5 research outputs found

    Event-Driven Technologies for Reactive Motion Planning: Neuromorphic Stereo Vision and Robot Path Planning and Their Application on Parallel Hardware

    Get PDF
    Die Robotik wird immer mehr zu einem Schlüsselfaktor des technischen Aufschwungs. Trotz beeindruckender Fortschritte in den letzten Jahrzehnten, übertreffen Gehirne von Säugetieren in den Bereichen Sehen und Bewegungsplanung noch immer selbst die leistungsfähigsten Maschinen. Industrieroboter sind sehr schnell und präzise, aber ihre Planungsalgorithmen sind in hochdynamischen Umgebungen, wie sie für die Mensch-Roboter-Kollaboration (MRK) erforderlich sind, nicht leistungsfähig genug. Ohne schnelle und adaptive Bewegungsplanung kann sichere MRK nicht garantiert werden. Neuromorphe Technologien, einschließlich visueller Sensoren und Hardware-Chips, arbeiten asynchron und verarbeiten so raum-zeitliche Informationen sehr effizient. Insbesondere ereignisbasierte visuelle Sensoren sind konventionellen, synchronen Kameras bei vielen Anwendungen bereits überlegen. Daher haben ereignisbasierte Methoden ein großes Potenzial, schnellere und energieeffizientere Algorithmen zur Bewegungssteuerung in der MRK zu ermöglichen. In dieser Arbeit wird ein Ansatz zur flexiblen reaktiven Bewegungssteuerung eines Roboterarms vorgestellt. Dabei wird die Exterozeption durch ereignisbasiertes Stereosehen erreicht und die Pfadplanung ist in einer neuronalen Repräsentation des Konfigurationsraums implementiert. Die Multiview-3D-Rekonstruktion wird durch eine qualitative Analyse in Simulation evaluiert und auf ein Stereo-System ereignisbasierter Kameras übertragen. Zur Evaluierung der reaktiven kollisionsfreien Online-Planung wird ein Demonstrator mit einem industriellen Roboter genutzt. Dieser wird auch für eine vergleichende Studie zu sample-basierten Planern verwendet. Ergänzt wird dies durch einen Benchmark von parallelen Hardwarelösungen wozu als Testszenario Bahnplanung in der Robotik gewählt wurde. Die Ergebnisse zeigen, dass die vorgeschlagenen neuronalen Lösungen einen effektiven Weg zur Realisierung einer Robotersteuerung für dynamische Szenarien darstellen. Diese Arbeit schafft eine Grundlage für neuronale Lösungen bei adaptiven Fertigungsprozesse, auch in Zusammenarbeit mit dem Menschen, ohne Einbußen bei Geschwindigkeit und Sicherheit. Damit ebnet sie den Weg für die Integration von dem Gehirn nachempfundener Hardware und Algorithmen in die Industrierobotik und MRK

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Combining visual features and Growing Neural Gas networks for robotic 3D SLAM

    Get PDF
    The use of 3D data in mobile robotics provides valuable information about the robot’s environment. Traditionally, stereo cameras have been used as a low-cost 3D sensor. However, the lack of precision and texture for some surfaces suggests that the use of other 3D sensors could be more suitable. In this work, we examine the use of two sensors: an infrared SR4000 and a Kinect camera. We use a combination of 3D data obtained by these cameras, along with features obtained from 2D images acquired from these cameras, using a Growing Neural Gas (GNG) network applied to the 3D data. The goal is to obtain a robust egomotion technique. The GNG network is used to reduce the camera error. To calculate the egomotion, we test two methods for 3D registration. One is based on an iterative closest points algorithm, and the other employs random sample consensus. Finally, a simultaneous localization and mapping method is applied to the complete sequence to reduce the global error. The error from each sensor and the mapping results from the proposed method are examined.This work has been supported by Grant DPI2009-07144 and DPI2013-40534-R from Ministerio de Ciencia e Innovacion of the Spanish Government, University of Alicante Projects GRE09-16 and GRE10-35, and Valencian Government Project GV/2011/034

    Three-dimensional image classification using hierarchical spatial decomposition: A study using retinal data

    Get PDF
    This thesis describes research conducted in the field of image mining especially volumetric image mining. The study investigates volumetric representation techniques based on hierarchical spatial decomposition to classify three-dimensional (3D) images. The aim of this study was to investigate the effectiveness of using hierarchical spatial decomposition coupled with regional homogeneity in the context of volumetric data representation. The proposed methods involve the following: (i) decomposition, (ii) representation, (iii) single feature vector generation and (iv) classifier generation. In the decomposition step, a given image (volume) is recursively decomposed until either homogeneous regions or a predefined maximum level are reached. For measuring the regional homogeneity, different critical functions are proposed. These critical functions are based on histograms of a given region. Once the image is decomposed, two representation methods are proposed: (i) to represent the decomposition using regions identified in the decomposition (region-based) or (ii) to represent the entire decomposition (whole image-based). The first method is based on individual regions, whereby each decomposed sub-volume (region) is represented in terms of different statistical and histogram-based techniques. Feature vector generation techniques are used to convert the set of feature vectors for each sub-volume into a single feature vector. In the whole image-based representation method, a tree is used to represent each image. Each node in the tree represents a region (sub-volume) using a single value and each edge describes the difference between the node and its parent node. A frequent sub-tree mining technique was adapted to identified a set of frequent sub-graphs. Selected sub-graphs are then used to build a feature vector for each image. In both cases, a standard classifier generator is applied, to the generated feature vectors, to model and predict the class of each image. Evaluation was conducted with respect to retinal optical coherence tomography images in terms of identifying Age-related Macular Degeneration (AMD). Two types of evaluation were used: (i) classification performance evaluation and (ii) statistical significance testing using ANalysis Of VAriance (ANOVA). The evaluation revealed that the proposed methods were effective for classifying 3D retinal images. It is consequently argued that the approaches are generic
    corecore