15 research outputs found

    Wireless wire - ultra-low-power and high-data-rate wireless communication systems

    Get PDF
    With the rapid development of communication technologies, wireless personal-area communication systems gain momentum and become increasingly important. When the market gets gradually saturated and the technology becomes much more mature, new demands on higher throughput push the wireless communication further into the high-frequency and high-data-rate direction. For example, in the IEEE 802.15.3c standard, a 60-GHz physical layer is specified, which occupies the unlicensed 57 to 64 GHz band and supports gigabit links for applications such as wireless downloading and data streaming. Along with the progress, however, both wireless protocols and physical systems and devices start to become very complex. Due to the limited cut-off frequency of the technology and high parasitic and noise levels at high frequency bands, the power consumption of these systems, especially of the RF front-ends, increases significantly. The reason behind this is that RF performance does not scale with technology at the same rate as digital baseband circuits. Based on the challenges encountered, the wireless-wire system is proposed for the millimeter wave high-data-rate communication. In this system, beamsteering directional communication front-ends are used, which confine the RF power within a narrow beam and increase the level of the equivalent isotropic radiation power by a factor equal to the number of antenna elements. Since extra gain is obtained from the antenna beamsteering, less front-end gain is required, which will reduce the power consumption accordingly. Besides, the narrow beam also reduces the interference level to other nodes. In order to minimize the system average power consumption, an ultra-low power asynchronous duty-cycled wake-up receiver is added to listen to the channel and control the communication modes. The main receiver is switched on by the wake-up receiver only when the communication is identified while in other cases it will always be in sleep mode with virtually no power consumed. Before transmitting the payload, the event-triggered transmitter will send a wake-up beacon to the wake-up receiver. As long as the wake-up beacon is longer than one cycle of the wake-up receiver, it can be captured and identified. Furthermore, by adopting a frequency-sweeping injection locking oscillator, the wake-up receiver is able to achieve good sensitivity, low latency and wide bandwidth simultaneously. In this way, high-data-rate communication can be achieved with ultra-low average power consumption. System power optimization is achieved by optimizing the antenna number, data rate, modulation scheme, transceiver architecture, and transceiver circuitries with regards to particular application scenarios. Cross-layer power optimization is performed as well. In order to verify the most critical elements of this new approach, a W-band injection-locked oscillator and the wake-up receiver have been designed and implemented in standard TSMC 65-nm CMOS technology. It can be seen from the measurement results that the wake-up receiver is able to achieve about -60 dBm sensitivity, 10 mW peak power consumption and 8.5 µs worst-case latency simultaneously. When applying a duty-cycling scheme, the average power of the wake-up receiver becomes lower than 10 µW if the event frequency is 1000 times/day, which matches battery-based or energy harvesting-based wireless applications. A 4-path phased-array main receiver is simulated working with 1 Gbps data rate and on-off-keying modulation. The average power consumption is 10 µW with 10 Gb communication data per day

    Integrated Circuit and Antenna Technology for Millimeter-wave Phased Array Radio Front-end

