
Reducing the Complexity of
Heterogeneous Computing: A Unified
Approach for Application Development

and Runtime Optimization

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Mario Kicherer

aus Schramberg

Tag der mündlichen Prüfung: 18. Dezember 2014

Erster Gutachter: Prof. Dr. Wolfgang Karl

Zweiter Gutachter: Prof. Dr. Frank Bellosa

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Zusammenfassung

Mit zunehmender Verbreitung heterogener Parallelsysteme müssen sich Programmierer von
rechenintensiven Anwendungen neuen Herausforderungen stellen, um selbst das Potential
von Allzweckrechnern überhaupt ansatzweise zu nutzen. Ein grundlegendes Problem hierbei
ist, dass die weitverbreiteten Programmiersprachen nicht für die Programmierung soge-
nannter Beschleuniger wie Grafikprozessoren vorgesehen sind und für die Code-Generierung
neue, zum Teil architektur- und herstellerspezifische Sprachen genutzt werden müssen.
Erste Ansätze, die dieses Problem lösen, sind einheitliche Programmiersprachen, wie Open-
CL oder OpenACC, die mittels dynamischer Code-Erzeugung für unterschiedliche CPU-
und Beschleunigerarchitekturen übersetzt werden können. Mit diesen Ansätzen entfällt
allerdings nur die Notwendigkeit sich mit unterschiedlichen Sprachen beschäftigen zu müs-
sen. Oft ist anstelle einer Portierung sogar ein anderer Algorithmus notwendig, der den
grundlegenden Architekturmerkmalen besser entspricht. Um die Rechensysteme dann auch
effizient zu nutzen, muss neben architekturspezifischen Eigenheiten auch das Zusammen-
spiel der unterschiedlichen Recheneinheiten in einem System beachtet werden. Soll eine
Anwendung daher nicht nur auf bestimmten bekannten Systemen ausgeführt werden, wird
durch die Vielfalt an möglichen Systemkonfigurationen und Optimierungsmöglichkeiten eine
automatische Anpassung der Anwendung notwendig. Eine solche automatische Anpassung
hat unter anderem auch für die Ausführung auf bekannten Systemen den Vorteil, dass –
mit entsprechendem Funktionsumfang – auf unvorteilhafte Ereignisse wie Ressourcenkon-
flikte in einem Mehrbenutzersystem oder Fehler während der Ausführung, z. B. ausgelöst
durch die zu erwartetende steigende Anfälligkeit der Schaltungen durch die fortlaufende
Miniaturisierung, reagiert werden kann ohne eventuell vermeidbare Leistungseinbußen oder
Datenverlust hinnehmen zu müssen.

Neben den Vorteilen während des Einsatzes auf Endnutzersystemen, bietet ein solcher
Automatismus auch Vorteile für den Entwicklungsprozess selbst. Zum einen können ver-
schiedene Optimierungsmöglichkeiten automatisch durchgeführt und evaluiert werden, was
die Komplexität des Quellcodes verringert und die Produktivität erhöht. Zum anderen
können Techniken zur Fehlererkennunung zum Beispiel auch genutzt werden, um die Suche
nach Fehlern im Quellcode zu unterstützen.

Für einige der erwähnten Vorteile – insbesondere für verschiedene Optimierungsmöglichkei-
ten – wurden bereits eine Vielzahl an Implementierungen auf Basis von Laufzeitsystemen
vorgeschlagen, die eine entsprechende automatische Anpassung vornehmen. Diese Arbeiten
beschränken sich bis auf wenige Ausnahmen allerdings nur auf bestimmte Anpassungen
beziehungsweise Optimierungen. In dieser Arbeit wird stattdessen ein grundlegendes Rah-
menwerk vorgeschlagen, mit dem Mechanismen für unterschiedliche Anpassungen in einem
Ansatz zusammengeführt werden können um nicht nur entstehende Synergieeffekte zur
Anwendungslaufzeit zu nutzen sondern auch um den Entwicklungsprozess einer Anwen-
dung zu unterstützen. Dieses Rahmenwerk basiert auf einem neuen Laufzeitsystem, das
während der Anwendungslaufzeit den Systemzustand analysiert und den implementierten
Mechanismen damit erlaubt ihre Entscheidungen entsprechend dynamisch anzupassen.

iii

iv

Ein Problem für Anwendungen sind zum Beispiel die einzelnen Hardware-spezifischen Im-
plementierungen der gewählten Algorithmen. Die hierfür verwendeten Programmiermodelle
benötigen in der Regel eigene Laufzeitbibliotheken oder Compiler, die zur Laufzeit den
Code für die vorhandene Hardware übersetzen. Sind diese auf dem aktuellen System nicht
installiert, da z. B. die entsprechende Hardware nicht vorhanden ist, bricht die Anwen-
dungsausführung ab ohne die Möglichkeit die Ausführung auf die CPU zu beschränken.
Verwandte Arbeiten setzen hier auf vereinheitlichte Programmiermodelle, die den Quell-
code zur Laufzeit für vorhandene Recheneinheiten kompilieren. Durch ihren einheitlichen
Ansatz wird es allerdings schwieriger oder teilweise auch unmöglich architekturspezifische
Merkmale auszunutzen. Um dieses Problem zu lösen, wird in dieser Arbeit ein entkop-
pelnder Ansatz für die Anwendungsentwicklung vorgeschlagen, der Hardware-spezifische
Implementierungen in Bibliotheken auslagert. Das Laufzeitsystem wird dann genutzt um
zur Anwendungslaufzeit nach geeigneten Implementierungen zu suchen und diese zu laden,
falls sie den gegebenen Anforderungen der Anwendung entsprechen und ausgeführt werden
können. Mit diesem Ansatz werden nicht nur die strikten Abhängigkeiten reduziert und
damit die Portabilität der Anwendung erhöht. Er ermöglicht es außerdem bereits fertigge-
stellten Anwendungen nachträglich noch von neuen Implementierungen zu profitieren, die
zum Beispiel von Geräteherstellern für neue Recheneinheiten optimiert wurden.

Insbesondere in wissenschaftlichen Bereichen kommt es außerdem vor, dass nicht nur
unterschiedliche Implementierungen von Algorithmen entwickelt werden sondern auch neue
Algorithmen und Verfahren. Dabei kann sich die Folge von abzuarbeitenden Rechenaufgaben
unterscheiden und der Entwickler wäre ähnlich wie bei verschiedenen Implementierungen
zusätzlich noch dafür verantwortlich, die jeweiligen Verfahren und die zugehörigen Im-
plementierungen zu untersuchen und die beste auszuwählen. Um diesen Schritt ebenfalls
zu automatisieren, kann ein Entwickler dem Laufzeitsystem mehrere alternative Folgen
von Rechenaufgaben übermitteln um an ein Ergebnis zu gelangen und das Laufzeitsystem
nutzt dann seine Mechanismen um den resultierenden bedingten Graph bestmöglich auf
das gegebene heterogene System abzubilden.

Um aus der Menge der geeigneten Implementierungen und Recheneinheiten für eine Rechen-
aufgabe die beste auszuwählen, nutzt das Laufzeitsystem ähnlich wie verwandte Arbeiten
eine Datenbank, in der Messwerte vergangener Ausführungen dieser Implementierungen ge-
speichert sind. Basierend auf diesen Daten wird die Implementierung und die Recheneinheit
mit den besten Leistungswerten gemäß dem gewählten Optimierungsziel, z. B. die Reduzie-
rung der Laufzeit, bestimmt und ausgeführt. Während der Ausführung können allerdings
Ereignisse auftreten, die diese Messwerte ungültig machen. Konkurrierende Anwendungen
und fehleranfällige Recheneinheiten können die Laufzeit erhöhen, da Berechnungen verzögert
werden oder eine Wiederholung der Berechnungen notwendig wird. In homogenen Systemen
kann im besten Fall einfach auf eine andere freie Recheneinheit gewechselt werden. In hete-
rogenen Systemen weisen die Recheneinheiten allerdings unterschiedliche Leistungswerte
auf und ein Wechsel erfordert zusätzliche Operationen, wie z. B. Datentransfers. Daher kann
es unter Umständen vorkommen, dass ein Wechsel die Ausführungszeit mehr verlängert
als eine konkurrierende Anwendung oder notwendige Wiederholungen. Während wenige
verwandte Arbeiten grundsätzlich konkurrierende Anwendungen in Betracht ziehen, werden
die Auswirkungen von Fehler von ähnlichen Arbeiten in diesem Bereich nicht berücksichtigt.
Diese Arbeit hingegen verfügt über verschiedene Mechanismen, die die Erkennung von
konkurrierenden Anwendungen als auch von auftretenden Fehlern während der Ausführung
bei Bedarf ermöglichen und weitere Entscheidungen entsprechend anpassen.

Zur grundsätzlichen Entscheidungsfindung setzen verwandte Arbeiten auf den „Heteroge-
neous Earliest Finish Time”-Algorithmus (HEFT). Der Vorteil dieses Algorithmus ist, dass
er verhältnismässig einfach zu implementieren ist, gute Ergebnisse liefert und durch die
beschränkte lokale Sicht nach einer Entscheidung für eine Rechenaufgabe sofort mit der

iv

v

Ausführung begonnen werden kann und nicht auf folgende Entscheidungen gewartet werden
muss. Die Nachteile sind, dass zu Anfang getroffene Entscheidungen später Verbesserun-
gen verhindern können und unter Umständen nicht das globale Optimum gefunden wird
oder dass im Falle gesetzter Beschränkungen und Nebenbedingungen sogar eine korrekte
Ausführung unmöglich wird. Um solche Fälle zu vermeiden, bietet das in dieser Arbeit
vorgestellte Laufzeitsystem die Möglichkeit im Voraus mehrere hypothetische Ablaufpläne
mit gewählten Eigenschaften und den daraus resultierenden Operationen zu erstellen und zu
evaluieren. Mit dieser Technik werden zusätzlich auch aufwändigere Algorithmen ermöglicht,
wie zum Beispiel Simulated Annealing, für das eine Vielzahl an Ablaufplänen evaluiert
werden müssen, bis eine finale sinnvolle Entscheidung getroffen wird. Um Leistungseinbußen
durch die zum Teil aufwändigen Verfahren zu vermeiden, können vorteilhafte Ablaufpläne
gespeichert und für weitere Anwendungsläufe wiederverwendet werden.

Mit dem in dieser Arbeit vorgestellten Rahmenwerk wird somit ein umfassender An-
satz mit dem Ziel, die Komplexität von Anwendungen für heterogene Parallelsysteme zu
reduzieren, vorgestellt, der den Entwicklungsprozess vereinfacht, sowie automatisch die
Anwendungsausführung auf unterschiedlichen Rechensystemen verbessert.

Zusammengefasst trägt diese Arbeit die folgenden einzelnen Neuerungen bei:

• einen entkoppelten Ansatz für die Anwendungsentwicklung, der die Portabilität der
Anwendungen erhöht und es ermöglicht nachträglich optimierte Implementierungen
zu nutzen

• eine dynamisch wählbare Kombination verschiedener Mechanismen zur Erkennung
und effizienten Behandlung von konkurrierenden Anwendungen und Fehlern während
der Ausführung

• einen Mechanismus zur Vorabanalyse unterschiedlicher Scheduling-Algorithmen und
Optimierungsansätze, der es außerdem erlaubt aufwändigere Algorithmen, wie z.B.
Simulated Annealing, zur Suche nach dem globalen Optimum zu nutzen

• leichtgewichtige Methoden zur Integration des Laufzeitsystems in C- und Matlab-
Anwendungen um möglichst wenig Komplexität im Anwendungsquellcode selbst
einzuführen

Im Fall einer bildgebenden Anwendung aus der Medizintechnik konnte das Laufzeitsystem
mittels der Vorabanalyse mehrerer Ablaufpläne eine Verkürzung der Laufzeit um knapp
20% gegenüber des HEFT-Algorithmus erreichen. In einem Experiment in dem Fehler unter
gegebenen Umständen in den Quellcode injiziert wurden, erzielte das Laufzeitsystem durch
die geschickte Wahl der Recheneinheit gegenüber naiven Ansätzen eine Reduktion der Lauf-
zeit jeweils um 50% und 30%. Ebenfalls fand das Laufzeitsystem bei Anwendungen einer
Benchmarksammlung auf einem System mit mehreren unterschiedlichen Recheneinheiten
erfolgreich die günstigste Wahl.

v

Abstract

Heterogeneous systems with accelerators promise considerable performance improvements
and energy savings at a lower cost than computing on a homogeneous CPU-only system.
However, to benefit from this potential, considerable work is required from developers to
employ accelerators and to integrate them efficiently in an application.

In scientific publications, the benefit of accelerators for certain algorithms is usually
quantified on specific systems with optimized implementations. On differently configured
systems or compared with equally optimized implementations for other processing units,
however, the performance of accelerators can be much closer to or even worse than executing
on a CPU, for example. Therefore, runtime systems are used to dynamically determine
and select the best implementation and processing unit for a task in the current system.
Similar to the runtime system in this work, most of them use an empirical approach to
determine the best combination. First, the execution time of all possible combinations
is measured and stored. Afterwards, the combination with the lowest execution time is
chosen for further task executions. As the size of the input data also has a significant
impact on the execution time in many cases, it is common to store the execution times as
function of the input size.

However, besides the input size, other circumstances can have a considerable impact on
the benefit and may suddenly change the previous best choice for a task. Most related
works expect exclusive usage of a flawless system. During application runtime, competing
applications may start to use the same processing unit or faults may abort execution
or falsify the results. In both cases, a considerable overhead may occur due to shared
usage and necessary restarts of computations. In homogeneous systems, any other free
processing unit can be used to avoid a unit causing such an overhead. In heterogeneous
systems, however, switching the processing unit may result in a higher overhead than
sharing a processing unit or repeating a calculation. Hence, this work considers both events
during task execution and provides different mechanisms to detect and react on such events
appropriately.

Besides detecting faults at application runtime, automatic fault detection is also a benefit
for application development. Usually, development starts with a sequential reference imple-
mentation of a task written by problem-oriented developers, e.g., engineers. Afterwards,
hardware-oriented developers start to write implementations optimized for specific types
of processing units. To determine the correctness of their code, they usually manually
compare the results of their implementation with those of the reference implementation.
Instead, with this runtime system, this comparison is done automatically and the runtime
system can also give valuable additional information for debugging, e.g., if the results differ
completely or only in certain parts.

If the hardware-specific implementations work as expected, they are usually statically
included in the application. However, every programming model uses an own software
stack, e.g., runtime libraries or just-in-time compilers, that imply additional dependencies
for the resulting application. If one of these is not available on another system, e.g., because

vii

viii

the respective hardware is not present, application startup will fail without the opportunity
for a fallback to CPU-only computation. For this issue, related work proposes unified
programming models that use just-in-time compilation to generate code for the actually
available hardware. However, using a one-for-all approach also makes it difficult or even
impossible to exploit hardware-specific features.

Therefore, this work proposes a decoupled development concept. Following this concept,
general application code and hardware-specific task implementations are not only developed
by different persons but are also packaged in independent binaries. During application
runtime, the runtime system looks for available implementations and hardware and only
loads the implementations which fulfill the requirements of the application and can be
executed on the system. Besides increasing the portability of applications while keeping the
benefits of hardware-specific optimizations, this approach also enables older applications to
automatically benefit from new implementations, e.g., BLAS libraries optimized for new
accelerators, if they match the requirements of the application.

Especially in scientific areas, developers not only work on hardware-optimized implemen-
tations for specific tasks but also on alternative algorithms that will calculate the same
result but require a different sequence of tasks. Manually managing and evaluating the
benefit of the different sequences further increases the costs in terms of code complexity
and development time. Therefore, with this runtime system, developers can submit tasks
in conditional sequences and its task scheduler dynamically determines the best sequence
for the current system.

Besides hardware-specific implementations and alternative algorithms, heterogeneous sys-
tems offer many possibilities for generic optimizations, e.g., memory-mapping data instead
of transfers or different algorithms for the scheduling of task execution and data transfers.
However, the benefit of most optimizations depends again on multiple circumstances.
For example, the commonly used heterogeneous earliest finish time scheduler is a greedy
algorithm and may not find the global optimum if the fastest processing unit has high
initialization costs for just-in-time compilation of the code or for transfers of the input data
into the device’s memory. For most opportunities, related work proposed mechanisms that
automatically optimize certain aspects of application execution. However, to gain the best
performance, multiple optimizations have to be evaluated and applied if beneficial. While
evaluating each optimization individually has been proposed before, determining their
impact on each other and the best set of optimizations for application performance becomes
increasingly complex. This becomes even worse, if additional objectives come into play
like dependability. In order to simplify this problem, this work enables the simulation of
application execution on task level during runtime which permits an evaluation of different
optimizations and schedulers before choosing the best combination for execution. With
such a simulation, it is also possible to employ more demanding scheduling algorithms like
simulated annealing which can find a global optimum but require an evaluation of many
different schedules before a good decision can be made.

While the proposed runtime system provides several mechanisms that simplify development
and improve the performance, an important aspect is also the required effort for integrating
the runtime system itself. While the runtime system provides wrapper functions for pro-
gramming models and script languages like OpenCL and Matlab, this work also introduces
a non-intrusive approach based on light-weight instrumentation to include the runtime
system with marginal additional effort in C source code.

To summarize, related work proposed solutions for many different problems of heterogeneous
computing. However, all have a narrow focus on specific aspects, e.g., assume exclusive
usage of a flawless system or perform only specific optimizations. Instead, this work
contributes a fundamental framework implemented with an online-learning runtime system

viii

ix

that provides a common basis for different mechanisms to simplify development and make
applications more portable, efficient and reliable across different systems. The single
contributions of this work are:

• a decoupled development concept to increase portability of applications without
loosing performance benefits of hardware-optimized task implementations that also
enables already compiled applications to benefit from new task implementations,

• a dynamically selectable combination of mechanisms to detect and efficiently resolve
concurrent use of resources and faults during task execution, including a new metric
to balance performance benefits with fault susceptibility of implementations and
processing units.

