4,056 research outputs found

    Development of a dc-ac power conditioner for wind generator by using neural network

    Get PDF
    This project present of development single phase DC-AC converter for wind generator application. The mathematical model of the wind generator and Artificial Neural Network control for DC-AC converter is derived. The controller is designed to stabilize the output voltage of DC-AC converter. To verify the effectiveness of the proposal controller, both simulation and experimental are developed. The simulation and experimental result show that the amplitude of output voltage of the DC-AC converter can be controlled

    Theoretical and experimental design of an alternative system to 2 x 2 MIMO for LTE over 60 km directly modulated RoF link

    Get PDF
    Relay nodes (RN) are used as an important structure to extend the coverage of the Third Generation Partnership Program’s Long Term Evolution (3GPP-LTE). The promising technology as the interface between eNodeB (eNB) and RN is radio-over-fibre (RoF), due to its longer span transmission capability. In this paper, we propose an alternative technique to 2×2 multiple-input and multiple-output (MIMO) in LTE structure for transmission over 60 km directly modulated RoF link by introducing frequency division multiplexing (FDM) for orthogonal FDM (OFDM). The system is demonstrated theoretically and experimentally. In the baseband, quadrature phase shift keying (QPSK), 16-quadrature amplitude modulation (QAM) and 64-QAM are considered as the single carrier modulations (SCM) according to the LTE standard. The system degradation pattern is identical between the theoretical and experimental system, thus proving the accuracy of the theoretical system design. The real time QPSK, 16-QAM and 64-QAM system achieved an average EVM of 5.84%, 5.90% and 5.97%, respectively for 2 GHz and 2.6 GHz bands. These resultant EVMs are below the 8% 3GPP-LTE EVM requirement

    Hybrid M-FSK/DQPSK Modulations for CubeSat Picosatellites

    Get PDF
    Conventional CubeSat radio systems typically use one of several basic modulations, such as AFSK, GMSK, BPSK, QPSK and OOK or switch between them on demand if possible. These modulations represent a bal¬anced trade-off between good energy efficiency of high order M-FSK modulation and good spectral efficiency of high order M-QAM modulation. Utilization of modulations with the best energy efficiency is not possible due to strict limits on occupied frequency bandwidth. In this paper the proposed group of hybrid modulations and proposed hybrid modulator and demodulator are presented. Novel solution offer interesting possibilities of increasing spectral efficiency as well as energy efficiency of basic M-FSK modulation by embedding DQPSK symbols between two M-FSK symbols. Such group of hybrid modulations offers suitable properties for picosatellite, e.g. simple realization onboard the picosatellite, better energy and spectral efficiency, low PAPR, wide range of adaptation by changing the order of M-FSK, suitable for easy non-coherent demodulation, good immunity to Doppler effect with DM-FSK coding
    corecore