    Get PDF
    Ever growing demands for higher data rate and bandwidth are pushing extremely high data rate wireless applications to millimeter-wave band (30-300GHz), where sufficient bandwidth is available and high data rate wireless can be achieved without using complex modulation schemes. In addition to the communication applications, millimeter-wave band has enabled novel short range and long range radar sensors for automotive as well as high resolution imaging systems for medical and security. Small size, high gain antennas, unlicensed and worldwide availability of released bands for communication and a number of other applications are other advantages of the millimeter-wave band. The major obstacle for the wide deployment of commercial wireless and radar systems in this frequency range is the high cost and bulky nature of existing GaAs- and InP-based solutions. In recent years, with the rapid scaling and development of the silicon-based integrated circuit technologies such as CMOS and SiGe, low cost technologies have shown acceptable millimeter-wave performance, which can enable highly integrated millimeter-wave radio devices and reduce the cost significantly. Furthermore, at this range of frequencies, on-chip antenna becomes feasible and can be considered as an attractive solution that can further reduce the cost and complexity of the radio package. The propagation channel challenges for the realization of low cost and reliable silicon-based communication devices at millimeter-wave band are severe path loss as well as shadowing loss of human body. Silicon technology challenges are low-Q passive components, low breakdown voltage of active devices, and low efficiency of on-chip antennas. The main objective of this thesis is to investigate and to develop antenna and front-end for cost-effective silicon based millimeter-wave phased array radio architectures that can address above challenges for short range, high data rate wireless communication as well as radar applications. Although the proposed concepts and the results obtained in this research are general, as an important example, the application focus in this research is placed on the radio aspects of emerging 60 GHz communication system. For this particular but extremely important case, various aspects of the technology including standard, architecture, antenna options and indoor propagation channel at presence of a human body are studied. On-chip dielectric resonator antenna as a radiation efficiency improvement technique for an on-chip antenna on low resistivity silicon is presented, developed and proved by measurement. Radiation efficiency of about 50% was measured which is a significant improvement in the radiation efficiency of on-chip antennas. Also as a further step, integration of the proposed high efficiency antenna with an amplifier in transmit and receive configurations at 30 GHz is successfully demonstrated. For the implementation of a low cost millimeter-wave array antenna, miniaturized, and efficient antenna structures in a new integrated passive device technology using high resistivity silicon are designed and developed. Front-end circuit blocks such as variable gain LNA, continuous passive and active phase shifters are investigated, designed and developed for a 60GHz phased array radio in CMOS technology. Finally, two-element CMOS phased array front-ends based on passive and active phase shifting architectures are proposed, developed and compared

    Taming and Leveraging Directionality and Blockage in Millimeter Wave Communications

    Get PDF
    To cope with the challenge for high-rate data transmission, Millimeter Wave(mmWave) is one potential solution. The short wavelength unlatched the era of directional mobile communication. The semi-optical communication requires revolutionary thinking. To assist the research and evaluate various algorithms, we build a motion-sensitive mmWave testbed with two degrees of freedom for environmental sensing and general wireless communication.The first part of this thesis contains two approaches to maintain the connection in mmWave mobile communication. The first one seeks to solve the beam tracking problem using motion sensor within the mobile device. A tracking algorithm is given and integrated into the tracking protocol. Detailed experiments and numerical simulations compared several compensation schemes with optical benchmark and demonstrated the efficiency of overhead reduction. The second strategy attempts to mitigate intermittent connections during roaming is multi-connectivity. Taking advantage of properties of rateless erasure code, a fountain code type multi-connectivity mechanism is proposed to increase the link reliability with simplified backhaul mechanism. The simulation demonstrates the efficiency and robustness of our system design with a multi-link channel record.The second topic in this thesis explores various techniques in blockage mitigation. A fast hear-beat like channel with heavy blockage loss is identified in the mmWave Unmanned Aerial Vehicle (UAV) communication experiment due to the propeller blockage. These blockage patterns are detected through Holm\u27s procedure as a problem of multi-time series edge detection. To reduce the blockage effect, an adaptive modulation and coding scheme is designed. The simulation results show that it could greatly improve the throughput given appropriately predicted patterns. The last but not the least, the blockage of directional communication also appears as a blessing because the geometrical information and blockage event of ancillary signal paths can be utilized to predict the blockage timing for the current transmission path. A geometrical model and prediction algorithm are derived to resolve the blockage time and initiate active handovers. An experiment provides solid proof of multi-paths properties and the numeral simulation demonstrates the efficiency of the proposed algorithm

    Nouvelle méthode d'estimation des différences de temps d'arrivée pour la localisation des objets connectés haut débit