• an online simulation of different optimizations and schedulers in advance to execution
for case-by-case performance evaluation which also enables demanding and non-greedy
scheduling algorithms like simulated annealing

• a non-intrusive integration of the runtime system in script-based Matlab and C
applications using a novel light-weight instrumentation technique

In case of an application for preprocessing in medical imaging, this approach was able to
reduce the runtime by 20% compared to the common HEFT algorithm using its simulation
of multiple schedules. In an experiment where faults are injected under given conditions in
a task implementation, this approach achieved a reduction of the runtime by 50% and 30%
compared to two naive approaches using a smart task mapping. Furthermore, the runtime
system successfully determined the best mapping for the applications of a benchmark suite
on a system with multiple processing units.

ix

Acknowledgements

First, I want to thank my advisor Prof. Dr. Wolfgang Karl for giving me the opportunity
to conduct this research and for the countless hours he invested to guide me and discuss
my work. This greatly influenced and shaped my thinking which was vital for the success
of this work. I also thank my co-advisor Prof. Dr. Frank Bellosa for broadening my view
and giving me valuable advices during the writing of this thesis.

Furthermore, I want to express my gratitude to my former and current colleagues at
the Chair for Computer Architecture and Parallel Processing: Thomas Becker, Michael
Bromberger, Rainer Buchty, David Kramer, Oliver Mattes, Fabian Nowak and Martin
Schindewolf as well as the colleagues of the CES and CDND for their support, advice and
friendship.

Finally, I want to thank my parents Bernadette and Werner as well as my sisters Verena
and Lea for their steady support throughout my life. I am also very thankful to my wife
Esther and my parents-in-law Gudrun and Günther who made it possible to write this
thesis during the first months of our son Ian-Mika. I would also like to use this opportunity
to particularly thank my aunt Luzia and uncle Rolf who early encouraged my curiosity and
recovered my computer many times after my first, only partially successful experiments.

xi

Publications

[1] Rainer Buchty, David Kramer, Mario Kicherer, and Wolfgang Karl. A Light-Weight
Approach to Dynamical Runtime Linking Supporting Heterogenous, Parallel, and
Reconfigurable Architectures. In Architecture of Computing Systems ,– ARCS 2009,
volume 5455/2009 of Lecture Notes in Computer Science, pages 60–71. Springer Berlin
/ Heidelberg, February 2009.

[2] Mario Kicherer. Design and Implementation of a Low-overhead Run-time System for
Self-X Architectures. Diplomarbeit, Universität Karlsruhe (TH), 2008.

[3] Mario Kicherer, Rainer Buchty, and Wolfgang Karl. Cost-aware function migration in
heterogeneous systems. In Proceedings of the 6th International Conference on High
Performance and Embedded Architectures and Compilers, HiPEAC ’11, pages 137–145,
New York, NY, USA, 2011. ACM.

[4] Mario Kicherer and Wolfgang Karl. Heterogeneity-aware Fault Tolerance using a Self-
Organizing Runtime System. ArXiv e-prints, First Workshop on Resource awareness
and adaptivity in multi-core computing, May 2014.

[5] Mario Kicherer, Fabian Nowak, Rainer Buchty, and Wolfgang Karl. Extending a Light-
weight Runtime System by Dynamic Instrumentation For Performance Evaluation.
In Michael Beigl and Franciso J. Cyzorla-Almeida, editors, ARCS 2010 Workshop
Proceedings, pages 279–284. VDE, February 2010.

[6] Mario Kicherer, Fabian Nowak, Rainer Buchty, and Wolfgang Karl. Seamlessly portable
applications: Managing the diversity of modern heterogeneous systems. ACM Trans.
Archit. Code Optim., 8(4):42:1–42:20, January 2012.

xiii

Contents

1. Introduction 1

2. Background and related work 5
2.1. Heterogeneous systems . 5
2.2. Programming models and code generation for heterogeneous systems 8
2.3. Automatic optimization of hardware-specific implementations 12
2.4. Data and task mapping . 14
2.5. Enhancing dependability in modern systems 17

3. A unified approach 21

4. Light-weight integration and transparent task migration 25
4.1. Introduction . 25
4.2. Native C interface . 26

4.2.1. Pointer-based function migration . 26
4.2.2. Explicit integration using the DLS programming interface 30
4.2.3. Discussion . 32

4.3. Integration in Matlab for rapid prototyping 33
4.4. Transparent OpenCL wrapper . 34
4.5. Call stack infrastructure . 37
4.6. Extensible hardware interface . 38
4.7. Ad-hoc work offloading in local networks . 39

5. Implementation management and application portability 43
5.1. Introduction . 43
5.2. Related work . 44
5.3. Decoupled application development . 46

5.3.1. Implications on source code and build systems 46
5.3.2. Assembling applications and implementations 47
5.3.3. Supporting fault diagnostics during development 48

5.4. Balancing requirements and abilities . 50
5.5. Evaluation . 52

5.5.1. Overhead for matching requirements and abilities 52
5.5.2. Performance with Rodinia benchmarks 53
5.5.3. Use case: random number generation 54
5.5.4. Portable MPI application . 55

6. Establishing cost awareness 59
6.1. Introduction . 59
6.2. Learning costs during application execution 61
6.3. Memory management and the impact of data locality 63

Contents

6.4. Reacting on competition for resources . 66
6.4.1. Passive checks . 66
6.4.2. Shared-memory waiting queues . 68

6.5. Impact of faults on costs . 70
6.5.1. Symptom-based fault detection . 72
6.5.2. Fault-aware runtime estimation . 77

7. Anticipatory scheduling in heterogeneous systems 79
7.1. Introduction . 79
7.2. Online simulation of task execution . 82
7.3. Building blocks for scheduling decisions . 83

7.3.1. Task mapping . 84
7.3.2. Conditional task graphs . 85
7.3.3. Task splitting . 88
7.3.4. Taking precautions against faults . 93

7.4. Decision making . 95
7.5. Evaluation . 102

7.5.1. Case study: Preprocessing for medical imaging 103
7.5.2. Fault-tolerant task execution . 104

8. Conclusion 111
8.1. Summary . 111
8.2. Outlook . 112

Bibliography 115

Appendix 129
A. Case study: Preprocessing for medical imaging 129

1. Introduction

Heterogeneous computing has become an acknowledged method to raise the computing
power of modern systems for specific application areas while preserving a high performance
to cost ratio. In most such systems, one or more general-purpose CPUs are accompanied
by specialized logic, usually referred to as “accelerator”, like a graphics processor (GPU),
digital signal processors (DSP) or field-programmable gate arrays (FPGAs). While GPUs
can be found in almost any class of computing device today, from embedded systems to
supercomputers, DSPs and FPGAs are more common in specific areas, e.g., DSPs for
communications and multimedia in mobile phones or FPGAs in bioinformatics, computer
vision and hardware prototyping. Accelerators can be integrated in a system in different
ways, e.g., as dedicated chip on a PCI Express card, as additional die in the package like
Intel’s Atom E6x5C series or as part of the CPU die with AMD’s Heterogeneous System
Architecture (HSA).

In the past, accelerators were either expensive, highly specialized devices for only one or a
few specific tasks, e.g., DSPs, or difficult to program, e.g., FPGAs. Similar, GPUs were
highly specialized architectures with a fixed pipeline for graphic-related calculations. With
the advent of so-called shader cores, GPUs became programmable but their abilities were
still limited and focused on graphics calculations. With the ongoing development and
improving functionality, several projects started to provide high-level programming models
in order to use these shaders for general-purpose programming. The first approach that
gained broad attention was the CUDA project from Nvidia, introduced in 2007. Due to
their C-based programming model and powerful GPUs becoming commodity hardware,
CUDA significantly lowered the entry threshold for using an accelerator.

The advantage of accelerators is their specialized architecture that enables faster calculations
for certain algorithms than the CPU that is designed to provide a high average performance
for a wide range of computations. For an application, however, this benefit comes not
for free. The algorithms as well as their actual implementations with accelerator-specific
programming models mostly differ from their CPU counterpart. Thus, employing an
accelerator requires an adaptation or even a complete rewrite of parts of the applications.
At best, there already exist libraries that implement certain algorithms on an accelerator,
e.g., developed by the manufacturer, and the application only has to call the library without
bothering with the details of the accelerator. However, such libraries are still scarce and in
most cases, considerable manual work is necessary. Furthermore, even if an implementation
is available for a processing unit, the benefit of the processing unit compared to other units
in the current system depends on multiple circumstances.

1

2 1. Introduction

In scientific publications, the benefit of accelerators for certain algorithms is usually
quantified on specific systems with optimized implementations for the accelerator. On
differently configured systems or compared with equally optimized implementations for
other processing units, however, the performance of accelerators can be much closer to or
even worse than executing on a CPU [95], for example. Therefore, mechanisms, e.g., based
on runtime systems or compilers, were introduced to automatically determine and select
the best implementation and processing unit for a task in the current system. While some
solutions use static code analysis, most of them use an empirical approach to determine the
best combination. First, the execution time of all possible combinations is measured and
stored. Afterwards, the combination with the lowest execution time is chosen for further
task executions. As the execution times may also vary due to changing input data, e.g.,
matrices of different sizes, it is common to store the measured values as function of the
problem size.

However, besides the input data, other circumstances can have a considerable impact on
the benefit and suddenly change the previous best choice for a task. Resource conflicts
usually result in an increased runtime due to postponed or shared execution. As today’s
major operating systems are not involved in the scheduling on accelerators, it is usually
not possible for applications to detect competition in advance. Similarly, faults may occur
during task execution that falsify the results and require expensive restarts of calculations –
if faults during execution are even considered and detection mechanisms are installed. Due
to the redundancy in terms of task implementations and processing units, heterogeneous
systems cause additional complexity but also offer additional opportunities to, e.g., avoid
faulty or overloaded processing units. While on homogeneous systems, any free processing
unit is a suitable alternative, switching the processing unit in a heterogeneous system may
cause a higher overhead than sharing a unit or repeating a calculation. Hence, special care
is required during such decisions to avoid additional performance loss.

Especially in scientific areas, developers not only work on hardware-optimized implementa-
tions for specific tasks but also on alternative algorithms that may fit better to certain
architectures. If the alternative implementations require additional preparations, e.g.,
a transformation of the data structures, additional tasks might be necessary depending
on the chosen algorithm. With the common approaches that automatically select the
best processing unit for a task, a developer is responsible for selecting the best algorithm
and correctly submitting all required tasks for the chosen algorithm. However, manually
managing and evaluating the benefit of different task sequences for the current system
further increases the costs in terms of code complexity and development time.

The hardware-specific implementations for each task are usually statically included in
the application. However, every programming model uses an own software stack, e.g.,
runtime libraries or just-in-time compilers, that imply additional dependencies for the
resulting application. If one of these is not available on another system, e.g., because the
respective hardware is not present, application startup will fail without the opportunity
for a fallback to CPU-only computation. For this issue, related work proposes unified
programming models that use just-in-time compilation to generate code for the currently
available hardware. However, using a one-for-all approach also makes it difficult or even
impossible to exploit hardware-specific features.

Besides hardware-specific implementations and alternative algorithms, heterogeneous sys-
tems offer many possibilities for generic optimizations, e.g., memory-mapping data instead
of transfers or different algorithms for the scheduling of task execution and data transfers.
However, the benefit of most optimizations depends again on multiple circumstances. For
example, the commonly used heterogeneous earliest finish time (HEFT) scheduler is a
greedy algorithm and may not find the global optimum if the fastest processing unit has

2

3

high initialization costs for just-in-time compilation of the code or for transfers of the input
data into the device’s memory. For most opportunities, related work proposed mechanism
that automatically optimize certain aspects of application execution. However, to gain
the best performance, multiple optimizations should be evaluated and applied if beneficial.
While evaluating each optimization individually has been proposed before, determining
their impact on each other and the best set of optimizations for application performance
becomes increasingly complex. This becomes even worse, if additional objectives come into
play like dependability.

To conclude, a multitude of challenges await developers while adding support for heteroge-
neous systems to their applications and optimizing the performance. For example, after
writing implementations for the different hardware, including them into the application
decreases its portability. In addition, their benefit depends on multiple circumstances that
may even vary during application runtime due to competition for resources or occurring
faults. Considering and handling all these challenges in the source code requires consid-
erable efforts from a developer and makes the development and the resulting application
more complex. However, this complexity can be reduced for a developer if the application
is decoupled from the underlying system and the handling of the recurring problems is left
to a dedicated mechanism. Such an abstraction not only simplifies application development
and maintains performance in different situations but can also automatically optimize
different aspects of application execution and promote new research opportunities.

In this work, a new framework is introduced that provides such an abstraction in order to
reduce the complexity of heterogeneous systems for application developers. This framework
constitutes a unified approach that simplifies application development and automatically
adjusts application execution during the runtime. With the initial mechanisms implemented
on top of the framework, this work demonstrates how mechanisms for different objectives
can be integrated in one approach and how they can benefit from each other. In Figure 1.1,
an overview of the approach and the implemented objectives in this work is shown. An
application can submit tasks and the mechanisms of this work map these tasks to the
available heterogeneous hardware before returning the results of the calculations back to
the application. Hence, these mechanisms abstract the details of task processing in order
to simplify the application code and to make application execution more portable, efficient
and reliable across different heterogeneous systems. This abstraction of the heterogeneous
hardware is based on an online-learning runtime system that dynamically evaluates the
system state and chooses the best mapping of the application’s tasks to the hardware under
the current conditions. In addition, the mechanisms not only reduce the complexity for
applications but the knowledge they gather during execution is also valuable for developers
to improve the application, e.g., for performance analysis or debugging.

3

4 1. Introduction

Figure 1.1.: Basic principle of this work

4

2. Background and related work

In this chapter, the necessary background for this work is introduced and related works are
discussed. First, the different types of processor and system architectures considered in this
work are described. The second section presents available methods to develop implemen-
tations of algorithms for different types of processor architectures. In order to maximize
performance of such implementations on differently configured systems, approaches to
automatically tune an implementation to specific hardware are described in Section 3.
Afterwards, existing mechanisms to optimize the data and task mapping in a heterogeneous
system are introduced and compared with this work. This chapter is concluded with a
selection of different approaches that increase the dependability of modern systems. Parts
of this chapter are based on prior publications [76, 79, 77].

2.1. Heterogeneous systems
In computer architecture, the term “heterogeneous system” usually refers to a system
that contains different processing units. These processing units can, for example, differ in
the used architecture but also in more detailed aspects like different variants of the same
architecture. Besides the differences between processing units, heterogeneous systems also
differ in how these processing units are connected. In distributed computing, the single
nodes may contain different hardware, e.g., due to different stages of extension. Inside
a node, the system may contain one or more different CPUs or additional accelerators
like GPUs. In such a case, the motherboard usually contains multiple sockets for the
CPUs and the accelerators are integrated using a dedicated board, e.g., connected over
PCI Express. Furthermore, single chips can be heterogeneous in the inside. Examples for
on-chip heterogeneity are different CPU cores, e.g., ARM’s BigLittle architecture [100],
integrated GPUs, e.g., architectures from Intel [168] and AMD’s Fusion or Heterogeneous
System Architecture (HSA) concept [34], or other specialized cores, e.g., for SIMD execution
on the Cell BE processor [30].

Although this work includes a mechanism for migrating a task to a remote system, the
runtime system presented in this work mainly focuses on heterogeneity below the node
level. In the following, common examples for such systems and processor architectures
in general-purpose computers are described with a focus on the important properties for
application developers.

The CPU parts in today’s general-purpose computers are usually multicore architectures
similar to the example shown in Figure 2.1. In this example, the CPU contains four cores

5

6 2. Background and related work

Socket P#0

L2 (4096KB)

L1 (32KB)

Core P#0

PU P#0

L1 (32KB)

Core P#1

PU P#1

L2 (4096KB)

L1 (32KB)

Core P#2

PU P#2

L1 (32KB)

Core P#3

PU P#3

Figure 2.1.: Intel Core2 CPU Q6600 with four cores

and each core has a private L1 cache and two cores share an L2 cache. Hence, besides
cache optimizations, developers also have to parallelize their code in order to achieve good
performance. Similarly, additional efforts from developers are required to benefit from
extensions of common instruction set architectures. One well-known type of extensions are
instructions for single instruction, multiple data (SIMD) processing. Modern examples of
SIMD extensions on x86 architectures are the different versions of SSE and AVX that each
introduced new operations and larger registers to increase the amount of data processed in
parallel. Other recent examples for extensions of the x86 instruction set architecture were,
for example, AES and TSX that introduced support for AES encryption and transactional
memory in hardware.

In desktop and server systems, the most common type of on-chip heterogeneity found today
are CPUs with an integrated GPU – commonly referred to as accelerated processing unit
(APU). Given the difference in number of transistors – 7.1 billion for the Nvidia Kepler
architecture [114] and 2.41 billion combined for CPU and GPU on AMD’s Kaveri chips –
or memory bandwidth – 144GB/s on a Nvidia Tesla C2050 [18] and 29GB/s on an AMD
Llano APU [25] – it is not surprising that an integrated GPU provides lower performance
than a dedicated GPU. However, one of the considerable benefits of the integrated approach
is the short distance between the CPU and GPU and the resulting low latency compared
to the rather slow communications over interconnect hardware like PCI express.

In the first generation of such chips for desktop and server systems, the CPU and GPU
cores already shared the same physical memory of the system [25, 142]. However, each of
them is assigned a separate part of the memory with an own address space. Therefore,
data has to be transferred from the CPU to the GPU part before starting execution on the
GPU as shown in Figure 2.2. Daga et al. give an overview of the AMD Fusion architecture
Zacate and present performance results using selected benchmarks [34]. Their results show
that this initial version of the Fusion architecture profits from the physically shared memory
but not fully leverages its potential as memory transfers are still required.

To make things worse, actually transferring data to the GPU memory requires two copies
without further preparations. As shown in the top left of Figure 2.3, the data is first
copied into a pinned memory region. Pages in pinned regions must not be evicted into
background memory and thus a concurrent DMA engine can safely copy the data into GPU
memory. One extra copy operation can be avoided if the application explicitly requests
pinned memory as storage for its data as shown in the bottom left of the Figure 2.3.
Some accelerators also offer the opportunity to pass addresses of the host RAM to the
accelerators. In such a case, each single access of the accelerator to this area is separately
rerouted over the interconnect as shown in the top right of Figure 2.3. While this simplifies

6

2.1. Heterogeneous systems 7

Figure 2.2.: Dedicated memory areas for CPU and GPU require additional data transfers

Figure 2.3.: Different possible access methods with modern accelerators

application development, it can significantly decrease the performance.

