14 research outputs found

    HALO 1.0: A Hardware-agnostic Accelerator Orchestration Framework for Enabling Hardware-agnostic Programming with True Performance Portability for Heterogeneous HPC

    Full text link
    This paper presents HALO 1.0, an open-ended extensible multi-agent software framework that implements a set of proposed hardware-agnostic accelerator orchestration (HALO) principles. HALO implements a novel compute-centric message passing interface (C^2MPI) specification for enabling the performance-portable execution of a hardware-agnostic host application across heterogeneous accelerators. The experiment results of evaluating eight widely used HPC subroutines based on Intel Xeon E5-2620 CPUs, Intel Arria 10 GX FPGAs, and NVIDIA GeForce RTX 2080 Ti GPUs show that HALO 1.0 allows for a unified control flow for host programs to run across all the computing devices with a consistently top performance portability score, which is up to five orders of magnitude higher than the OpenCL-based solution.Comment: 21 page

    Understanding Concurrency Vulnerabilities in Linux Kernel

    Full text link
    While there is a large body of work on analyzing concurrency related software bugs and developing techniques for detecting and patching them, little attention has been given to concurrency related security vulnerabilities. The two are different in that not all bugs are vulnerabilities: for a bug to be exploitable, there needs be a way for attackers to trigger its execution and cause damage, e.g., by revealing sensitive data or running malicious code. To fill the gap, we conduct the first empirical study of concurrency vulnerabilities reported in the Linux operating system in the past ten years. We focus on analyzing the confirmed vulnerabilities archived in the Common Vulnerabilities and Exposures (CVE) database, which are then categorized into different groups based on bug types, exploit patterns, and patch strategies adopted by developers. We use code snippets to illustrate individual vulnerability types and patch strategies. We also use statistics to illustrate the entire landscape, including the percentage of each vulnerability type. We hope to shed some light on the problem, e.g., concurrency vulnerabilities continue to pose a serious threat to system security, and it is difficult even for kernel developers to analyze and patch them. Therefore, more efforts are needed to develop tools and techniques for analyzing and patching these vulnerabilities.Comment: It was finished in Oct 201

    Heracles: Improving Resource Efficiency at Scale

    Get PDF
    User-facing, latency-sensitive services, such as web-search, underutilize their computing resources during daily periods of low traffic. Reusing those resources for other tasks is rarely done in production services since the contention for shared resources can cause latency spikes that violate the service-level objectives of latency-sensitive tasks. The resulting under-utilization hurts both the affordability and energy-efficiency of large-scale datacenters. With technology scaling slowing down, it becomes important to address this opportunity. We present Heracles, a feedback-based controller that enables the safe colocation of best-effort tasks alongside a latency-critical service. Heracles dynamically manages multiple hardware and software isolation mechanisms, such as CPU, memory, and network isolation, to ensure that the latency-sensitive job meets latency targets while maximizing the resources given to best-effort tasks. We evaluate Heracles using production latency-critical and batch workloads from Google and demonstrate average server utilizations of 90% without latency violations across all the load and colocation scenarios that we evaluated

    Code Generation and Global Optimization Techniques for a Reconfigurable PRAM-NUMA Multicore Architecture

    Full text link

    Cautiously Optimistic Program Analyses for Secure and Reliable Software

    Full text link
    Modern computer systems still have various security and reliability vulnerabilities. Well-known dynamic analyses solutions can mitigate them using runtime monitors that serve as lifeguards. But the additional work in enforcing these security and safety properties incurs exorbitant performance costs, and such tools are rarely used in practice. Our work addresses this problem by constructing a novel technique- Cautiously Optimistic Program Analysis (COPA). COPA is optimistic- it infers likely program invariants from dynamic observations, and assumes them in its static reasoning to precisely identify and elide wasteful runtime monitors. The resulting system is fast, but also ensures soundness by recovering to a conservatively optimized analysis when a likely invariant rarely fails at runtime. COPA is also cautious- by carefully restricting optimizations to only safe elisions, the recovery is greatly simplified. It avoids unbounded rollbacks upon recovery, thereby enabling analysis for live production software. We demonstrate the effectiveness of Cautiously Optimistic Program Analyses in three areas: Information-Flow Tracking (IFT) can help prevent security breaches and information leaks. But they are rarely used in practice due to their high performance overhead (>500% for web/email servers). COPA dramatically reduces this cost by eliding wasteful IFT monitors to make it practical (9% overhead, 4x speedup). Automatic Garbage Collection (GC) in managed languages (e.g. Java) simplifies programming tasks while ensuring memory safety. However, there is no correct GC for weakly-typed languages (e.g. C/C++), and manual memory management is prone to errors that have been exploited in high profile attacks. We develop the first sound GC for C/C++, and use COPA to optimize its performance (16% overhead). Sequential Consistency (SC) provides intuitive semantics to concurrent programs that simplifies reasoning for their correctness. However, ensuring SC behavior on commodity hardware remains expensive. We use COPA to ensure SC for Java at the language-level efficiently, and significantly reduce its cost (from 24% down to 5% on x86). COPA provides a way to realize strong software security, reliability and semantic guarantees at practical costs.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/170027/1/subarno_1.pd

    Reducing the Complexity of Heterogeneous Computing: A Unified Approach for Application Development and Runtime Optimization

