR) is proposed. The key idea is to opportunistically select the best user as the anchor for optimizing the RISs, and non-orthogonally transmitting all users' signals simultaneously. A simplified version of OMUR exploiting random phase shifts is also proposed to avoid the complexity of RIS channel estimation.Comment: IEEE PIMRC 2023, Toronto, Canada. arXiv admin note: text overlap with arXiv:2303.09183. text overlap with arXiv:2309.0632

    Terahertz-Enpowered Communications and Sensing in 6G Systems: Opportunities and Challenges

    Full text link
    The current focus of academia and the telecommunications industry has been shifted to the development of the six-generation (6G) cellular technology, also formally referred to as IMT-2030. Unprecedented applications that 6G aims to accommodate demand extreme communications performance and, in addition, disruptive capabilities such as network sensing. Recently, there has been a surge of interest in terahertz (THz) frequencies as it offers not only massive spectral resources for communication but also distinct advantages in sensing, positioning, and imaging. The aim of this paper is to provide a brief outlook on opportunities opened by this under-exploited band and challenges that must be addressed to materialize the potential of THz-based communications and sensing in 6G systems.Comment: 2023 the 9th International Conference on Computer and Communications (ICCC). arXiv admin note: text overlap with arXiv:2307.1032

    A Public Information Precoding for MIMO Visible Light Communication System Based on Manifold Optimization

    Full text link
    Visible light communication (VLC) is an attractive subset of optical communication that provides a high data rate in the access layer of the network. The combination of multiple inputmultiple output (MIMO) with a VLC system leads to a higher speed of data transmission named as MIMO-VLC system. In multi-user (MU) MIMO-VLC, a LED array transmits signals for users. These signals are categorized as signals of private information for each user and signals of public information for all users. The main idea of this paper is to design an omnidirectional precoding to transmit the signals of public information in the MUMIMO-VLC network. To this end, we propose to maximize the achievable rate which leads to maximizing the received mean power at the possible location of the users. Besides maximizing the achievable rate, we consider equal mean transmission power constraint in all LEDs to achieve higher power efficiency of the power amplifiers used in the LED array. Based on this we formulate an optimization problem in which the constraint is in the form of a manifold and utilize a gradient method projected on the manifold to solve the problem. Simulation results indicate that the proposed omnidirectional precoding can achieve superior received mean power and bit error rate with respect to the classical form without precoding utilization.Comment: This paper has been submitted to an IEEE Journa

    A Study on mm-Wave Propagation In and Around Buildings

    Get PDF
    mm-waves are envisaged as a key enabler for 5G and 6G wireless communications, thanks to the wide bandwidth and to the possibility of implementing large-scale antenna arrays and advanced transmission techniques, such as massive MIMO and beamforming, that can take advantage of the multidimensional properties of the wireless channel. In order to analyze in depth the peculiar characteristics of mm-wave propagation, joint measurement and simulation campaigns in indoor and outdoor microcellular environments have been carried out. The investigation highlights that the assumption that mm-wave NLoS connectivity is hardly feasible is not necessarily true as significant reflections, scattering and even transmission mechanisms can provide good NLoS coverage in the considered indoor and outdoor scenarios. This is also reflected in the limited angle-spread differences between LoS and NLoS locations in some cases. Finally, the contribution of different propagation mechanisms (reflection, diffraction, scattering and combination of them) to the received signal is analyzed in the paper with the help of ray tracing simulations. These outcomes can be helpful to predict the performance of mm-wave wireless systems and for the development of deterministic and geometric-stochastic mm-wave channel models

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed

    Intelligent Reflective Surface Deployment in 6G: A Comprehensive Survey

    Full text link
    Intelligent reflecting surfaces (IRSs) are considered a promising technology that can smartly reconfigure the wireless environment to enhance the performance of future wireless networks. However, the deployment of IRSs still faces challenges due to highly dynamic and mobile unmanned aerial vehicle (UAV) enabled wireless environments to achieve higher capacity. This paper sheds light on the different deployment strategies for IRSs in future terrestrial and non-terrestrial networks. Specifically, in this paper, we introduce key theoretical concepts underlying the IRS paradigm and discuss the design aspects related to the deployment of IRSs in 6G networks. We also explore optimization-based IRS deployment techniques to improve system performance in terrestrial and aerial IRSs. Furthermore, we survey model-free reinforcement learning (RL) techniques from the deployment aspect to address the challenges of achieving higher capacity in complex and mobile IRS-assisted UAV wireless systems. Finally, we highlight challenges and future research directions from the deployment aspect of IRSs for improving system performance for the future 6G network.Comment: 16 pages, 3 Figures, 7 table

    Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive View

    Full text link
    The next-generation wireless technologies, commonly referred to as the sixth generation (6G), are envisioned to support extreme communications capacity and in particular disruption in the network sensing capabilities. The terahertz (THz) band is one potential enabler for those due to the enormous unused frequency bands and the high spatial resolution enabled by both short wavelengths and bandwidths. Different from earlier surveys, this paper presents a comprehensive treatment and technology survey on THz communications and sensing in terms of the advantages, applications, propagation characterization, channel modeling, measurement campaigns, antennas, transceiver devices, beamforming, networking, the integration of communications and sensing, and experimental testbeds. Starting from the motivation and use cases, we survey the development and historical perspective of THz communications and sensing with the anticipated 6G requirements. We explore the radio propagation, channel modeling, and measurements for THz band. The transceiver requirements, architectures, technological challenges, and approaches together with means to compensate for the high propagation losses by appropriate antenna and beamforming solutions. We survey also several system technologies required by or beneficial for THz systems. The synergistic design of sensing and communications is explored with depth. Practical trials, demonstrations, and experiments are also summarized. The paper gives a holistic view of the current state of the art and highlights the issues and challenges that are open for further research towards 6G.Comment: 55 pages, 10 figures, 8 tables, submitted to IEEE Communications Surveys & Tutorial
    corecore