In order to avoid copies at all, newer CPU architectures like AMD’s Kaveri or Intel’s
Haswell remove this limitation and enable unrestricted access from both parts to the whole
memory as illustrated in the bottom right of Figure 2.3. Similar to the previous method
this simplifies development as pointers stay valid but this approach also avoids expensive
data transfers.

On system level, a common form of heterogeneous systems are combinations of CPUs with
one or more dedicated accelerators like a GPU. Typically, these accelerators reside on a
separate board connected over PCI Express and possess an own memory as illustrated
in Figure 2.4. Contrary to an APU, these accelerators have an own physical memory in
order to avoid the high latency to the host RAM for each access and to adapt the memory
interface to their needs, e.g., a high-bandwidth interface on a GPU to fetch multiple
values in parallel. Other examples for accelerators besides GPUs are field-programmable
gate arrays (FPGAs), Intel’s new Many Integrated Core architecture (MIC) [66, 84] or
Clearspeed accelerators [82].

Figure 2.4.: Example of a typical heterogeneous system with a CPU and GPUs

7

8 2. Background and related work

Figure 2.5.: Comparison of the simplified architectures of CPUs and GPUs

Due to their comparatively low price and familiar programming models, GPU-based
calculations gained much attention in the recent years. To take a closer look a their benefit
for general-purpose computations, a comparison of a simplified version of a CPU with four
large general-purpose cores and a GPU with many small cores is shown in Figure 2.5. Each
core of the CPU has an own cache in addition to a large cache that is shared among the
cores. Instead, the GPU cores are organized in blocks and each block has a shared memory
that can be either used explicitly or configured as a cache in newer GPUs. This kind of
architecture is well suited for computations with a high degree of calculations per memory
access and a large amount of mostly independent, parallel calculations.

2.2. Programming models and code generation for heteroge-
neous systems

To benefit from heterogeneous systems, developers have to consider the architecture-specific
properties of a processing unit. On a CPU, a key to good performance is usually the
parallel execution of an application. However, established languages were not designed with
parallelism in mind and developers have to use special libraries or specific extensions to those
languages to create and synchronize multiple threads that will perform the calculations.

One of the basic methods to create parallel applications for multicore CPUs is the POSIX
threads API (pthreads). With simple functions, this API enables a developer to spawn
threads and synchronize them, e.g., using mutexes or barriers. Contrary to forking processes,
this enables simple execution of parallel calculations in shared memory. Due to its low-level
approach, pthreads is mostly used as basis for runtime systems and programming models
on a higher abstraction level.

One of these programming models is OpenMP (Open Multi-Processing). With OpenMP,
developers can annotate their code with preprocessor pragmas and the compiler will
transform these code blocks for parallel execution. One of the simplest methods to
parallelize code is annotating for loops. In the following example, a for loop that
increments an array a and stores the result in array b is shown:

pragma omp parallel for
for (i=0; i<count; i++)

b[i] = a[i] + 1;

With the pragma, OpenMP will automatically distribute the loop iterations among the
available CPU cores. For more complex loops, OpenMP also offers the possibility to control
the parallelization like marking variables as shared or private to the single threads. The
benefit of this pragma-based approach is that, if a compiler does not support OpenMP,
these pragmas are ignored by default and the application will be executed sequentially. In

8

2.2. Programming models and code generation for heterogeneous systems 9

Figure 2.6.: Correlation of application, task, implementation, kernel and processing unit

addition to the parallel for pragma, OpenMP also provides other types of parallel regions
as well as synchronization constructs. Other common approaches to exploit parallelism
are, for example, Intel’s Thread Building Blocks (TBB) and Cilk Plus for shared memory
systems and MPI libraries for distributed systems [134, 7].

As accelerators usually have different ISAs or a considerably different execution model than
CPUs, most of them require own languages and programming models that can be similar
to familiar C-based languages, e.g., for GPUs, or vastly different, e.g., VHDL for FPGAs.
An exception are accelerators based on Intel’s MIC architecture. As these accelerators
use a large number of x86 processors with SIMD extensions, code written with familiar
programming models like OpenMP can be reused.

For GPUs, a programming model that gained wide attention is Nvidia CUDA. In CUDA,
implementations are divided in a host and a device part. The host part is written in
common CPU languages like C or Fortran and responsible for the set-up of the device, e.g.,
to initiate necessary data transfers. The device part is written in a C/C++ dialect and
usually processes only one work item. For each work item, a new thread on the GPU is
created that executes this compute kernel with the associated item. A crucial point that
is even more important on GPUs is to adapt the code to the characteristics of the GPU
architecture in order to come even close to peak performance. For example, as previously
indicated in Figure 2.5, the GPU cores are grouped in blocks that share a local memory
and enable synchronization between the threads executing in this block. If different threads
will access the same data or if the algorithm benefits from sharing intermediate results,
efficiently using this shared memory with block synchronization can significantly improve
the performance.

In the following, the term “implementation” refers to an algorithm written with a certain
programming model or language. This includes the host and device part for accelerator
implementations. If not stated otherwise, the term “compute kernel” or “kernel” refers
to code that executes one of the compute-intensive parts of an application and not to the
kernel of the operating system. Hence, an implementation contains code for initialization
and one or more associated compute kernels. On the other hand, the term “task” refers to
a specific compute-intensive part of the application in this work – not to a process in the
operating system – and there may be multiple implementations that execute this task. To
summarize, an application for heterogeneous systems may contain multiple tasks where
each task can be executed by one of multiple implementations and each implementation
may contain one or more compute kernels as shown in Figure 2.6. In this example, an
application contains three tasks A, B and C. Task A can be either executed on a CPU or on
a GPU. The CPU implementation contains two compute kernels, e.g., two parallel regions,
and the GPU implementation contains an initialization routine that executes on the CPU
and a kernel that executes on the device.

9

10 2. Background and related work

Figure 2.7.: The ICD extension enables multiple vendor-specific OpenCL libraries in one
process

As CUDA targets only Nvidia GPUs, a competing standard called OpenCL (Open Com-
puting Language) has been introduced that provides a common API to program different
kinds of processing units. Compared with CUDA, OpenCL follows a similar design but
differs in several points [86]. For example, as OpenCL tries to be a common denomina-
tor for different types of processing units and vendors, usually not all features of new
architectures are exploitable with OpenCL contrary to the respective native programming
model. Furthermore, as OpenCL is a library-based approach, it does not require a special
compiler for the host code. However, a considerable amount of code changes are necessary
to set-up the execution on a OpenCL device. To support different types of processing
units, the source code of the OpenCL kernel is usually shipped with the application and
dynamically compiled for the available hardware on the respective system. As OpenCL
only defines an API and the C dialect for the kernel code, each vendor provides an own
OpenCL library with just-in-time compiler for his devices. To use different devices and
OpenCL libraries with the same API in the same application nonetheless, the installable
client driver extension (ICD) has been introduced. This extension enables one OpenCL
library to load other OpenCL libraries and to pass through the API calls to them as shown
in Figure 2.7.

The logical organization of the processing units available through the different OpenCL
libraries is shown in Figure 2.8. Using the OpenCL API, the application receives a list
of so-called platforms – usually one platform for each vendor and OpenCL library. Each
platform may provide multiple types of processing units and contain a variable number of
processing units, called compute devices. Furthermore, each device consists of one more
processing elements that each usually resembles one core.

To start a calculation with OpenCL, the developer first has to choose a platform and a
device. He can either choose a specific device, request a specific device type or use the
default device of the library. Besides further generic set-up procedures, the developer is
also responsible for making the necessary data available to the OpenCL device. For this
task, OpenCL provides two methods similar to other approaches: data transfer and data
mapping. During a transfer, data is simply copied from one memory to another. With
data mapping, two regions in the respective memories are coupled. At any time, only one
of them may be accessed and control over the active region can be passed to or from the
device using special functions of the OpenCL API. For example, in case the OpenCL device
is the CPU, using this method enables the OpenCL library to safely use the original data
without copying it to a separate region. If the application would issue a transfer instead,
the data has to be copied to a separate region as the application is allowed to modify the
original data during execution of the OpenCL kernel.

If the necessary data is accessible from the device, the developer has to initiate the actual

10

2.2. Programming models and code generation for heterogeneous systems 11

Figure 2.8.: Logical organization of processing units in OpenCL

kernel execution. Basically, he has to pass the kernel source code to the library, that will
compile the code for the chosen device, and submit a new task based on this kernel into
the device command queue.

As OpenCL requires considerable efforts to set-up kernel execution, synchronize the data
and writing the OpenCL kernel itself, a competing approach called OpenACC (Open
Accelerators) was introduced. Similar to OpenMP, developers can use pragmas to annotate
code that shall be executed on an accelerator as well as the required data [128]. The
compiler will then create the necessary kernel code and synchronize the data.

Besides the approaches backed by industry, there are also several research projects that
simplify the programming of heterogeneous systems. Cooper et al. introduced an extension
of C++ to simplify code offloading to an accelerator [32]. In their work, code and variables
can be marked and afterwards, the code is automatically duplicated to create multiple
versions for execution on a Cell BE processor. A work with similar motivation was
introduced by Gaster and Howes [53]. In their work, they show how to employ the features
of the C++ language to simplify the programming of OpenCL applications. Reyes et
al. introduced their approach of an OpenACC implementation based on source-to-source
compiler combined with a runtime system [127]. In their evaluation, they show their
results with several benchmarks and systems using CUDA and OpenCL as backends. In
a following work, they also provide a detailed comparison of their work with competing
implementations [128].

Besides introducing new programming models, there are also efforts to overcome limitations
of some models by source-to-source or cross-compilers that transform implementations
written with one programming model, e.g., CUDA, into implementations with other models,
e.g., OpenCL to benefit from different accelerators. A CUDA-to-OpenCL compiler based
on Clang was introduced by Martinez et al. that achieves equal execution times as manual
translations [104]. Diamos et al. introduced a dynamic compiler called Ocelot that enables
the execution of CUDA code on CPUs [40]. In their work, they describe their techniques
to transform CUDA’s intermediate PTX code into efficient code for the CPU. Another
approach presented by Gummaraju et al. is Twin Peaks [59]. In their work, they describe
how OpenCL kernels that exploit GPU-specific features can be efficiently executed on a
CPU as well.

Grewe et al. introduced their OpenMP to OpenCL compiler that applies different code
optimizations to improve the data layout for GPU execution [115]. Using machine learning
on code metrics, their approach also decides automatically if the execution on the GPU

11

12 2. Background and related work

with OpenCL is superior to the execution on the CPU with OpenMP. In the evaluation,
they show their results with the NAS benchmark suite and also compare with hand-written
OpenCL code.

While each programming model has its strengths and weaknesses, an important question
that is often left open is the resulting performance in comparison with other models.
Therefore, Fang et al. present a detailed comparison of OpenCL and CUDA and a
comparison of OpenCL performance on different architectures using selected benchmarks
from different suites [45]. First results showed that CUDA implementations are faster in
most cases. During further analysis they discovered that most differences are caused by
uneven optimizations and the higher development stage of the CUDA tool chain. Regarding
performance portability, they note that, with OpenCL, the programmers have to consider
architectural details as well as compiler options and execution configuration in order to
gain high performance and, in some cases, to even successfully execute a kernel. In their
opinion, OpenCL is “very useful as a prototyping tool, enabling portability while still
achieving good performance”. Thus, it only provides a common programming model for
different architectures but still requires specific hardware optimizations. A similar analysis
has been conducted by Komatsu et al. [86]. They analyzed the generated intermediate code
by CUDA and OpenCL and discovered that their tested OpenCL compiler lacks significant
optimizations like loop unrolling. After manually applying different optimizations the code
achieved a similar performance as the CUDA code. Besides CUDA and OpenCL, further
works also include other architectures in their evaluation like FPGAs [163]. As in today’s
system, energy efficiency is an important topic, Kang et al. presented a comparative study
of selected benchmarks where they also evaluated the impact on power consumption and
temperature of CPUs and GPUs [71].

To quantify and compare the performance benefits of their approaches, related work
either relies on code samples of different software development kits (SDKs), e.g., the
Nvidia CUDA SDK, or on one of the new benchmark suites for heterogeneous systems
[29, 35, 143, 108]. In addition, Feng et al. propose so-called 13 dwarfs that constitute 13
OpenCL applications with a unique and pure pattern of computation and communication
[47]. In their preliminary evaluation, they also show how each application performs when
executing with different OpenCL libraries and different GPUs.

To enable a closer analysis how an application and its implementations perform, heteroge-
neous system simulators have been introduced as well. For example, Ubal et al. introduced
Multi2sim the first simulation framework that combines the simulation of a x86 CPU and
an AMD Evergreen GPU in one tool [155].

2.3. Automatic optimization of hardware-specific implemen-
tations

To gain maximum performance on a system, hardware-specific optimizations are necessary in
most cases. However, as such optimizations may cause degraded performance on differently
configured systems, such optimizations are only applied statically if the application is
only executed on a certain type of systems. In order to benefit from hardware-specific
optimizations on differently configured systems, mechanisms have been introduced that
perform such optimizations for specific systems dynamically. Such mechanisms are also
referred to as auto-tuners. Similar to this work, auto-tuning is often an empiric approach
that actively evaluates different execution parameters and chooses the best parameters for
further executions [165]. However, as illustrated in Figure 2.9, auto-tuners usually optimize
the performance of an implementation for specific hardware while the main purpose of this
work is to optimize the choice between multiple – possibly auto-tuned – implementations

12

2.3. Automatic optimization of hardware-specific implementations 13

Figure 2.9.: Different positions of a selection mechanism and an auto-tuner

and processing units for a set of task. Hence, both share the same principle and adapt
application execution dynamically to a specific system but each focuses on optimizations on
a different level. In the following, selected examples of auto-tuning projects are presented.

A generic auto-tuning framework was presented by Karcher and Pankratius [72]. Their
framework consists of a part in the kernel of the operating system and in the userspace. In
the userspace, the modified application registers the to-be-tuned variables at the kernel
module via a syscall and the code blocks that depend on these variables are instrumented
in order to measure their time consumption. At runtime, the kernel part tries to find the
best values for these variables for a single process or for multiple competing processes.

Hoffmann et al. introduced their framework called Application Heartbeats, that allows
generic monitoring and adjustment of application performance [64]. Using their framework,
application developers can insert function calls at appropriate places that simulate a
heartbeat and later they can analyze different aspects like beat rate or latency. With this
information, an internal or external mechanism can adjust the application behavior, e.g.,
number of enabled CPU cores, to achieve a certain goal, e.g., a minimum frame rate for
video encoders. In their evaluation, they also show an example where two applications
compete for CPU cores. Their framework dynamically adapts the applications to meet
their individual goals, if possible, or, if not, only the priorized application while the other,
a video encoder, has to reduce the image quality in order to achieve its minimal frame rate.

Ţăpuş et al. introduced their “Active Harmony” project that enables automatic performance
tuning of applications [33]. Their solution operates on two levels: first, it allows to
dynamically exchange libraries that provide the same functionality but use different
implementations, and second, provide an API to register tunable parameters at their
so-called adaption controller. To guide the selection of libraries and parameters, they
also introduce a special language that enables developers and administrators to describe
requirements and characteristics of the application and the system, e.g., valid ranges of the
tunable parameters. This approach is similar to this work as they also propose to change
whole implementations – although they don’t consider heterogeneous systems – and they
also use a domain-specific language to pass additional information.

The presented projects so far have a generic design but they do not consider heterogeneous
systems. Programming models for heterogeneous computing, e.g., OpenCL, have different
generic and tunable parameters like the thread block size. Different projects exist that
explicitly target such programming models and automatically tune their parameters [141,
103, 31, 14, 56].

13

14 2. Background and related work

Figure 2.10.: NUMA topology of a 32 core AMD Opteron system

2.4. Data and task mapping

In a system with non-uniform memory access (NUMA), all CPUs share the same address
space that spans multiple memories but for each CPU core these memories may have a
different access latency. One or more CPU cores are connected to an own memory controller
and form a so-called NUMA node or NUMA domain. Within such a domain, the latency
of each memory is the same for all cores. As the other memories are only reachable over
one or more hops on the interconnect, each required hop increases the latency for these
memories. In Figure 2.10, an example of a AMD Opteron system with 32 cores is shown
that has four CPU sockets and each CPU has two NUMA domains with four cores. Each
NUMA domain is connected with four other domains. This results in three latency classes:
the fast local memory, the memory of the neighboring domains and the slow memory of
the non-neighboring domains.

Due to the potential penalty for accessing data in a remote memory, keeping threads
and their data in close proximity is an important task in such systems. As such a
topology can change from system to system, different approaches exist that automatically
improve the thread and data mapping in homogeneous systems to minimize remote accesses
[26, 150, 137].

If we look at heterogeneous systems, we have a similar problem: multiple processing units
with their own memory. However, as described in Chapter 2.1, these processing units may
not share the same address space, the latency over PCI express is considerably higher and
a thread cannot be simply migrated to another processing unit with a different architecture
in every case. Therefore, depending on the actual system, data placement not only becomes
more important for good performance but it may also be critical for correct execution and
a different code path may be necessary for execution on a specific processing unit.

If the original implementation that a thread would execute is not suitable for a desired
processing unit, a different matching implementation has to be used. As a solution, a
developer could add corresponding if statements to the application’s source code to select a
fitting implementation for the system. However, such an approach increases code complexity
and is limited to known implementations and hardware at compile time.

Furthermore, not every type of calculation is suitable for migration to an accelerator and,
as we will see in the following chapters, even for suitable algorithms an acceleration is only
achieved under certain conditions. Evaluating and keeping track of these conditions for one
or multiple accelerators can be time-consuming and error-prone while implementing these
conditions considerably increase source code complexity further. This becomes significantly

14

2.4. Data and task mapping 15

Figure 2.11.: Principle of system abstraction for applications

worse, if the application shall run efficiently on systems with different accelerators. In case
an application will be distributed to a wide range of customers, evaluating any system
configuration becomes infeasible.