    Get PDF
    Heterogeneous systems with accelerators promise considerable performance improvements at a lower cost than homogeneous CPU-only systems. However, to benefit from this potential, considerable work is required from developers to integrate them efficiently in an application. This work contributes a new framework implemented with an online-learning runtime system that simplifies development and makes applications more portable, efficient and reliable across different systems

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Effizientes Programmiermodell fĂŒr OpenMP auf einem Cluster-basierten Many-Core-System

    Get PDF
    Da die KomplexitĂ€t „System-on-Chip“ (SoC) auch weiterhin zunimmt, wird man die Herausforderungen aufgrund der Konvergenz der Software- und Hardwareentwicklung nicht ignorieren können. Dies gilt auch fĂŒr den Umgang mit dem hierarchischen Design, in dem die Prozessorkerne in Clustern oder sogenannten „Tiles“ angeordnet werden, um mittels eines schnellen lokalen Speicherzugriffs eine geringe Latenz und eine hohe Bandbreite der lokalen Kommunikation zu gewĂ€hrleisten. Aus der Sicht eines Programmierers ist es wĂŒnschenswert, sich diese Eigenheiten der Hardware zunutze zu machen und sie bei der Ausgestaltung der abstrakten Parallel-Programmierung gewissenhaft und zielfĂŒhrend zu berĂŒcksichtigen. Diese Dissertation ĂŒberwindet viele EngpĂ€sse in Bezug auf die Skalierbarkeit Cluster-basierter Many-Core-Systeme und fĂŒhrt das Programmiermodell OpenMP zur Vereinfachung der Anwendungsentwicklung ein. OpenMP abstrahiert von der Sichtweise des Programmierers – und es werden Richtlinien eingefĂŒhrt, mit denen Schleifen in Programmsequenzen eingeteilt werden, als Basis fĂŒr die parallele Programmierung. In dieser Arbeit wird das OpenMP-Modell bespielhaft in einem konkreten Cluster-basierten Many-Core-System umgesetzt; dem Intel Single-Chip Cloud Computer (SCC). Es wird eine schlanke und hoch-optimierte Laufzeitschicht fĂŒr die AusfĂŒhrung von OpenMP sowie ein Speichermodell vorgestellt. Auf Basis dieser Laufzeitschicht wird der parallele Code automatisch von einem nativen Backend-Compiler (GCC 4.6) erzeugt, der mit der Laufzeitbibliothek verknĂŒpft ist. Im Rahmen der Arbeit wird auf einen effizienten Designansatz fĂŒr die OpenMP-Programmierung eingegangen, wobei der Intel SCC als Beispiel fĂŒr Cluster-basierte Systeme zum Einsatz kommt. In nicht-Cache-kohĂ€renten Systemen dient die SCC OpenMP Laufzeitbibliothek primĂ€r dazu, die folgenden Herausforderungen zu bewĂ€ltigen: 1. Die AusfĂŒhrung von unmodifizierten, bestehenden OpenMP Programmen auf solchen Systemen. 2. Die Portierung des OpenMP-Speichermodells auf den SCC. 3. Die Synchronisation der parallelen Threads, auf die ein betrĂ€chtlicher Anteil der AusfĂŒhrungszeit einer Anwendung entfĂ€llt. Eine Reihe weiterer Beispiele, basierend auf verschiedenen gebrĂ€uchlichen Kernen und realen Anwendungen, untermauert die Tauglichkeit von OpenMP – und eine Reihe von Experimenten zeigt, wie dieses Modell zu einer deutlichen Beschleunigung (bis zu 48-fach) in verschiedenen parallelen Anwendungen fĂŒhrt.As the complexity of systems-on-chip (SoCs) continues to increase, it is no longer possible to ignore the challenges caused by the convergence of software and hardware development. This involves attempts to deal with the hierarchical design – in which several cores are grouped in clusters or tiles – to ensure low-latency, high-bandwidth local communication by relying on fast local memories. From a programmer’s perspec- tive, it is desirable to make use of these peculiarities of the hardware, which must be clearly and carefully taken into account when designing the support for high-level parallel programming models. This dissertation overcomes many scalability bottlenecks in cluster-based many-core systems and introduces the OpenMP programming model as a means of simplifying application development. OpenMP represents an abstraction of the programmer’s view by providing abundant directives that decompose loops in sequential programs and lead to parallel programs. In this work, the full OpenMP model is implemented on a specific instance of a cluster-based many-core system: the Intel Single-chip Cloud Computer (SCC). In this thesis, a lightweight and highly optimized runtime layer for OpenMP execution and memory model by generating the parallel code that is automatically compiled by native back-end compiler (GCC 4.6) that linked with the runtime library. In this dissertation, I will address an efficient design approach of the OpenMP pro- gramming model for the Intel SCC as an example for cluster-based systems. The SCC OpenMP runtime library is designed to cope with three main challenges in a non-cache coherent system: 1. Executing unmodified legacy OpenMP programs on such system. 2. Landing OpenMP memory model on the SCC. 3. Synchronization in the work of parallel threads accounts for a sizeable fraction of an application’s execution time. Furthermore, the effectiveness of OpenMP is demonstrated on a set of widely used kernels and real-world applications. An extensive set of experiments shows how this model achieves significant parallel speedups up to 48x in several applications

    Proceedings of the 7th International Conference on PGAS Programming Models

    Get PDF
    corecore