    Get PDF
    The forthcoming vision of Internet of Things (IoT) and Internet of Everything (IoE) will immerse people in so-called Smart Environments involving a great number of sectors of applications such as smart habitat, smart-cities, environment monitoring, e-health… IoT and IoE tend to make everyday objects readable, recognizable, locatable, addressable and controllable via the widespread wireless deployment and the internet. Among these capabilities, localization and more extensively the ubiquitous positioning will play, in the next future, a key role to promote another emerging vision: a spatio-temporal Internet of Places (IoP), which would be able to structure and organize, by means of wireless energy aware approaches, the spatial content of Internet. It is well known that in wireless local and personal area networks, the spectrum congestion, the low energy efficiency communications and the insufficient exploitation of the spatial resources are among the factors that may slow down its development in terms of throughput and autonomy. To overcome these unavoidable restrictions, wireless localization technology, as the mechanism for discovering spatio-temporal relationship between connected objects, appears here also as one of the key solutions. This is because dedicated localization techniques in wireless communication can help in developing more extensively the exploitation of spatial resources and allow driving optimized routing for low energy multi-hop communication and spectrum decongestion for Green ICT (Information and Communication Technology). To propose optimized systems achieving both high data rate communication and precise localization, we define a well suited TDOA (Time Difference of Arrival) based method able to perform localization based on communication signals and data only. With this technique, unlike conventional TDOA estimations, it is possible to drastically decrease the complexity of required infrastructures by using either SIMO (Single Input Multiple Output), MISO (Multiple Input Single Output) or MIMO (Multiple Input Multiple Output) configurations in connected objects. This whole study is made within the framework of the IEEE 802.11ad standard and WiGig alliance specifications, however the proposed solutions are compatible with other standards and can be extended to other context aware applications requiring localization inputs such as robotics for example or smart shopping...La vision future de l'internet des objets (IdO) et Internet du Tout (OIE) plongera les personnes soi-disant environnements intelligents impliquant un grand nombre de secteurs d'applications telles que l'habitat intelligent, smart-villes, surveillance de l'environnement, l'e-santé ... IdO et l'OIE ont tendance à faire des objets du quotidien lisible, identifiable, localisable, adressable et contrôlable via le déploiement sans fil généralisée et l'Internet. Parmi ces capacités, la localisation et plus largement le positionnement omniprésente joueront, dans un proche avenir, un rôle clé pour promouvoir une autre vision émergente: un Internet spatio-temporelle des lieux (IoP), qui serait en mesure de structurer et d'organiser, par des moyens des approches sans fil d'énergie savez, le contenu spatial d'Internet. Il est bien connu que dans les réseaux locaux sans fil et personnelles, l'encombrement du spectre, les communications à faible efficacité énergétique et l'exploitation insuffisante des ressources spatiales sont parmi les facteurs qui peuvent ralentir son développement en termes de débit et de l'autonomie. Pour surmonter ces restrictions inévitables, la technologie de localisation sans fil, comme le mécanisme pour découvrir relation spatio-temporelle entre les objets connectés, apparaît ici aussi comme une des solutions clés. Ce est parce que les techniques de localisation dédiés à la communication sans fil peuvent aider à développer plus largement l'exploitation des ressources spatiales et de permettre la conduite routage optimisé pour une faible énergie communication multi-hop et la décongestion du spectre pour Green ICT (Information et Communication Technology). Pour proposer des systèmes optimisés atteindre à la fois la communication des taux de données élevés et la localisation précise, nous définissons un TDOA bien adapté (Time Difference of Arrival) méthode basée en mesure d'effectuer la localisation basée sur des signaux de communication et de données seulement. Avec cette technique, contrairement estimations TDOA classiques, il est possible de diminuer considérablement la complexité des infrastructures nécessaires en utilisant des configurations SIMO (Single Input Multiple Output), MISO (Multiple Input Single Output) ou MIMO (Multiple Input Multiple Output) dans les objets connectés . Toute cette étude est faite dans le cadre de l'IEEE 802.11ad spécifications de l'alliance standard et WiGig, mais les solutions proposées sont compatibles avec d'autres normes et peuvent être étendues à d'autres applications de contexte courant nécessitant entrées de localisation tels que la robotique par exemple ou de shopping intelligent..