As we will see in this work, leaving the decision to a separate mechanism not only avoids
additional complexity in the source code but also provides further benefits that simplify
development and improve the performance. Hence, the central goal of this work is to
abstract the underlying heterogeneous system for an application in order to simplify the
source code and to make the application portable across different systems. The general
principle of this goal is depicted in Figure 2.11. In this example, an application requires the
result of a matrix multiplication with matrix a and b. Instead of calling one of the three
implementations for the CPU, GPU or FPGA, the application hands control over to an
automatism that chooses the best one for execution and returns the result to the application.
This way, only the automatism has to know about the available implementations and
hardware, while the developer can concentrate on the general logic of the application.

An initial question – that will be discussed further in the following Chapter 4 – is how
such a switch mechanism can be integrated in the application without causing too much
trouble itself. Some related works require that the developer explicitly integrates and
initializes such a mechanism in the application source code [13, 67, 164], some leverage
the features of the programming language [32, 145, 105, 57, 62, 158, 144] or integrate
their mechanism in the compiler [48, 68, 147, 85, 101, 55, 16, 68] to hide the additional
complexity from the developer. In Chapter 4, this work will introduce new and previously
proposed methods to integrate such a mechanism in different types of applications. Besides
switching implementations and processing units on one host system, different projects
were introduced that also enable a switch to remote accelerators [42, 10] and improve the
different aspects like data transfers during execution [149, 55, 81, 16, 110, 116, 167]. In
contrast to most of these projects, this work includes an own simple protocol as proof of
concept that does not depend on specific programming models.

With a switching mechanism in place, an initial idea to enable good performance on a
random heterogeneous system could be to include as many different implementations as
possible in an application. But, each programming model and language usually requires
an own software stack with runtime libraries or just-in-time compilers which limit the
portability of applications. If the libraries are not available, the startup of the application
will be aborted without the opportunity of a fallback to CPU-only execution. Regarding
this topic, related work rely on programming models like OpenCL that alleviate the problem
with just-in-time compilation but they also lack the expressiveness and optimization of

15

16 2. Background and related work

native programming models, e.g., provided by the hardware manufacturer [45, 86]. Instead,
this work proposes a decoupled concept in Chapter 5 that reduces the strict dependencies
of the application. With this concept, hardware-specific implementations are only loaded if
they can be executed and if they fulfill the requirements of the application.

If a set of usable implementations has been determined, the remaining question is which
of them should be chosen for execution on the available processing units. The entity
that is responsible for such decisions is commonly referred to as “scheduler”. As the
scheduler of current operating systems is not involved in scheduling decisions on accelerators,
abstraction mechanisms as proposed in this work contain an own scheduler that decides
which implementation is executed on which processing unit. However, there are also
attempts to include scheduling decisions into the kernel of the operating system to guarantee
fairness and isolation also on accelerators [129]. To gain a complete view of the options for
this decision, a scheduler usually creates a list of so-called mappings. In the simplest case,
a mapping determines which implementation is executed on which processing unit. As
many applications for heterogeneous systems either contain only tasks in sequential order
or repeating tasks where the actual temporal ordering is predetermined or insignificant,
this work also refers to the scheduler as “mapper” sometimes to emphasize that finding the
best mapping for each task is the actual challenge in a certain case.

As indicated, a mapping may contain additional parameters besides the implementation
and processing unit that impact the way a task is executed in this work – like the location
of the data, e.g., if the data is only mapped into the device’s address space or transferred
into the device’s memory. Please note that the meaning of “to map sth.” is used twofold
in this work. In the context of a scheduler it determines the way a task is executed on a
system and in the context of memory management it denotes that data is made available
in the address space of a processor although the data is not present in the processor’s own
memory.

Depending on the considered topic, related work also evaluate specific execution parameters.
For example, in distributed systems that include nodes with accelerators, if a task shall be
mapped to remote accelerators and how the data transfers can be improved [149, 55, 81, 16,
110, 116, 167]. Or, if not all processing units are in use and the local system is underutilized,
e.g., due to lacking task parallelism, several projects also offer automatic task splitting to
map a task to multiple processing units in a system in parallel [85, 80, 133, 92, 39, 102].

The best mapping depends on the chosen optimization goal. Related projects to this
work focus either on minimizing the execution time or power consumption as optimization
goal. Most of the related projects focus on minimizing the execution time [67, 121, 138,
60, 105, 13, 62, 60, 21, 8]. As power efficiency becomes an increasingly important topic,
there are also other approaches that select implementations and processing units with
regard to their energy consumption [147, 140, 49] and apply dynamic voltage and frequency
scaling [102, 98, 158, 167]. In this initial work, the primary goal of the experiments during
evaluation is also the lowering of the execution time. However, due to its modular design
that is described in Chapter 6, other metrics besides the execution time can be set as
optimization goal as well. To account for the exchangeable optimization goal, this work
commonly refers to the time or power consumption of a mapping as “costs”.

To estimate the single costs of a mapping, most related projects either use an empirical
approach and measure the execution time [67, 13, 164, 24, 21, 101, 138, 21] or use code
analysis combined with machine learning [58, 85]. In this work, a sufficiently good estimation
of the actual costs is necessary for various purposes. For example, this work also considers
changing costs during application runtime due to competing applications or faults, as
described in Chapter 6.4. Hence, also an empirical approach has been chosen for this work.

16

2.5. Enhancing dependability in modern systems 17

If the suitable mappings and their costs have been determined, the actual work of the
scheduler begins. Although graph scheduling is a topic with a long history in research,
related work rely on the heterogeneous earliest finish time (HEFT) algorithm or a variation
of it [154, 153, 13, 24]. HEFT is a popular algorithm as it finds a good schedule in
many cases and is comparatively easy to implement once the costs of each mapping are
available. Furthermore, it causes only a low overhead for the scheduling decision and,
after the first tasks have been scheduled, the decisions for further tasks can be made
while already executing the first tasks. However, the downside of HEFT is its greedy
nature. If, for example, the best processing unit for all tasks of an application has high
initialization costs, HEFT would choose a worse mapping for the first task and also stick to
the corresponding processing unit if switching the unit would not be immediately profitable
due to necessary data transfers. For such a case, a scheduler could always choose the
same mapping for one application run and store the best mapping after all mappings have
been tried. However, as the problem sizes could change, for example, the result of such
an evaluation could be incorrect. Hence, this work proposes a different approach. As a
mapping decision modifies the global state, e.g., the most recent data may be located in a
different memory afterwards, tracking these changes for preceding tasks is necessary to
get a realistic impression of the hypothetical global state for following tasks. Therefore,
this work introduces a mechanism to simulate the execution of task graphs in Chapter 7
which enables evaluation of different schedulings and optimizations in advance. This is
especially important for evolutionary algorithms like simulated annealing which require an
extensive amount of scheduling iterations before the global optimum may be found and
actually executing each scheduling would cause an unacceptable overhead.

2.5. Enhancing dependability in modern systems

As we saw in the previous sections, today’s systems and applications become increasingly
complex. To maximize the performance, applications usually have to use all available
processing units. Consequently, application execution depends on multiple processing units
that require individual implementations that in turn depend on own software stacks with
runtime libraries and just-in-time compilers. Due to the increasing amount of hardware
and software required for correct execution, also the probability for faults or unforeseen
incompatibilities rises. To make things worse, the susceptibility of the hardware to faults
is expected to increase as well: aging effects and charged particles hitting conductor paths
could become a considerable threat for calculations due to shrinking feature sizes [139, 69].
For example, Haque and Pande created a test application for GPUs and tested over
50,000 systems [61]. They discovered that “two-thirds of tested GPUs exhibit a detectable,
pattern-sensitive rate of memory soft errors”.

This work describes how selected methods for fault detection can be used in combination
with the own mechanisms for efficient task mapping in order to make task execution
more reliable without requiring additional efforts from application developers and without
depending on special compilers and hardware. Similar to different optimizations, the
methods for fault detection can each be enabled dynamically, e.g., for specific tasks, to
enable a scheduler to trade performance off against dependability.

A common strategy to detect faults is redundant execution with subsequent comparison
of the results. However, sequentially executing a calculation twice considerably increases
the execution time. Therefore, many research projects propose to use the existing on-chip
hardware redundancy to benefit from underutilized resources. Targeting general-purpose
CPUs, several projects utilize the features of modern processors, e.g., multiple cores and
superscalar out-of-order pipelines [54, 124, 126, 107, 157].

17

18 2. Background and related work

Vera et al. [156] also propose a fine-grained redundancy approach for CPUs but they
argue that only 20% of the instructions of a modern architecture are responsible for more
than 60% of the total vulnerability. They introduce so-called selective replication of only
certain instructions and achieve a considerable fault coverage while introducing only minor
overhead. A similar approach based on VLIW architectures is introduced by Lee et al. [93]
that exploits empty slots for dynamic duplication.

As a software-based solution, Rebaudengo et al. present a source-to-source compiler creating
redundancy on the source-code level [125]. Their efforts aim to detect transient faults
causing data and program-flow corruption. Tahan et al. presented a dependability-focused
extension of OpenMP [146]. Using their solution, developers can mark parallel regions that
are critical for the application execution with an additional reliable keyword. Regions
marked with reliable are executed using Triple Modular Redundancy (TMR) and a voter
is comparing the results afterwards.

Similar to these works, one method of the framework in this work is redundant execution.
However, as it operates on task level, it does not depend on special hardware or compilers.
The downside of this approach is, though, that the overhead of redundant execution can
only be decreased if enough processing units are idle to execute the redundant tasks.

Besides reducing the overhead of redundant execution, other approaches try to avoid
redundancy at all by detecting faults by other light-weight indicators, such as symptoms
like anomalous application behavior detected by segmentation faults or an unusual rate of
branch mispredicts or cache misses [46, 159, 111]. Such detection mechanisms save time,
but come at the price of mispredictions or lower fault coverage. Similar to these approaches,
this work offers symptom-based fault detection but also considers processing units besides
the CPU that provide necessary information, e.g., using hardware performance counters.

Besides symptom-based fault detection, arithmetic codes can be used for detection [161, 136].
Here, input values for calculations are modified in a way that the results can be validated
using a checksum-like mechanism.

In heterogeneous systems, important tasks of the application are migrated to accelerators
and only protecting the computations on the CPU is not sufficient. Therefore, other
projects present their efforts to increase reliability of heterogeneous computing.

To analyze the behavior of selected GPU benchmarks in case of transient faults, Fang et
al. introduce their debugger-based fault injector GPU-Qin [44]. This approach enables
injection of faults at instruction level while avoiding the overhead of hardware simulation.
After introducing the design of their injector, they analyze the outcome of the injection in
selected GPU benchmarks. In their evaluation, they observed that the applications have a
different susceptibility to corrupted results and abortions and classify them into different
categories.

For redundancy-based fault detection on GPUs, Dimitrov et al. [41] introduce and evaluate
three possible methods to efficiently execute kernel code multiple times: simple duplication
of kernel computations, interleaved kernel instructions, and exploiting unused thread-
level parallelism. A similar approach has been presented by Sabena et al. where they
compare different methods for redundant execution on GPUs [132]. However, like the
mechanisms described before, these efforts concentrate on a single type of accelerator while
the mechanisms in this work do not depend on specific hardware.

Takizawa et al. introduce CheCUDA that enables a checkpoint and restart mechanism
for applications that use CUDA GPUs [148]. In combination with a tool for CPU-bound
application checkpointing, applications with CUDA kernels can be restarted after a fault
or even be migrated to another host. To achieve this, CheCUDA logs the CUDA API calls

18

2.5. Enhancing dependability in modern systems 19

and before creating a checkpoint, transfers all data from device to host memory. After a
checkpoint is restored, it moves the data back to the device before giving back control to
the application.

Kawai et al. introduced DS-CUDA that enables a normal CUDA application to exploit
accelerators on different nodes [74]. For critical applications, redundant execution can be
activated as well to detect a fault during execution on a remote GPU.

As DS-CUDA, the redundant execution works on task level and as CheCUDA the runtime
system creates checkpoints to enable a rollback in case of faults. In contrast to both, the
mechanism in this work does not depend on a special programming model like CUDA and
it can be enabled dynamically even only for specific tasks.

Lee et al. present their extension of an OpenACC-compatible compiler that enables
automatic comparison of results from CPU and GPU calculations [94] and determines
redundant or missing data transfers for GPU calculations. Similar to this approach, they
try to simplify the development of applications for heterogeneous systems with automatic
fault detection. In contrast to them, this work introduces generic mechanisms that are
not bound to specific hardware, programming models or compilers and an additional tool
which helps a developer to identify bugs in the calculations.

Boyer et al. presented a dynamic load-balancing mechanism for systems with non-uniform
processing units [24]. In their work, they profile the processing units with small chunks
of the total work load during application execution and thereby also detect unresponsive
units which are avoided in further runs. Like in their work, the mechanisms in this work
can also detect unresponsive units. However, as the runtime system stores the average
execution time, also aborted executions, i.e. too short executions, can be detected.

Generic approaches not targeting a certain type of processing unit are proposed as well.
Zhang et al. presented a mechanism for efficiently hiding faulty cores in a manycore processor
[169]. Their solution maintains a sane view of a logical topology that does not only hide
faulty cores but also improves the alignment of the cores for minimal communication costs.
In contrast to their work, the methods in this work enable a fine-grained trade-off between
the benefit of a processing unit and their susceptibility to faults in case the unit only suffers
from transient or intermittent faults. If a unit suffers from a permanent fault, it is ignored
during further decisions as well.

Another approach for increased reliability is the reduction of hardware susceptibility itself.
Mitra [109] proposes hardware-level techniques for reducing the susceptibility of circuits
and predicting faults induced by infant mortality or aging. Also, he introduces special test
patterns for online self-tests.

To summarize, most of the presented works depend on additional work by a developer,
specific programming models, compilers or hardware. In this work, the presented concepts
are applied on task level and, with the already existing mechanisms for efficient task
mapping, enable dynamic activation of the mechanisms for all or specific tasks with any
implementation and hardware that is usable by the runtime system. Furthermore, a new
metric is introduced that enables a dynamic trade-off between performance benefits and the
fault susceptibility of a processing unit in contrast to keep using a faulty unit or ignoring a
beneficial unit with a negligible fault rate.

However, although the framework contains methods to increase the reliability of task
execution, additional techniques like the ones described in this section are required to
protect the execution of the other parts of the application, the runtime system itself and
the operating system on the CPU.

19

3. A unified approach

As we saw in Chapter 2, a multitude of challenges await developers while adding support for
heterogeneous systems to their applications and optimizing the performance. Considering
and handling all these challenges in the source code of the application requires considerable
efforts from a developer and makes the development and the resulting application more
complex.

While related works only automate specific aspects to lower the complexity, this work
proposes a new framework implemented with an online-learning runtime system, called
Dynamic Linking System (DLS), that provides a common basis for different mechanisms
to simplify development and make applications more portable, efficient and reliable across
different systems.

A basic mechanism of this runtime system is the possibility to dynamically choose the
implementation that will execute a task. Instead of statically executing the same implemen-
tation chosen by the developer, as shown in the top of Figure 3.1, the runtime system is
placed between the application and the implementations, as shown in the bottom. As the
runtime system can be integrated in multiple types of applications, a wrapper is necessary
first that translates and passes necessary information to the core of the runtime system,
e.g., which task shall be executed and the available implementations. The core will make a
decision which implementation shall execute a task and then initiate the execution of this
implementation. In Chapter 4, the necessary parts to enable such a basic adaption will
be introduced. This includes the basic architecture of the DLS core, the setup of calls to
local and remote processing units and the wrappers for a non-intrusive integration of the
runtime system in different types of applications, e.g., a low-level C interface, an interface
to use the runtime system for rapid prototyping in Matlab and an OpenCL wrapper that
enables transparent integration of the runtime system without modification of applications
or knowledge of their source code.

As mentioned, in this basic design, the developer is responsible for registering the imple-
mentations included in an application. However, each implementation included in the
application usually increases the list of dependencies due to individual runtime libraries and
just-in-time compiler which limits the portability of the application. Hence, in Chapter 5,
this work proposes a decoupled development concept that outsources hardware-specific
implementations and the design of an implementation repository that maintains a list
of known implementations on a system and enables the runtime system to dynamically
load only executable implementations with matching requirements for the applications and

21

22 3. A unified approach

Figure 3.1.: Static and dynamic selection of implementations

satisfied dependencies. Besides improving portability, the repository also enables already
compiled applications to automatically benefit from new implementations sharing the same
interface, e.g., optimized BLAS libraries bundled with new accelerators.

Besides identifying suitable implementations, another requirement for the work of a sched-
uler are cost assessments in order to compare the possible mappings later. These costs not
only consist of, for example, the actual execution time of a mapping but also of the costs for
supplementary tasks that might be necessary, e.g., data transfers. As supplementary tasks
like data transfers depend on the order of used processing units, the runtime system also
includes a mechanism for automatic data management that is used to determine necessary
transfers in advance and initiating transfers during execution. Other sources for additional
costs that are considered by the runtime system are resource competition and faults during
compute kernel execution. Besides the infrastructure of the runtime system for empiric
identification of costs and the data management mechanism, Chapter 6 will introduce the
methods of the runtime system to account for costs caused by competing cooperative and
uncooperative applications and by faults that might occur during task execution. For the
latter, a new metric is proposed that enables a scheduler to trade off performance benefits
with the expected costs of fault recovery.

A declared goal of the framework is a wide support for different optimizations and execution
variants. For example, besides task mapping and task splitting that are described in
Chapter 7, this work also supports alternative code paths, e.g., solving a problem with a
different algorithm, which results in mutual-exclusive branches in a task graph. During
the scheduling of such a graph, the runtime system evaluates the alternative branches and
chooses the better one for execution. Furthermore, as this work also considers faults that
may occur during kernel execution, all or specific tasks can be duplicated and their results
are automatically compared by the runtime system which also checkpoints the data to
enable a rollback.

In order to keep the scheduler code simple despite the different possible execution variants,
the runtime system encapsulates operations that may take a considerable amount of time
into own special task types. Besides the usual type of tasks submitted by a developer –
in the following called compute task – the runtime system knows other types of tasks like
data mapping tasks or data transfer tasks. Therefore, the only things a scheduler has to
know are the time a certain task will occupy a certain processing unit or memory and
the other costs of the task that may be considered by the runtime system, e.g., power
consumption. In order to compare the different mappings of a task, the scheduler could
create and enqueue the necessary tasks for a mapping, store the total costs, remove the

22

23

tasks from the queue and start again with the next mapping. However, with this approach,
an unnecessary overhead will occur as the tasks for the best mapping have to be calculated
twice and it inhibits parallel evaluation of different mappings. Instead, this work proposes
an approach based on so-called containers in Chapter 7 that encapsulate hypothetical
changes of objects like queues, data or tasks without modifying the globally visible state of
these objects. Hence, the necessary tasks for each mapping are created and enqueued in an
individual container and do not interfere with the other mappings. If a mapping is chosen,
the container can simply be merged into the global state.

Besides evaluating different mappings of one task, containers also enable an evaluation
of complete graph schedules in advance. Instead of merging mapping containers into the
global state, they are merged into an intermediate container. Hence, multiple schedules
can be calculated and the best schedule is later executed in the context of the global state.
This is especially useful for applications where greedy algorithms like HEFT will not find
the global optimum. Therefore, Chapter 7 will also present other non-greedy scheduling
algorithms like simulated annealing.

To summarize, besides covering multiple challenges of heterogeneous computing in one
unified approach, this work provides the following single contributions:

• a decoupled development concept to increase portability of applications without
loosing performance benefits of hardware-optimized implementations that also enables
already compiled applications to benefit from new implementations,

• a dynamically selectable combination of mechanisms to detect and efficiently resolve
concurrent use of resources and faults during task execution, including a new metric
to balance performance benefits with fault susceptibility of implementations and
processing units.

• an online simulation of different optimizations and schedulers in advance to execution
for case-by-case performance evaluation which also enables demanding and non-greedy
scheduling algorithms like simulated annealing

• a non-intrusive integration of the runtime system in C applications using a novel
light-weight instrumentation technique and in script-based Matlab applications

For developers, the DLS framework serves multiple purposes as shown in Figure 3.2. For
an application developer, e.g., an engineer or natural scientist, it simplifies development as
it reduces code complexity and automatically adapts application execution for a chosen
optimization goal. For a computer scientist, it provides the fundamental mechanisms to
easily develop and evaluate new schedulers as well as generic optimizations of application
execution in a heterogeneous system. For a hardware expert, it provides a simple method
to evaluate the performance and correctness of his implementations and new hardware
with different applications without the need to modify or recompile them.

In Figure 3.3, the outline of this work is also figuratively summed up.

23

24 3. A unified approach

Figure 3.2.: Different types of users

Figure 3.3.: Outline of this work

24

4. Light-weight integration and
transparent task migration

This chapter introduces the available methods to integrate the runtime system in different
types of applications and the fundamental mechanisms for dynamic selection of implemen-
tations and processing units as illustrated in Figure 4.1. In the first section, the native
interfaces of the runtime system for applications written in C are introduced. Afterwards,
a wrapper for Matlab applications is presented that enables improved rapid prototyping in
heterogeneous systems. Due to the comprehensive API of OpenCL, it is also possible to
benefit from the runtime system without the need to modify applications using a wrapper
library that is introduced in Chapter 4.4. In the following two sections, parts of the runtime
system’s core infrastructure are described that enable dynamic activation of functionality
and an extendable plugin interface to support different types of processing units. In the
final chapter, a special plugin, based on the previously introduced interface, is introduced
that also enables the migration of execution to remote systems and accelerators.

4.1. Introduction
In order to achieve good performance on differently configured systems, an application has
to adapt to the available hardware in the current system. A simple method used to adjust

Figure 4.1.: Light-weight integration and transparent function migration

25

26 4. Light-weight integration and transparent task migration

applications for specific systems are compiler flags that select a specific implementation
for inclusion during compile time. While this approach causes no additional performance
overhead, the resulting binary is not portable, the compilation has to be repeated for every
type of supported processing unit and the selection may be only beneficial for some of
the executed tasks. Similarly, including multiple implementations and choosing the best
implementation or processing unit using commandline flags would enable a user to change
the mapping between application runs but still, one mapping might not be the best choice
for all tasks executed in the application. One approach proposed by related work is to
leave the decision to the compiler. A compiler can, for example, use code analysis [58] or
profiling [101] to determine the best mapping for a task. However, as the decision is fixed
after compiling the application, this process has to be repeated on every system with a new
set of hardware or if new hardware is added to the system. Furthermore, the application
is unable to react to unpredictable events like resource competition or faults that occur
during execution.

Hence, this and most of the related works favor a fully dynamic approach based on runtime
systems that are able to account for the available hardware and the current system state.
For such dynamic approaches, the following design decision is how they are integrated in
the application. Some related projects require that the developer explicitly integrates and
initializes such a mechanism in the application source code [13, 67, 164], some leverage
the features of the programming language [32, 145, 105, 57, 62, 158, 144] or integrate
their mechanism in the compiler [48, 68, 147, 85, 101, 55, 16, 68] to hide the additional
complexity from the developer.

In the following, the basic design of the DLS runtime system for dynamic selection of
implementations and processing units is introduced including several approaches for the
integration in different types of applications.

4.2. Native C interface
The native C interface of the runtime system actually provides three different ways to
integrate the runtime system. The first two are based on function pointers that can be
dynamically set to point to specific implementations. While the first approach requires
small changes in the source code, the second exploits existing structures in the ELF binary
format to adapt the execution of unmodified applications. The third approach uses the
regular API of the runtime system which gives precise control over the runtime system but
also requires additional source code modifications.

As we will see later in Chapter 4.3 and 4.4, providing an interface based on C also enables
an integration of the runtime system in other languages as many languages offer a C
interface themselves for custom extensions.

4.2.1. Pointer-based function migration

The initial version of this runtime system was introduced in a diploma thesis [75] that
proposed two mechanisms for light-weight switching between different functions. The basic
principle of these mechanisms is the usage of function pointers that enable indirection of
function calls and introduce no perceptible overhead for switching to and calling a function.
To determine the destination of a pointer, an external control entity was proposed that can
issue a switch through a custom kernel module. In Figure 4.2, an overview of this design
derived from Figure 2.11 is shown.

Following the first pointer-based approach, the function pointers are defined in the source
code. This method has the advantage that the function pointer can be used as if the

26

4.2. Native C interface 27

Figure 4.2.: Overview with external scheduler

developer would call one of the real functions, thus causing neither additional complexity
in the code nor time overhead. In the following, an example for a matrix multiplication
with a CPU and GPU implementation is shown:

void (* matmul)(matrix A, matrix B, matrix C);

void matmul_CPU (matrix A, matrix B, matrix C) {
/* ... */

}
void matmul_GPU (matrix A, matrix B, matrix C) {

/* ... */
}

void calculate () {
/* ... */
matmul (A, B, C);

}

Depending on the address in the pointer matmul either the CPU or the GPU version is
executed.

To change the destination of a pointer, the external control entity uses a custom kernel
module to initiate a switch. However, the kernel does not know about available pointers in
each process. Therefore, the kernel module also provides a userspace interface through the
procfs filesystem that can be used by the application to register the function pointers. The
registration routine inside the application is bundled with the function pointer definition
and additional management information inside a macro. With this macro, the first line of
the previous listing is replaced by this statement:

DLS_DEFINE (matmul , void , matrix A, matrix B, matrix C);

This macro defines a function pointer called matmul with no return value and three matrices
as parameter. Hence, only this single line and the inclusion of the DLS header file is required
in the source code to integrate the runtime system.

Another part of the thesis was a similar approach that requires no source code changes.
It is also based on function pointers but the pointers are not defined in the source code.
Instead, the implicit function pointers of ELF binaries for dynamic symbol resolution are
diverted from their intended use. Symbols are used to reference objects like global variables
or functions in memory that change their location between application executions, e.g.,

27

28 4. Light-weight integration and transparent task migration

(a) Kernel-based (b) In-application

Figure 4.3.: Different types of control infrastructures

libraries are loaded to different addresses for security purposes. For such symbols, the ELF
structures contain allocated space for a string and for an address in memory. The string
equals the name of the object, e.g., matmul_CPU, and the address field contains the address
of the object in memory. If the object is a function that is not defined in the same binary
but in a separate library, the address of the object is unknown and the address field contains
the address of a lookup function. If the function is called in the original code, the lookup
function will be executed first and it will update the address field with the correct address
that is later on called directly. Hence, if the application should call matmul_GPU instead
of matmul_CPU, the kernel module modifies the symbol name and resets the address field
to the lookup function. Consequently, if the function is called the next time, the lookup
function will resolve the address of matmul_GPU and write its address into the address field.

This way a function call can be redirected to another function during runtime without
source or binary code modification and therefore also works with proprietary applications,
for example. However, this approach also has considerable limitations. For example, to
automatically determine necessary data transfers, the runtime system needs additional
information like the location of the input data and the data each implementation will
access. This information is difficult to obtain without changing the source code. Hence, as
source code modifications are necessary to benefit from all features of the runtime system,
the approach based on ELF function pointers is not used in the rest of this work.

As mentioned, the initial design of this approach relied on a module in the kernel of the
operating system to select the target of a function pointer. This module provides an
interface for applications to register the address of their pointers and an interface for a
control unit in a separate process as shown in Figure 4.3(a). As target for the pointer, the
control unit cannot only choose between present task implementations in the application
but also instruct the application to load new libraries with further task implementations.

However, due to the indirection through the kernel, only coarse-grained decisions can
be made as the control unit only sets the default target and has no information if and
how many threads are executing a task implementation. With additional measures the
application could signal the control unit that it is about to call a specific function pointer
and the control unit could set a target per call but, besides other disadvantages, this would
add an additional time overhead.

Instead, the mechanisms inside the application itself were extended to make the application
self-directed and independent from special kernel modules and other processes as shown
in Figure 4.3(b). The challenge of such an approach is to hide this control mechanism as
much as possible from the developer in order to keep the source code simple.

To hide the functions of the control mechanism, this approach uses instrumentation – that
is based on previously presented work [78] – to enable the execution of additional functions
between the call through a pointer and the actual target function. Most calling conventions,

28

4.2. Native C interface 29

Figure 4.4.: Duplication of caller stack frame for function call instrumentation

e.g., on x86-64 architectures [106], specify that function arguments are passed in registers
and on the stack – depending on the number, size and type of the arguments – and the
return value is passed back in registers. As registers and the stack are modified by the
additional functions, these values have to be preserved before executing additional code
and reinstantiated before calling the actual target function.

Hence, instead of referencing an implementation directly, the function pointer contains
the address of a special function written in assembler. At the beginning, this function
preserves to contents of the registers containing the arguments. First the stack is increased
to allocate space for the registers. Afterwards, the data in the registers is stored in this
area. Then, the code to retrieve the arguments on the stack and to jump inside the runtime
system is executed. After the runtime system executed the target function and before
returning to the application the allocated stack space is freed by restoring the original
stack address.

A detailed visualization of the stack operations is shown in Figure 4.4. The first task is to
calculate the boundaries of the original stack frame. The so-called base pointer is a register
that points to a location in the current stack frame where the address of the previous stack
frame is stored. This results in a linked list of stack frames that can be used to determine
the frame of the caller function.

After preserving the arguments in the registers and on the stack, arbitrary functions can
be executed by the core of the runtime system. Before calling the main function of an
implementation, the runtime system copies the original stack frame on top of the stack and
the registers are filled with their original values. Hence, the implementation executes as if
it was called directly. After its execution, the return value is also stored in a temporary
location and further internal functions of the runtime system can be executed, e.g., to
measure and store the actual time consumption. Finally, the return value is reinstantiated
and control is returned to the application.

The downside of this approach is a dependency on the instruction set architecture and the

29

30 4. Light-weight integration and transparent task migration

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24

 0 20 40 60 80 100

A
pp

lic
at

io
n

ru
nt

im
e

in
 m

s

Number of proxies

Figure 4.5.: Application runtime as function of proxies

calling convention. Hence, for other architectures or calling conventions, similar assembler
code is necessary. Another problem are modern compilers with optimization routines that
use the base pointer as general-purpose register to increase performance. In this case, the
stack unwinding technique for exception handling can be used to retrieve the stack frame
addresses without a linked list of frame pointers, e.g., using the libunwind library 1.

To evaluate the overhead caused by this approach, a simple application has been written
that consists of a for loop in the main function and another function that is called from
within the for loop. The second function is only executing a simple integer addition.
Thus, for few loop iterations, most time is consumed by startup and initialization of the
application while for a high number of loop iterations, the application runtime is dominated
by the time required for repeatedly calling the second function.

At first, the application runtime is measured for a variable number of loop iterations with
and without the runtime system. With a single iteration, the original application finishes
after 2305 µs while the application with the runtime system lasts 3624 µs. This results in
a one-time startup overhead of around 1.3 milliseconds for loading the runtime library and
initializing one function pointer or a so-called proxy. A proxy represents a function pointer
with a specific function signature and functionality. For multiple proxies, the initialization
costs increase linearly by roughly 0.2 milliseconds per proxy as shown in Figure 4.5.

In Figure 4.6, the per-call overhead of the instrumentation-based and the explicit invocation
approach, that will be introduced in the next section, is compared to normal execution
is shown as a function of total function calls during one application run. This overhead
constitutes the required time for the basic infrastructure of a call interjection. As it can be
seen, with a growing number of iterations the static startup overhead becomes insignificant
and the overhead for a single call settles below 1800 ns for both approaches.

4.2.2. Explicit integration using the DLS programming interface

In order to use the proposed automatism without dependency on specific ISAs, calling
conventions or compiler optimizations, another approach was developed that relies on
additional source code modifications. The main problem for a transparent integration
of the runtime system are the function parameters as those cannot be preserved by a

1The libunwind project http://www.nongnu.org/libunwind/

30

http://www.nongnu.org/libunwind/

4.2. Native C interface 31

 1700

 1800

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 0⋅100 1⋅104 2⋅104 3⋅104 4⋅104 5⋅104 6⋅104 7⋅104 8⋅104 9⋅104 1⋅105

N
an

os
ec

on
ds

Function calls

Instrumented
Portable

Figure 4.6.: Overhead introduced by the instrumentation-based and the explicit approach

generic function and passed to the actual target function in a portable way. Therefore, the
approach presented in this section uses an explicit method to register arguments and query
them during execution of a target function.

In order to preserve the arguments, this approach uses a storage that is organized as a
stack of arguments. To add arguments, a push function is called from the application with
arguments passed by reference. In turn, the actual target function calls a pull function to
receive the arguments in reverse order. For convenience, multiple arguments can be passed
with both functions and the order is reversed automatically for the pull function. Instead
of calling a function pointer as in the previous section, the developer has to call a special
function of the runtime system to initiate a call. In the following, the corresponding code
for the matrix multiplication example is listed:

void matmul_CPU () {
dls_pop_arguments (&A, &B, &C);
/* calculate */

}
int main () {

/* ... */
dls_push_arguments (&A, &B, &C);
dls_execute (" matmul ");

}

In the main function, the matrices A, B, and C are pushed onto the argument stack
and afterwards the runtime system is instructed to start execution of a task matmul. If
matmul_CPU is called it first pops the three matrices from the argument stack and then
resumes its normal operation.

For all approaches to integrate the runtime system in this chapter, the runtime system
provides two approaches to gain a list of possible target functions. A developer can add
a function for a specific task with an API call or the runtime system will look for usable
implementations itself as described later in Chapter 5.3.2. With the API call, one can
add a function that is included in the application binary or from a dedicated library. For
a function from a library, the name of the library is required and it must be in a path
that is known to the dynamic linker. As an example, to add the function matmul_GPU

31

32 4. Light-weight integration and transparent task migration

Figure 4.7.: Overview of the possible paths from a call to an implementation

from libblas_gpu.so to the list of implementations for the task matmul, one can use the
following command:

dls_add_fct (matmul , " libblas_gpu .so", matmul_GPU);

4.2.3. Discussion

For applications written in C, several approaches for transparent function migration with
a focus on light-weight and non-intrusive design have been presented. To summarize, an
overview of possible paths from a call to an implementation is shown in Figure 4.7. The
developer has either the choice to invoke the internal controller explicitly or to use one
of the pointer-based approaches. Both pointer-based approaches can point either to the
entry function of the internal controller or directly to one of the implementations. Besides,
their target could also be modified by an external controller through the kernel module.
The internal controller does not depend on a pointer mechanism and calls one of the
implementations directly.

The benefit of the pointer-based approaches with external controller, is that decisions can be
made by a central instance like the kernel scheduler. The downside of this approach is that
the kernel has to read and modify data in the userspace which might pose a security threat.
Also, the resource assignment through the kernel is not mandatory as in current systems,
the right to access an accelerator is granted by user permissions. Thus, an uncooperative
application might use an accelerator although it is not allowed by the kernel. As this
approach requires a custom kernel module, additional efforts by the administrator are
required before this approach can be used.

Instead, the in-application controller approach enables the bundling of the methods intro-
duced in this work inside a library that is easier to maintain and does not require special
preparations of the operating system. Furthermore, it avoids expensive crossings of the
border between user and kernel space. While the instrumentation-based method requires
less source code modifications, it also depends on an ISA that permits such instrumentation.

As we saw in Figures 4.5 and 4.6, the runtime overhead introduced by the in-application
approaches is negligible compared to the usual runtimes of compute kernels and applications

32

4.3. Integration in Matlab for rapid prototyping 33

on heterogeneous systems that can easily exceed several milliseconds per kernel and several
hours per application run. Especially with the mechanisms introduced in the following
chapters, this overhead is more than compensated by automatically choosing the best
accelerator.

Although the binary-based approach offers interesting opportunities its applicability is also
limited. For the mechanisms in the following chapters, additional information about the
application is required to improve the performance. Currently, this information cannot be
determined automatically and efficiently, e.g., the required data for an implementation,
and thus additional help by the developer is required in terms of changes in source code
anyway. Therefore, this approach is not pursued further.

Due to these circumstances, the methods in the following chapters are based on the in-
application approach that can be integrated using either the instrumentation-based or the
explicit variant.