    DESIGN AND ANALYSIS OF ANTENNA-ON-CHIP AND ANTENNA-IN-PACKAGE FOR 60-GHZ WIRELESS COMMUNICATIONS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Architecture of a cognitive non-line-of-sight backhaul for 5G outdoor urban small cells

    Get PDF
    Densely deployed small cell networks will address the growing demand for broadband mobile connectivity, by increasing access network capacity and coverage. However, most potential small cell base station (SCBS) locations do not have existing telecommunication infrastructure. Providing backhaul connectivity to core networks is therefore a challenge. Millimeter wave (mmW) technologies operated at 30-90GHz are currently being considered to provide low-cost, flexible, high-capacity and reliable backhaul solutions using existing roof-mounted backhaul aggregation sites. Using intelligent mmW radio devices and massive multiple-input multiple-output (MIMO), for enabling point-to-multipoint (PtMP) operation, is considered in this research. The core aim of this research is to develop an architecture of an intelligent non-line-sight (NLOS) small cell backhaul (SCB) system based on mmW and massive MIMO technologies, and supporting intelligent algorithms to facilitate reliable NLOS street-to-rooftop NLOS SCB connectivity. In the proposed architecture, diffraction points are used as signal anchor points between backhaul radio devices. In the new architecture the integration of these technologies is considered. This involves the design of efficient artificial intelligence algorithms to enable backhaul radio devices to autonomously select suitable NLOS propagation paths, find an optimal number of links that meet the backhaul performance requirements and determine an optimal number of diffractions points capable of covering predetermined SCB locations. Throughout the thesis, a number of algorithms are developed and simulated using the MATLAB application. This thesis mainly investigates three key issues: First, a novel intelligent NLOS SCB architecture, termed the cognitive NLOS SCB (CNSCB) system is proposed to enable street-to-rooftop NLOS connectivity using predetermined diffraction points located on roof edges. Second, an algorithm to enable the autonomous creation of multiple-paths, evaluate the performance of each link and determine an optimal number of possible paths per backhaul link is developed. Third, an algorithm to determine the optimal number of diffraction points that can cover an identified SCBS location is also developed. Also, another investigated issue related to the operation of the proposed architecture is its energy efficiency, and its performance is compared to that of a point-to-point (PtP) architecture. The proposed solutions were examined using analytical models, simulations and experimental work to determine the strength of the street-to-rooftop backhaul links and their ability to meet current and future SCB requirements. The results obtained showed that reliable multiple NLOS links can be achieved using device intelligence to guide radio signals along the propagation path. Furthermore, the PtMP architecture is found to be more energy efficient than the PtP architecture. The proposed architecture and algorithms offer a novel backhaul solution for outdoor urban small cells. Finally, this research shows that traditional techniques of addressing the demand for connectivity, which consisted of improving or evolving existing solutions, may nolonger be applicable in emerging communication technologies. There is therefore need to consider new ways of solving the emerging challenges

    Multi-gigabit CMOS analog-to-digital converter and mixed-signal demodulator for low-power millimeter-wave communication systems

    Get PDF
    The objective of the research is to develop high-speed ADCs and mixed-signal demodulator for multi-gigabit communication systems using millimeter-wave frequency bands in standard CMOS technology. With rapid advancements in semiconductor technologies, mobile communication devices have become more versatile, portable, and inexpensive over the last few decades. However, plagued by the short lifetime of batteries, low power consumption has become an extremely important specification in developing mobile communication devices. The ever-expanding demand of consumers to access and share information ubiquitously at faster speeds requires higher throughputs, increased signal-processing functionalities at lower power and lower costs. In today’s technology, high-speed signal processing and data converters are incorporated in almost all modern multi-gigabit communication systems. They are key enabling technologies for scalable digital design and implementation of baseband signal processors. Ultimately, the merits of a high performance mixed-signal receiver, such as data rate, sensitivity, signal dynamic range, bit-error rate, and power consumption, are directly related to the quality of the embedded ADCs. Therefore, this dissertation focuses on the analysis and design of high-speed ADCs and a novel broadband mixed-signal demodulator with a fully-integrated DSP composed of low-cost CMOS circuitry. The proposed system features a novel dual-mode solution to demodulate multi-gigabit BPSK and ASK signals. This approach reduces the resolution requirement of high-speed ADCs, while dramatically reducing its power consumption for multi-gigabit wireless communication systems.PhDGee-Kung Chang - Committee Chair; Chang-Ho Lee - Committee Member; Geoffrey Ye Li - Committee Member; Paul A. Kohl - Committee Member; Shyh-Chiang Shen - Committee Membe

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics
    corecore