4.3. Integration in Matlab for rapid prototyping
Matlab is a numerical computing environment with an integrated script language that is
developed by MathWorks, Inc. 2. It contains a multitude of functions and tools to ease
the solution of mathematical problems and the development of algorithms. Hence, Matlab
is often used for rapid prototyping of mathematical algorithms. If a working algorithm
is implemented using the Matlab script language, it is also ported to C/C++ in order to
benefit from the native code generated by highly optimized compilers and implementations
for accelerators are written and evaluated as well. As usually only the compute-intensive
algorithms are rewritten using separate languages and the main application logic should
remain in Matlab, the so-called MEX interface was introduced that enables an extension
of the internal script language with functions written in other languages like C/C++.
This results in a situation similar to regular applications for heterogeneous systems where
multiple task implementations and processing units could execute a task and the developer
is responsible for finding the best in the current situation. In order to support rapid
prototyping and to leverage the mechanisms for automatic task mapping presented in this
work, a wrapper for the Matlab script language has been developed using the previously
introduced C programming interface of the runtime system and the MEX interface.

If an unknown function is called in a script, Matlab looks for a library with the same name
as this function. If such a library is found, it is loaded and a function with the following
signature is expected inside the library that will be called with the function parameters
and expected return values of the function called in the script:

void mexFunction (int nlhs , mxArray *plhs [],
int nrhs , const mxArray *prhs []);

The parameter nlhs determines the number of return values of the functions while plhs
contains the list of pointers for the values. The actual function arguments are listed in the
prhs array and their number is stored in nrhs.

Hence, as only one callable function per library is possible, the wrapper provides one
demultiplexing dls() function that receives the requested command as string in the first
argument and then passes control and the further arguments over to the corresponding
command-specific handler that transforms the arguments and calls the actual function of
the DLS runtime system. However, for convenience, it would also be possible to create an
own library for each function of the runtime system.

2http://www.mathworks.com

33

34 4. Light-weight integration and transparent task migration

Figure 4.8.: The path from submitting a task to the possible task implementations

With the wrapper, a task type is implicitly created by adding an implementation. For
example, to create a task type matmul and to add an implementation matmul_GPU that
may execute this task, the following command can be used:

dls(’add ’, ’matmul ’, ’matmul_GPU ’)

To issue execution, exec is passed as first argument followed by the task type and the
corresponding arguments:

dls(’exec ’, ’matmul ’, a, b, c)

Similar commands are available to, e.g., submit multiple tasks of a task graph or to register
and request certain data that may reside in an accelerator’s memory, for example.

An overview of the execution process is visualized in Figure 4.8. First, the variadic function
dls() is called from within Matlab with the fixed arguments exec and cmd and an arbitrary
list of further arguments. The wrapper pushes the optional parameters on the argument
stack of the runtime system and afterwards calls the proxy with the name of the second
parameter cmd that in turn passes control to the actual DLS runtime system. The runtime
system chooses a target function and then calls again a special function from the wrapper
that passes the call back into Matlab using the mexCallMatlab function. The function
called using mexCallMatlab can be an internal Matlab function or another C/C++ function
that implements the MEX interface.

4.4. Transparent OpenCL wrapper
Another method to employ this work is the OpenCL wrapper library that enables unmodified
applications to benefit from this work. As we can see in the top of Figure 4.9, an OpenCL
application can use different vendor libraries that implement the OpenCL API. As OpenCL
requires the developer to pass all necessary information for kernel execution via the OpenCL
API, the calls of the OpenCL API can be translated into corresponding calls of the DLS
API by a wrapper library as indicated in the bottom of Figure 4.9. In turn, the runtime
system is then able to choose the best of the vendor libraries for execution that is called
through a hardware plugin as described later in Chapter 4.6.

Such wrapper libraries have been proposed before [57, 145, 63]. In contrast to them, this
chapter and Chapter 7.4 will provide insight into the kind of problems that have to be
solved in order to compensate the overhead introduced by an additional abstraction layer.

An initial problem for this approach was that OpenCL requires several API calls to submit
all necessary information for a task, e.g., the source code of the compute kernel or required
data, and the outcome of each of these calls depends on the chosen device, e.g., the resulting

34

4.4. Transparent OpenCL wrapper 35

Figure 4.9.: Rerouting of OpenCL API calls through the DLS runtime system

Figure 4.10.: Accumulating tasks until a synchronization point

machine code of the compute kernel or the location in device-specific memory. But, during
the initial calls, the runtime system is not yet able to determine the most beneficial device
as the following calls have a considerable impact on the decision. Therefore, the runtime
system presents a virtual device to the application and logs the submitted data for each
API call. Then, after all necessary information is available, it can choose the best device
for a task and submit the logged commands to the device’s OpenCL library.

As we will see in Chapter 7, the more information about the tasks of an application
the runtime system receives, the better are the chances to find the optimal scheduling
for an application. Therefore, the runtime system tries not to start the scheduling after
one completely received task but delays execution until specific synchronization points as
illustrated in Figure 4.10. Such points are, for example, read requests from the application
or blocking commands in general. A downside of delayed execution is that implementations
cannot tune themselves to specific devices. For example, with OpenCL, an implementation
can query the maximum number of threads or size of shared memory in a block and adapt
its execution accordingly. In such a case, one workaround is to determine and return the
minimum of all available devices.

Due to the delayed execution and the additional work required for planning the execution,
the potential optimization benefits of the runtime system come at a cost. To get an

35

36 4. Light-weight integration and transparent task migration

Benchmark Subm. tasks Exec. tasks Avg. exec. time Exec. task graphs
b+tree 5 39 1462979 5
backprop 5 22 1983662 3
bfs 37 77 977409 13
cfd 16005 16031 218670 536
gaussian 2049 2059 732183 2049
heartwall 24 112 22520879 24
hotspot 2 10 3432565 2
kmeans 75 157 4829890 37
lavaMD 2 12 23876196 2
leukocyte 24 155 3079641 24
lud 47 51 669377 2
nn 2 8 3742468 1
nw 256 264 347964 11
pathfinder 7 18 6904782 2
srad 903 1129 277593 202
streamcluster 9667 16120 832097 8056

Table 4.1.: Statistics of Rodinia benchmark applications

impression of these costs, applications of the Rodinia benchmark suite were executed one
time with the Nvidia OpenCL library directly and one time through the wrapper library.
During execution with the wrapper, the execution has been limited to the Nvidia GPU
in order to make a fair comparison without profiting from a better suited device. In
Figure 4.11, the results of the measurements are shown that are also discussed further in
Chapter 7.4. As we can see, the execution time with the wrapper is similar to directly
using the Nvidia library in most cases. For a few applications, notably cfd, srad and
streamcluster, there is a considerable increase of execution time. As we limited the
wrapper to execute the application in the same way as in the direct case, these overheads
are most likely caused by scheduling. To analyze this behavior, statistics about the
scheduling of each benchmark have been collected during execution and listed in Table 4.1.
The statistics include the number of submitted compute tasks by the application, the
number of resulting tasks including supplementary tasks executed by the runtime system,
the average execution time of each task and the number of resulting task graphs that had
to be scheduled by the runtime system. As expected, the cfd, srad and streamcluster
benchmarks have outstanding numbers of tasks and task graphs. Only the gaussian
benchmark has similar high numbers but they do not result in a similar high overhead of
application runtime. If the number of submitted and executed tasks are close, e.g., in case
of cfd and gaussian, this indicates that the GPU was mostly busy with executing tasks
and only a few supplementary tasks for memory allocation and data transfers between
host and GPU RAM were necessary. In contrast, the number of executed tasks is 1.6
times higher than the number of submitted tasks for the streamcluster benchmark. This
indicates that data was periodically synchronized and many transfers between CPU and
GPU were necessary. By comparing the number of submitted tasks and the number of
executed task graphs, we can see that the three benchmarks with a considerable overhead
have a low average task execution time and a high number of tasks and task graphs.
Consequently, dynamically determining the best way to execute each task becomes a
considerable performance overhead in such cases. In Chapter 7, different methods to lower
this overhead will introduced.

36

4.5. Call stack infrastructure 37

 1000

 10000

 100000

b+tree
backprop

bfs cfd gaussian

heartwall

hotspot

kmeans

lavaM
D

leukocyte

lud nn nw pathfinder

srad
streamcluster

M
ill

is
ec

on
ds

Nvidia OpenCL
DLS OpenCL wrapper

Figure 4.11.: Runtime comparison of benchmarks with and without the OpenCL wrapper

Figure 4.12.: Example of a call stack for a single task

4.5. Call stack infrastructure

Before and after the execution of a task implementation, several actions have to be
performed as we will see in the following chapters, e.g., to measure the execution time. In
order to make the list of actions extensible for other uses of the framework, a so-called
call stack has been implemented that enables a developer or the runtime system itself to
dynamically register specific actions that have to be executed before or after the actual
execution of a target function. In Figure 4.12, an example of this design for executing a
single task is shown. First, control is transferred from the application to the entry function
of the runtime system using one of the previously introduced mechanisms. Afterwards, the
entry function starts executing every so-called call stack entity (CSE) that may execute
code before or after the target function respectively. In this example, CSE A execute code
before and after the target function and CSE B only code before the target function. A
special CSE provided by the runtime system is the so-called target call CSE that is usually
the last CSE in the call stack and is responsible for actually calling a task implementation.

CSEs can also be used to narrow down the search for the best implementation and processing
unit. In the entry function, the runtime system sets up a special structure named call state
that, e.g., contains lists of available implementations and processing units for the current
task. Each of the following CSEs can modify this lists to, e.g., exclude specific entries or

37

38 4. Light-weight integration and transparent task migration

Figure 4.13.: Example of a call stack for multiple tasks

set the current favorite combination of implementation and processing unit that will be
executed by the target call CSE.

If the application submits a task graph, the default procedure in the runtime system differs
as shown in Figure 4.13. Again, control is first passed from the application to the entry
function and it starts processing the call stack. While the last CSE in the single task case
is the target call CSE for executing the actual implementation, the call stack ends here
with the scheduler CSE. This scheduler CSE, that is described in Chapter 7, will determine
a schedule for the task graph and start executing the graph. For each task, the entry
function is called again and further CSEs, e.g., for profiling the specific task, are executed.
Similar to the single task case, the last CSE is again the target call CSE that then calls
the actual implementation.

4.6. Extensible hardware interface
To enable function migration, the runtime system must be aware of the available hardware.
However, another design goal of the runtime system is independence from specific pro-
gramming models and hardware. As specific methods are still necessary to employ certain
hardware, e.g., to transfer data to and from device memory, the runtime system exposes a
plugin API that – among other purposes – abstracts the individual communication with
processing units for the core of the runtime system. With this API, the runtime system
queries the amount and type of available devices or initiates transfers, for example. In
Figure 4.14, examples for different hardware plugins are shown. As we can see, even the
CPU and the host RAM are managed through a plugin as there are different ways to query
and control them, e.g., using the standard C library or special libraries like hwloc 3 that
provide more detailed information about the hardware but may not be available on any
system. One problem of such a flexible approach is that a processing unit might be usable
with different plugins. For example, an Nvidia GPU can be used with CUDA but also with
OpenCL and each plugin would report one available GPU. In some cases, it is not possible
for the runtime system to detect if two reported devices are actually the same. Therefore,
additional help of a system administrator is necessary to avoid that the runtime system
will create two waiting queues for the same device.

Similar to the method in Chapter 5, these plugins are only loaded if the necessary runtime
libraries are installed. Hence, this approach also frees the runtime system from specific
dependencies, e.g., runtime libraries, that may not be present on systems without the
corresponding accelerator and could cause an abort of the application.

A considerable problem for hardware detection are high initialization costs. With some
programming models, the querying and initializing the hardware can take up to several

3http://www.open-mpi.de/projects/hwloc/

38

http://www.open-mpi.de/projects/hwloc/

4.7. Ad-hoc work offloading in local networks 39

Figure 4.14.: Plugin interface for different types of hardware

hundred milliseconds. Therefore, during startup of the runtime system, a plugin only
registers the type of processing unit it is responsible for. Only if there is later an actual
task implementation under consideration for execution that uses this type of hardware, the
plugin initializes the corresponding library for the hardware and looks for available devices.
Hence, initialization costs are avoided for devices that will not be used.

4.7. Ad-hoc work offloading in local networks
In a common corporation or university network, most of the computer systems are under-
utilized as the performance of those systems grows while the computational demand mostly
stays the same for common tasks like office applications. In addition, even the low-end
graphics processors in office desktops are only used for displaying graphical user interfaces
although they are capable of massive-parallel general purpose computations. However, due
to the latency of network communications, efficiently utilizing remote processing units is
difficult. To maximize performance in such clusters, applications usually contain special
implementations, e.g., written using MPI.

From the point of view of a scheduler, there is not much difference between local or remote
accelerators as data has to be transferred to and from the remote system before and after the
execution as well. Therefore, the scheduler of the runtime system – that is introduced later
in Chapter 7 – can determine the benefit of remote processing units similar to the benefit
of local units. However, to compensate the latency with such an approach, the remote
units usually have to be considerably faster than local units or there has to be unexploited
data or task parallelism in the local system. Furthermore, if multiple applications employ
resources in the network, a remote unit might not be exclusively available in the moment it
would be beneficial for the local application. Hence, in contrast to explicitly programming
applications for a distributed system, this work automatically offloads work on demand
depending on the current and remote system state and provides a simple network protocol
based on TCP/IP as proof of concept.

Similar projects to integrate remote accelerators have been introduced before [10, 42].
However, these projects are limited to specific programming models while this work
offers a generic approach to offload tasks. In contrast to established methods for remote
procedure calls, this proof of concept expects that the remote systems use similar processor

39

40 4. Light-weight integration and transparent task migration

Figure 4.15.: Integration of remote processing units using a hardware plugin

architectures and calling conventions as the data is transferred without modifications.
Furthermore, a task implementation must not access data that has not been registered
before as described in Chapter 6.3. For example, accessing global variables or data in the
local filesystem is not supported.

Remote processing units can be integrated into the runtime system similar to local units
using the plugin infrastructure as shown in Figure 4.15. On the remote host, a special
DLS process has to be started. This daemon initializes the local runtime system and
listens on new connections. The main purpose of this daemon is to parse the incoming
commands and pass them to the local runtime system, e.g., incoming data transfers or task
submissions. For each connection the daemon starts an own thread that handles incoming
data and starts new worker threads to process certain commands in parallel. By using
threads, it is also possible for different clients to use the same namespace and to share
data between these clients. However, if the daemon is used by different parties, a new
process could be forked for every client, e.g., to enhance security. As, in the latter case,
every connection would start a new separate process, each client process maintains only
one connection to the host. As a client process may contain multiple threads and each
thread may submit requests concurrently, e.g., to transfer data while executing a task, the
connection is multiplexed. To distinguish the incoming messages, procedures that will send
and receive multiple messages are encapsulated using so-called orders and each message
that is sent contains the unique ID of the order. Upon reception of a message, the master
thread that is responsible for the connection will use this ID to relay the message to the
correct receiver. In Figure 4.16, an example of this concept is shown. Each client can have
multiple active threads and each thread can execute an own order with multiple round
trips of messages. As orders are only used for procedures that send and receive multiple
messages, unsolicited messages like notifications do not require an own order and are send
with empty order ID. Notifications are used to, e.g., indicate a status update of a data
block after executing a task.

The structure of an actual message is shown in Figure 4.17. The first field indicates the ID
of the order. This field contains zero, if it is an unsolicited message. The following fields
contain the message type, the size of the payload and the size of the extra data. Depending
on the message type, the payload contains a struct that carries additional information for
this message type, e.g., the kind of task that shall be executed. To send a larger amount
of data, e.g., the input data for a task, further so-called extra data can be appended to a
message. Payload and extra data are handled as separate fields in order to keep the extra
data also as a separate object in memory. For example, if the extra data contains the input
data for a compute task, the memory space for the extra data is individually allocated and
persists after the message has been processed and the header and payload have been freed.

40

4.7. Ad-hoc work offloading in local networks 41

Figure 4.16.: Example for a multiplexed connection between client and server

0 15 16 31

Order ID
Message type Payload size

Extra data size


Header

Optional: Payload

Optional: Extra data

Figure 4.17.: Structure of a message

41

42 4. Light-weight integration and transparent task migration

0.0*100

5.0*107

1.0*108

1.5*108

2.0*108

104 105 106 107

T
im

e
in

 n
s

Number of integers

Local
Local + RPC

Remote

Figure 4.18.: Time for increasing integer arrays on a CPU using local and remote procedure
calls

Compared to other hardware plugins that are loaded on demand, the RPC plugin is always
initialized as it is unknown if a remote host contains an interesting processing unit. During
initialization, the plugin connects to each given host, starts a new order, sends a message
to requests the lists of available processing units and waits on returning messages. After
receiving the request, the server will send the properties of each available processing unit
as extra data to the client and the client will end the order afterwards.

To migrate a task to a remote processing unit, the runtime system starts again a new
order and submits the properties of the task mapping to the remote host. The remote host
starts the execution and if the implementation requests certain data, it checks if the data
is already on the server and if not, requests the data from the client. After execution, the
return value of the implementation is passed back to the client which can either immediately
request the output data or close the order and fetch the output data later on demand. In
the current version, a task migrated to another host is always executed on the other host.
In future work, the remote host may also transfer the task further if it is aware of an even
better suited processing unit in the network.

To evaluate the minimum overhead for executing a remote procedure call, an application
was used that simply increases an array of integers with variable length. During the first
two measurements, the kernel function is either called directly or through an RPC but
always executed on the same system with an Intel i7-3610QM CPU. Hence, uncertainties
caused by interconnect hardware can be avoided. During the third measurement, the kernel
execution is migrated to a remote system with an Intel E5700 CPU over a 100Mbit/s
Ethernet network. As it can be seen in Figure 4.18, the size of the array has a similar
impact on the runtimes on the local system but the execution through an RPC introduces
an almost constant overhead of about 80ms. For 10,000 integers, the call to the remote
host consumes 90ms and increases further for larger arrays as the remote CPU is also
slower than the local CPU.

42

5. Implementation management and
application portability

This chapter proposes a decoupling concept for applications to make them portable
across differently configured systems by dynamic selection of suitable implementations and
hardware as illustrated in Figure 5.1. First, the problems of current development models
are explained and how they are solved with the new method. Second, the implications
of the new method on the source code and the build systems are discussed, followed
by a description of how the hardware-specific implementations are loaded on demand
and how the development of implementations itself can be supported with the existing
mechanisms of the runtime system. Afterwards, the mechanism to assure compatibility
between applications, implementations and available hardware is introduced. In the final
section, the proposed method is then evaluated. This chapter is based on a prior publication
[79].

5.1. Introduction
In order to use the best processing unit in a system, an application needs a task imple-
mentation for this unit. If such an implementation is not present, another processing unit
has to be used and this might lead to inferior performance. An initial idea to avoid such

Figure 5.1.: Application portability with dynamic implementation management

43

44 5. Implementation management and application portability

problems is to include as many implementations for different architectures as possible in an
application. However, such a so-called fat binary approach limits the portability of applica-
tions due to the additional dependencies for the individual toolchains and software stacks
with runtime libraries. These dependencies have to be met both on the developers’ systems
and on each end-user system regardless of the availability of an accelerator because the
application can neither be built nor executed without having all the corresponding libraries
available. If a required library is not installed, e.g., because there is no corresponding
processing unit in the system, application startup is aborted without the opportunity to
fallback to CPU-only computation. Furthermore, those toolchains and runtime libraries
can have their own dependencies, and in the worst case these can be incompatible due to
different versions. Thus, installing an application as fat binary may rapidly require severe
additional administrative work for potentially superfluous implementations and runtime
libraries.

One approach to solve this problem are unified programming models based on just-in-time
compilation like OpenCL that compile the kernel source code for an available processor
during runtime. However, different studies have shown that OpenCL does not achieve
the same performance of dedicated programming models due to less mature compilers
and missing support for special hardware features [45, 86]. Another approach is to create
an own application binary for each type of accelerator. However, this would prevent the
application from using different accelerators in parallel.

Therefore, this chapter introduces a concept that decouples the applications from hardware-
specific implementations and reduces the strict dependencies of the applications. The
decoupled implementations can be shipped as independent libraries with the application
but are only loaded on demand if their dependencies are met.

Besides finding a working implementation and a matching type of architecture for a
task, developers might need to impose further restrictions on the implementations or
hardware, e.g., a minimum amount of memory or specific hardware features. To ensure
such requirements, this chapter describes so-called attributes [112, 113] that enable a
developer or system administrator to denote requirements and abilities of applications,
implementations and hardware. During selection of implementations and hardware for a
task, the runtime system compares these attributes and excludes improper combinations
from the selection.

In addition to increasing the portability of applications, this approach offers significant
benefits regarding code reuse. By adding only small additional management information
to the libraries, like implemented functionality and function signatures, libraries can even
be automatically reused between different unrelated applications. If the management
information of a library matches the requirements of an application, the runtime system
loads the library, and the application can benefit from the corresponding accelerator
without recompilation or binary modification. With such a mechanism, it is also possible
to automatically extend old applications with support for future accelerators. As depicted
in Figure 5.2, hardware vendors may bundle their hardware device like an FPGA with a
tuned library that might not even have existed at the application’s compile time.

5.2. Related work
Examples for a fat binary approach are Apple’s Universal Binaries and EXOCHI [160]. The
latter consists of the Exoskeleton Sequencer (EXO) architecture and the C for Heterogeneous
Integration (CHI) programming model. The EXO part integrates heterogeneous accelerators
through an MIMD extension to the x86 ISA and a shared virtual memory concept. The
CHI programming model allows to include accelerator-specific assembly and domain-specific
languages in a C/C++ environment by extending the OpenMP pragma approach.

44

5.2. Related work 45

Figure 5.2.: Transparent extension of existing applications by a HW/SW bundle

To adapt applications to different heterogeneous systems without modifying source code,
Sandrieser et al. present their XML-based Platform Description Language that can be used
to express information about the platform and its architecture [135]. With a description
of the platform, a source-to-source translator converts pragmas in the application source
code into platform-specific code to utilize optimized implementations for this architecture.
In contrast to this work, only the source code of the application is portable but not the
resulting binary.

In [97], the authors also see the rising problem of diverse hardware in heterogeneous systems.
They briefly introduce annotations to choose a suitable implementation from an available
set. However, in their solution the compiler analyzes the annotations and, from them,
creates so-called dispatch wrapper functions that determine whether an implementation is
suitable. In contrast, the solution in this work is compiler-independent and allows varying
amounts and values of attributes. An evaluation of their methods is completely missing.

Similarly, the so-called elastic computing framework is another project that separates
general application logic from hardware-specific implementations [164]. Likewise, the
application developer specifies the functionality and the runtime system chooses an imple-
mentation based on empirical measurements. The implementation can in turn call other
implementations and start execution on multiple processing units in parallel. In contrast
to the decoupled concept in this work, they do not consider the impact of the different
implementations on the dependencies of the application which may inhibit application
startup on systems without required runtime libraries.

A critical point regarding application portability is also the required CPU instruction set
architecture. However, this work only considers portability with regard to compute kernels.
In order to execute an application on different types of CPUs, other works, e.g., as presented
by Cha et al. are necessary [28]. They discovered byte sequences that form a valid order of
instructions for different instruction sets but on each CPU these instructions either perform
a jump to the actual instructions for this CPU or perform pointless instructions similar to
a NOP (no operation). Using this byte string, the application can be executed on any of
the supported CPUs but only the parts of the application with the correct instructions for
the respective CPU are executed.

Despite the binding to a specific CPU instruction set, this work enables dynamic exploitation
of instruction set extensions. For example, implementations that use vector instructions

45

46 5. Implementation management and application portability

Figure 5.3.: Separating applications from accelerator-specific implementations

Figure 5.4.: Division of work in large projects

like SSE or AVX can be outsourced nonetheless in separate libraries and the runtime
system will only use these optimized implementations if a CPU is present that supports
these instructions.

5.3. Decoupled application development

To reduce the dependencies of applications, this work proposes a decoupled development
concept that outsources special implementations into separate libraries. As shown in
Figure 5.3, the two implementations mm_GPU and mm_FPGA are not included in the application
binary anymore but reside in separate libraries called libBLAS_GPU and libBLAS_FPGA.
Instead of the application, the two libraries will depend on the accelerator-specific runtime
libraries. If the application wants to calculate a matrix multiplication, the runtime system
will look for available implementations and only load those with satisfied dependencies.
By using this concept, applications and implementations can be built and distributed
individually. This also resembles the division of work in larger projects as illustrated in
Figure 5.4. There are developers, e.g., engineers or natural scientists, working on the general
application logic and specialized developers that create optimized task implementations for
different processing units.

5.3.1. Implications on source code and build systems

In Figure 5.5, the process and the required components for compilation and execution
of an application are depicted: first, the source code files for the CPU and accelerators
are compiled with their respective compilers or toolchains. Then, the linker creates an

46

5.3. Decoupled application development 47

Figure 5.5.: Regular compilation – every toolchain and runtime library is required to create
an application binary

Figure 5.6.: Decoupled compilation of applications and hardware-specific implementations

executable from the resulting object files and links it against the runtime libraries libGPU
and libFPGA of the accelerators.

With the decoupled concept, the resulting parts are compiled individually as depicted in
Figure 5.6: the application is only linked against the library of the runtime system and
every hardware-specific implementation is compiled separately with its respective toolchain
as illustrated for the GPU and FPGA, for example. Hence, application and kernels can
even be developed individually on different systems and not every developer needs all the
accelerators and their software stacks for the experimental implementations.

5.3.2. Assembling applications and implementations
Theoretically, every library available in the system could contain an implementation with
a desired functionality. However, as a large amount of system libraries exist, inspecting
all of these would significantly increase the effort for finding appropriate implementations.
Therefore, the runtime system uses an implementation database as a lookup table to quickly
find libraries of interest on the system. An example of the implementation database is
shown in Table 5.1. The list has two columns: the first column states the functionality,
the second delivers the path to the library that contains at least one implementation with
the respective functionality. New implementations and new functionalities can be inserted
manually into this file or through an installer or package manager.

Before starting a task, the runtime system browses this database and if it finds a matching
functionality, it tries to load the library using the dynamic loader of the operating system.
If the library has unsatisfied dependencies, the loader returns an error code and the runtime
system continues with the next library. If it loads successfully, the runtime system starts
querying the symbol table or browsing the string table to find matching implementations.

47

48 5. Implementation management and application portability

Functionality Path to library

mm /usr/lib/libmm_CUDA.so
mm /usr/lib/libblas.so
mm /usr/lib/libmm_OMP.so
sort /usr/lib/libsort_CPU.so
...

Table 5.1.: Example of an implementation database

In an ELF binary file, functions and other entities can be found in the address space of
an application using so-called symbols. A symbol usually has a unique name and, when
resolved, points to a certain address in memory. The symbols are organized in a symbol
table and each entry contains a reference to the corresponding entry in the string table.
During runtime, the symbol table can be dynamically queried by passing the symbol name
to the dlsym POSIX function. If a matching symbol is found, the function returns the
address of the entity.

With this function, the runtime system probes the symbol table for entities that follow a
specific naming scheme. To find functions for a proxy, it will look for symbols with the
scheme func_TAG, where func is the name of the proxy, i.e. the required functionality,
and TAG is one of several tags stored in the runtime system, e.g., the programming model
or processing unit like CPU or GPU. This way, a programmer benefits twice from wisely
chosen function names: he can easily identify the purpose of functions and the function is
automatically considered as candidate for execution.

The downside of this approach is that every possible combination has to be tried and only
implementations with a known tag can be found. Therefore, the runtime system is also
able to directly browse the string table for interesting strings 1. Only if a string is found
that starts with the name of the required functionality, the string is passed to the dlsym
function to test, if it points to a usable implementation.

5.3.3. Supporting fault diagnostics during development

During development of optimized implementations, hardware experts compare their im-
plementations with a reference implementation to determine performance benefits and
correctness of the results. Usually, the correctness is verified by storing the results of
both implementations on disk and to compare them manually after an application run.
However, in an application with multiple tasks, finding a software bug can thus become
a time-consuming effort. To simplify this effort, this work proposes a tool based on the
mechanisms of this framework to automatically detect a fault during application runtime
and to supply a developer with additional information for the debugging.

In Chapter 7, this work will describe its mechanisms for fault tolerance in heterogeneous
systems based on redundant execution. With this mechanism, the runtime system is able to
overcome faults, e.g., caused by failing devices, during execution without human interaction.
Besides tolerating faults during application runtime, this mechanism is also useful during
development. Instead of solely executing on multiple devices, the runtime system can also
enforce execution with multiple implementations, e.g., a reference implementation and an
implementation that is currently in development. Hence, a fault in the new implementation
can be detected automatically and a developer does not have to compare the results

1using libELF http://directory.fsf.org/wiki/Libelf

48

http://directory.fsf.org/wiki/Libelf

5.3. Decoupled application development 49

Figure 5.7.: Visualization of incomplete results

manually – which becomes even more time-consuming if multiple intermediate results have
to be compared in order to locate a software bug.

To simplify fault diagnostics or if a mismatch has been found in intermediate results,
the runtime system can write the results to disk and call an external program to show a
graphical user interface which enables a detailed analysis of the results. In the following,
this work introduces such a tool based on the existing mechanisms of the framework and
gives examples for faults where such a tool can give valuable hints for debugging.

A common fault during GPU programming is, for example, a wrong calculation of the
required threads and thread blocks. While starting too much threads usually results in a
segmentation fault that is easy to perceive, forking less threads than necessary results in
incomplete data. With the comparison tool of this work, such a case would be presented to
a developer as shown in Figure 5.7. On the left side, each value is represented by a colored
rectangle. A green rectangle represents a matching value and a red rectangle represents
a mismatch. On the right side, control interfaces are available that can be used to, e.g.,
change the number of shown rectangles in each row in order to align this value with the
number of threads in a block. In this example, we can easily see that the last values of the
results differ.

As we will see in Chapter 7.3.4.2, a common problem during development of implementations
for accelerators are floating point results that are both correct but still differ to a certain
extent. In Figure 5.8, the comparison of results of a matrix multiplication on a CPU
and a GPU are shown. In Figure 5.8(a), we can see that the differences are randomly
distributed. If we activate the error range display, the drawing looks like Figure 5.8(b).
In addition to the first figure, we can see that the differences vary randomly as well. For
specific applications, it is necessary that the inaccuracy is below a certain threshold. For
such cases, a developer can specify an upper relative deviation which results in a display of
Figure 5.8(c) that shows that there are only deviations below 0.0001%. Hence, a developer
can easily determine if the deviations are acceptable or indicate a problem with the code.

Another example for a fault during calculations is shown in Figure 5.9. On GPUs, the
threads inside a block can be synchronized and share intermediate results. If such an
intermediate result differs, the deviation may propagate through all threads in a block. In
Figure 5.9(a), the resulting display of such an example is shown. As we can see, the first
value in a block is correct while the others differ. If we activate the error range display as

49

50 5. Implementation management and application portability

(a) (b) (c) Differences after manually setting the error range

Figure 5.8.: Analysis of differences between CPU and GPU floating point calculations

shown in Figure 5.9(b), we can see that the the deviation grows inside a single block as
the line length has been chosen to equal the number of threads in a block in this example.
Hence, with little effort, a developer receives additional information which simplify the
localization of bugs.

5.4. Balancing requirements and abilities
This chapter introduced a mechanism to assemble applications with related or unrelated
implementations that implement the required functionality. However, especially with
unrelated implementations, it is possible that the implementation is not compatible with
the application despite the matching functionality, e.g., due to a different function signature.
To solve this, it is either necessary to establish a convention that enforces compatibility, e.g.,
by creating special functionality strings like mm_single for a matrix multiplication with
single precision, or to provide a separate mechanism that enables a developer to specify
detailed requirements of the application and abilities of the implementations and hardware.

For the latter solution, the runtime system offers the possibility to tag tasks, implemen-
tations and processing units with so-called attributes [112, 113]. An attribute is either
a key=value string tuple or a flag in a bitfield. With the attribute tuples, a developer
can set a key to a specific value, e.g., the function signature: signature=int f(char *).
For numerical attributes, it is also possible to give a range of values. On the other hand,
attribute flags are a special type of attributes that enable the runtime system to efficiently
store and compare requirements and abilities which are either present or not. For example,
flags can be used to indicate required hardware features like support for SSE or AVX if an
implementation uses corresponding instructions. Further examples of existing attributes
are shown in Table 5.2.

In general, the programmer is responsible for the declaration of attributes. Some attributes
like the signature could be generated automatically by a compiler. Most other attributes
like those presented later in the evaluation highly depend on the type of computation and
usually result from a performance-quality trade-off. Thus, they are difficult to determine

50

5.4. Balancing requirements and abilities 51

(a) (b)

Figure 5.9.: Display of faults causing increasing deviations per thread block

Key Type Description Example
signature tuple Function signature int f(char *)
psize tuple Problem size 100, 5000
pmodel flags Programming model CUDA, OpenMP
cpu_features flags ISA extensions MMX, SSE*, AVX

Table 5.2.: Examples of attributes suitable to express requirements and abilities

automatically, e.g., because the compiler does not know how much accuracy is required.
Therefore, the use of attributes is not constrained and the programmers can freely denote
new attributes that fit their needs. However, special care is required as putting too much
constraints on the implementation may result in an empty set of suitable implementations.

The runtime system offers different ways to specify attributes. To denote requirements
of an application, the developer can include the attributes in the source code. For im-
plementations, attributes can be specified in the source code as well or added later in
an attribute database. Attributes for processing units have to be added to the attribute
database. An example how attributes can be specified in the source code is shown in
Listing 5.1. In this example, the application requires random numbers and two corre-
sponding implementations are available, rand_dev_random reads real random numbers
from /dev/random of the Linux operating system and rand_MT_GPU generates pseudo
random numbers using the Mersenne Twister algorithm on the GPU [151]. To request
specific abilities, the developer can set the requirements for the next call of rand using the
dls_call_attributes function. In this example, the attribute rand_type is set to real in
order to request real random numbers. To specify abilities of the implementations, a special
global variable is set using the dls_attributes macro. The name of this variable is equal
to the name of the implementation and the suffix _attr. During evaluation of the available
implementations, the runtime system will lookup these variables similar to the function
symbols and compare the attributes. In this example, the rand_dev_random function gets
the attribut rand_type=real and rand_MT_GPU gets rand_type=pseudo. Hence, during
the runtime of the application, the runtime system will choose the rand_dev_random and
exclude the rand_MT_GPU function.

To set attributes independent from an application, e.g., for implementations in libraries or

51

52 5. Implementation management and application portability

Listing 5.1: Example for attributes in the source code

char * rand_dev_random_attr = \
dls_attributes (1, " rand_type ", "real ");

void rand_dev_random (float * numbers) {
/* get numbers from /dev/ random */

}

char * rand_MT_GPU_attr = \
dls_attributes (1, " rand_type ", " pseudo ");

void rand_MT_GPU (float * numbers) {
/* get numbers with Mersenne Twister */

}

int main (int argc , char ** argv) {
float * numbers ;

dls_call_attributes (rand , 1, " rand_type ", "real ");
rand(numbers);

}

Entity name Attributes

mm_CPU signature=void (float*, float*, float*)
FPGA1 memsize=128MB
...

Table 5.3.: Example of an attribute database

for processing units, the runtime system provides an attribute database. Similar to the
implementation database, the attribute database has two columns as shown in Table 5.3:
the first column contains the ID of the entity, e.g., the implementation’s symbol name or
the device name, and the second column contains the corresponding list of attributes.

5.5. Evaluation
For evaluation, the systems given in Table 5.4 were used: two GPU systems (System A and
System D), a 12-core SMP system (System B), and an FPGA system (System C). Each
GPU system has one NVIDIA card that is programmed using CUDA. On the FPGA system
(System C), H-MOL [87] is employed as the runtime system for the UoH HTX Board [50].
All systems use an x86-64 Ubuntu Linux operating system. If not stated otherwise, the
numbers represent the average of 30 consecutive runs. In some of the following scenarios,
more than one suitable implementation remained after applying the attribute filter. In
such a case, the runtime system chose the fastest implementation that is determined using
the mechanisms that are later explained in Chapter 6 and 7.

5.5.1. Overhead for matching requirements and abilities

In the first experiment, the overhead for using attributes is evaluated with varying numbers
of attributes and functions. In order to get a worst-case estimation, the experiment is

52

5.5. Evaluation 53

System Type Hardware Progr.
Model

A CPU 2× AMD Opteron Quad-Core 2378 OpenMP
GPU NVIDIA GeForce GTX 275 CUDA

B CPU 2× Intel Xeon X5670 Six-Core OpenMP

C CPU AMD Opteron Dual-Core Processor 870 OpenMP
FPGA Xilinx Virtex-4 FX100 H-MOL

D CPU Intel Core2 Quad OpenMP
GPU NVIDIA GeForce 8400 GS CUDA

Table 5.4.: Evaluation systems and the employed programming models

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16

N
an

os
ec

on
ds

Attributes

1 Fct
2 Fcts
4 Fcts
8 Fcts

Figure 5.10.: Time overhead for a kernel invocation in relation to number of attributes and
functions

performed as follows: for a single run, the application’s function call as well as every called
function are assigned the same number of attributes. The attributes are sorted in the
most pessimistic way so that every attribute has to be compared and a decision cannot be
made until the last attribute. Under realistic conditions, the comparisons will typically
stop earlier upon detection of first mismatching attributes which causes less overhead.
In Figure 5.10, the individual worst-case time consumption for different combinations is
depicted. We see that the overhead depends on both, the number of attributes and the
number of functions.

5.5.2. Performance with Rodinia benchmarks

In this experiment, it is shown that this work introduces a negligible overhead in applications
targeting heterogeneous systems using the Rodinia benchmark suite and that it makes
these applications portable across different systems. To assure that the executables and
decoupled implementations are equal on all systems during the evaluation, the benchmark
directory was mounted on every system using the network file system (NFS).

In Figure 5.11, we see the runtimes of the applications on System A with the different
approaches: the DLS runtime system and the native versions using CUDA and OpenMP.
As we can see, the application equipped with the runtime system has a similar runtime as

53

54 5. Implementation management and application portability

101

102

103

104

105

106

backprop

bfs cfd heartwall

hotspot

kmeans

leukocyte

lud nw particlefilter

srad
streamcluster

M
ill
is
ec
on
ds

DLS
CUDA

OpenMP

Figure 5.11.: Runtime of Rodinia benchmarks with our DLS, CUDA and OpenMP on GPU
system A

the fastest one of the OpenMP and CUDA applications. This shows that the DLS runtime
system successfully detects the available and the fastest implementations.

On System B, the very same applications were started. As this system has no GPGPU-
capable GPU, only the DLS and OpenMP results are shown in Figure 5.12. Although there
are no CUDA GPUs and CUDA runtime libraries available in this system, all applications
can still execute because they are no longer linked directly against these libraries.

5.5.3. Use case: random number generation

Random numbers are essential for certain tasks in cryptographic applications and simula-
tions. In this scenario, various ways to gain random numbers on a heterogeneous system
with the Linux operating system, their differences and how a developer can use attributes
are shown.

For evaluation, a repository of pseudo-random number (PRN) generator libraries based
on the Mersenne Twister (MT) algorithm and on the mechanisms of the Linux operating
system were built. For the CPU, there is a Mersenne Twister implementation based on
the Dynamic Creator Library2. An OpenMP version calls several MT random number
generators in parallel. An FPGA implementation of MT was created by integrating
the freely available hardware description 3 into the H-MOL accelerator framework for
FPGAs [87]. From the Linux system two methods were included: the GNU C library
function random() and the kernel-based /dev/random virtual file. /dev/random delivers
high-quality, real random numbers as long as the entropy pool of the kernel is filled. In
contrast, random() produces only pseudo random numbers at a high rate. So, if a large
amount of numbers is required, /dev/random can be unpredictably slower than random().
In general, /dev/random delivers the random numbers with the highest quality. The MT
algorithm provides the highest quality for pseudo random numbers and random() achieves
the lowest quality.

Figure 5.13 illustrates the measurements of the runtime of the individual implementations
on System C. Due to initialization overhead of the multiple Mersenne Twisters in the

2http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/DC/dc.html
3http://www.ht-lab.com/freecores/mt32/mersenne.html

54

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/DC/dc.html
http://www.ht-lab.com/freecores/mt32/mersenne.html

5.5. Evaluation 55

101

102

103

104

105

106

backprop

bfs cfd heartwall

hotspot

kmeans

leukocyte

lud nw particlefilter

srad
streamcluster

M
ill
is
ec
on
ds

DLS
OpenMP

Figure 5.12.: Runtime of Rodinia benchmarks with our DLS and OpenMP on manycore
system B

OpenMP version, speed-up is not obtained for less than 1 billion numbers. For problem sizes
smaller than 1,000, the FPGA implementation (MT HMOL) performs very well because
initialization is very fast. However, due to constraints of the FPGA implementation, results
beyond 1,000 requested numbers had to be skipped. For 10 and 100 requested numbers,
the time consumption of the /dev/random implementation increases rapidly. In order to
maintain clarity of the graph, results for higher amounts of numbers were not included.

Due to the above restrictions, retrieval of random numbers poses an interesting challenge
for the attribute concept. The periodicity attribute can be used to guarantee that the
numbers are all different for a requested amount. With random_type it is possible to
explicitly request real random numbers. With psize, the ranges for safe and reasonable
operation are defined.

Therefore, the implementations were annotated as listed in Table 5.5 and the application
requests a good level of quality by quality=2+ in this example. In Figure 5.13, the time
consumption to retrieve the respective amount of random numbers using this approach
(DLS) is depicted. For 10 until 1,000 numbers, the runtime system selects the MT H-MOL
FPGA implementation as the other MT implementations are too slow. It does not select
the random() implementation either, although it is faster, because it produces numbers
below the required quality. It does not choose the /dev/random implementation as well,
although it provides high-quality random numbers, because it is much slower and because
the quality of MT H-MOL is sufficient. Beyond 1,000 numbers, the runtime system chooses
the MT CPU implementation, as using MT H-MOL is forbidden, MT OpenMP is too slow,
and the quality of random() is still too low. As we see, the runtime system successfully
chooses the most suitable from several executable implementations although the application
has severe restrictions regarding the execution.

5.5.4. Portable MPI application

In a further experiment, an application calculating a double-precision matrix multiplication
using MPI was created. The decoupled approach is especially interesting for such applica-
tions, as usually multiple instances of the same MPI application run in parallel on multiple
hosts in a network. If the system is heterogeneous and the hosts contain different types of
processing units, all required libraries for any type of processing unit in the system would

55

56 5. Implementation management and application portability

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

10 100
1000

10000
100000

1000000

10000000

T
im

e
in

 s
ec

on
ds

Number of (pseudo) random numbers

DLS
random()
MT CPU

MT OpenMP
MT H-MOL *

/dev/random **

Figure 5.13.: Average runtime of Mersenne Twister library and built-in random-number
generators on System C
(* = hardware restrictions apply; ** = 8 runs for 100)

Attribute Implementation Value

quality /dev/random 3 (high)
MT * 2 (mid)
random() 1 (low)

periodicity /dev/random -
MT * 219937

random() 235

random_type /dev/random real
MT * pseudo
random() pseudo

psize /dev/random 0-10
MT H-MOL 0-1,000

Table 5.5.: Attributes for random-number generators

56

5.5. Evaluation 57

 2000

 4000

 6000

 8000

 10000

 12000

Sys.A
Sys.B

Sys.D

M
ill

is
ec

on
ds

DLS (single)
OpenMP (single)

DLS (double)
OpenMP (double)

Figure 5.14.: Runtime of matrix multiplication example on the single MPI hosts

have to be installed on every host. With the decoupled approach, only the libraries for the
processing units on the respective host have to be installed.

In this experiment, a serial, an OpenMP, and a CUDA implementation were again available
for the application. Hence, with the runtime system, the MPI application is able to
take advantage of locally available accelerators on every host without recompilation or
installation of superfluous runtime libraries. On System D, a special obstacle is that the
GPU does not support double-precision floating point numbers in hardware. Therefore,
the GPU is marked with the precision=single attribute. To test the behavior of the
runtime system nonetheless, a single-precision variant of the application was created as
well. In Figure 5.14, the individual results of both variants on the three systems A, B, and
D are shown. For better clarity of the diagram, the results of the CUDA implementation
were omitted. As we can see, on System A, the application profits from the powerful
GPU. On the CPU-only System B the application can only exploit the high number of
cores. However, on System D, the system with the low-performance GPU, the runtime
system chooses the OpenMP implementation not only for double-precision but also for
single-precision computation. This is caused by the low performance of the GPU, as it can
not even outperform the calculation on the CPU for single precision.

57

6. Establishing cost awareness

To make the right decision, the runtime system needs to be aware of the presumable costs
of each necessary operation. These costs, however, depend on additional parameters like
the problem size and the system state as illustrated in Figure 6.1. In the first section
of this chapter, the importance of cost awareness in heterogeneous systems is motivated.
In the second section, the elementary mechanisms of the runtime system to determine
costs are presented. Afterwards, the impact of data locality and memory management on
efficiency is shown as well as the mechanisms to account for these factors. In the fourth
section, this work explains how the runtime system detects and resolves resource conflicts
that would otherwise lead to inappropriate decisions. Similar, faults during execution can
have a negative impact on the performance and falsify the estimations. In the last section
of this chapter, a method to account for faults during cost estimations is presented and
how the methods in this chapter can help to detect faults in the first place. Parts of this
chapter are based on prior publications [76, 79, 77].

6.1. Introduction
The benefit of heterogeneous systems is the availability of different specialized architectures
that provide improved performance for certain types of calculations. One of the major
problems for applications on heterogeneous systems is the question which of the available

Figure 6.1.: Dermining costs for operations under given circumstances

59

60 6. Establishing cost awareness

103

104

105

106

107

108

109

1010

10 1 10 2 10 3

N
an

os
ec

on
ds

Dimensions

CPU
 CPU-OMP

 GPU-CUDA

Figure 6.2.: Square matrix-matrix multiplication with different sizes and implementations

processing units provides the shortest execution time for a specific task. In many cases,
different algorithms are required for the individual architectures in order to address the
special features of the hardware, e.g., a CPU core is optimized for applications with a high
amount of control flow instructions while the GPU is most suited for applications with
high amount of calculations and parallelism. Besides the algorithms, the execution time
also depends on the problem size or input data size of the specific task. As motivating
example, the execution time of a square matrix-matrix multiplication was measured on
different processing units with a varying size of the matrices. In Figure 6.2, the required
execution time for a serial and a parallel OpenMP implementation for the CPU as well for
an implementation executing on an Nvidia CUDA GPU is shown in logarithmic scale. As
we can see, every implementation provides the shortest execution time of all three for a
certain range of matrix sizes. Until a size of about 50x50, the serial CPU implementation
provides the shortest execution time. From there until a size of approximately 100x100,
the parallel OpenMP implementation exhibits the shortest time as the overhead for thread
creation is compensated by the benefit of parallel calculations. Beyond 100x100, the benefit
of massive-parallel execution on the GPU surmounts the overhead for initialization of the
computation on the GPU and significantly reduces the time consumption compared to
CPU computation. The problem for application developers is that these curves and thus
their intersection points depend on the employed hardware and the system state. Therefore,
statically relying on a certain processing unit on any system might significantly increase
application runtime and hamper performance portability.

With the mechanisms from Chapter 4, it is possible to dynamically adjust application
execution during runtime and choose one of the available implementations for a certain
task. The following question is, how to determine the best choice for a system that is
unknown at the application’s compile time.

Estimating the benefit of possible options is an elementary task for decision making. In
computing, assessing an option is usually achieved with either analytical or empirical
predictions. Estimating the costs for execution on a certain processing unit analytically
is difficult in a common computer system as there are many ways the execution can be
disturbed by unforeseeable events like interrupts or competing processes in a multi-tasking
operating systems. Even for predictable single-user environments, accounting for the details
of all the hardware involved in execution, e.g., caches and interconnection networks like

60

6.2. Learning costs during application execution 61

PCIe, is necessary to make a precise assumption. An analytical method is not feasible as
modeling all involved hardware is expensive and on a multi-tasking system, events that
disturb execution are hard to predict. On the other hand, the downside of an empirical
approach is the necessity to try and measure the available options which can result in
considerable overhead in case some options constitute significantly worse behavior compared
to the others.

The proposed mechanisms in this work rely on an empirical approach using the average
time consumptions of past execution as it simplifies the determination of costs and also
includes the average overhead in case of competing applications. As an empirical approach
introduces additional overhead, this work also uses different mechanisms to avoid additional
measurements.

6.2. Learning costs during application execution
In order to determine the best implementation and hardware for a task, the costs for
executing the algorithm on all processing units have to be known. In many cases, these
costs scale with the size of the to-be-solved problem of the task. This problem size can be
influenced by different factors like the input data size, e.g., the size of the matrices for a
multiplication. As the problem size can often be determined in advance, it is used by most
dynamic schedulers to estimate the costs. These estimations are based on prior training
that is conducted offline [58, 149] or online with actual data [122, 67, 13, 164, 121]. In this
work, the scheduler is also trained online with actual data in order to gain as accurate
estimations as possible about the performance. As the costs may vary between different
runs, e.g., due to the scheduling of the operating system, and the first execution can be
unusually high due to initialization effects, the runtime system requires that the costs are
measured at least twice to gain an impression of the variances. These measurements are
also repeated in regular intervals to review their correctness. To avoid too frequent checks,
a slowdown factor can be configured and the runtime system will only schedule checks if
the average overhead stays below this value.

Although variances of the costs are considered, this work and most related projects expect
that the costs of a task are stable in principle, i.e. on an ideal system with no interrupts and
resource competition, for example, the costs stay exactly the same during executions with
the same problem size. However, there also exist algorithms that may exhibit unpredictable
performance, e.g., if the performance depends on the actual values in the input data. For
example, sorting algorithms may need to move every item in a list or may immediately
return if the list is already sorted. Other methods have been proposed to handle such
so-called irregular execution times [138] but such applications are not yet considered in
this work.

To actually measure costs, the runtime system contains a plugin-based sensor interface.
With this interface, different types of sensors, e.g., that monitor specific hardware, can
be registered similar to the hardware interface introduced in Chapter 4.6. One sensor
integrated in the runtime system is, for example, the runtime sensor that feeds the
current wall clock time to the runtime system. Other examples are a sensor for Intel’s
Running Average Power Limit (RAPL) interface that provides an estimation of the current
power consumption of the CPU and GPU cores on modern Intel CPUs starting with the
SandyBridge architecture [130] or a lm_sensors 1 plugin that provides unified access to
temperature sensors of different hardware components.

Before tasks are started, a so-called cost vector is created for every task. In this vector, every
element belongs to one sensor and stores intermediate data. Depending on the processing

1http://www.lm-sensors.org/

61

http://www.lm-sensors.org/

62 6. Establishing cost awareness

Figure 6.3.: Measuring process for two tasks using different sensors

Figure 6.4.: Interpolation and extrapolation of missing cost values

unit the task is executed on, only some of the elements may be in use as indicated in
Figure 6.3. For example, the runtime sensor can be used with every processing unit but
the RAPL sensor only works with recent Intel CPUs. In Figure 6.3, only sensor 1 and 2
are active on the CPU and sensor 1 and 3 on the GPU. Just before the task starts, the
active sensors are queried and their current value is stored in the cost vector. During task
execution, the measurements can be arbitrarily suspended and resumed to exclude specific
operations from the result. For example, later in Chapter 6.5.1, such breaks are necessary
to exclude operations that may cause unpredictable variations. After the task finished, the
difference between the measured values is then stored for following decisions.

In its current state, the runtime system also assumes that the costs of executing a certain
task are high enough for the used sensors to give reasonable results. For example, if
tasks have only a short execution time, the relative uncertainty raises due to imprecise
sensors. To circumvent this problem, different statistical approaches have been introduced
to generate useful cost predictions nonetheless [91, 38].

The downside of an empirical approach is that the benefit of the options have to be evaluated
before a thorough decision can be made. Depending on the differences in execution time,
evaluating a slow implementation may result in a considerable performance penalty. A
common approach to avoid measuring costs for new problem sizes is interpolation and
extrapolation [164]. In Figure 6.4, different situations are shown where the costs for a
problem size A are unknown. In the left example, the costs for two alternatives at problem
size A can be determined by interpolation of known values. In the other examples, the
costs are determined by extrapolation. Besides linear interpolation, another approach is to
use the k-Nearest Neighbor algorithm [121] to estimate the costs for new problem sizes.

62

6.3. Memory management and the impact of data locality 63

104

105

106

107

108

10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8

N
an

os
ec

on
ds

Data size in bytes

Host->Host
Host->GPU
GPU->Host

Figure 6.5.: Time consumption of data transfers between different memories

If measurements cannot be avoided, an evaluation of all implementations and processing
units is ideally done only twice per implementation and accelerator. To preserve the results
of such measurements for later use, the runtime system provides a database that stores the
results of all measurements similar to related work [12].

Every type of cost in this database is identified by a unique string and is organized in
an independent data set. For example, if we are interested in the past runtimes of the
implementation matmul_GPU on GPU0, the database can be queried using the following
variadic function:

history = dls_hist_get_history_va (3, " runtime ", \
" matmul_GPU ", "GPU0 ");

Afterwards, the runtime for specific problem sizes can be retrieved from the resulting
history object.

6.3. Memory management and the impact of data locality
As we saw in Chapter 2.1, dedicated accelerators usually possess an own physical memory
as the access on the main memory, e.g., over PCI Express, is expensive or not possible at
all and the own memory can be optimized for the specific use case. Hence, the data has
to be transferred between main and device memory. In Figure 6.5, the time consumption
for data transfers to and from the device memory of a NVIDIA GeForce GTX 275 GPU
and for copying the data inside the main memory as comparison has been measured as
function of data size per transfer. As we can see, the time consumption for transferring
small amount of data is almost constant until a size of about 50,000 bytes. Afterwards, it
increases linearly with the data size. An interesting fact is that the time consumption also
depends on the transfer direction and is higher for transfers from main to device memory.

The result of similar experiment is shown in Figure 6.6. Instead of transfer times to
and from local accelerators, data is transferred between host memories over a network
connection using the RPC plugin introduced in Chapter 4.7 and compared with the time
consumption of a data copy inside the host memory. Over the network connection, the
data is transferred one time inside the local host over the loopback interface and one time
to a remote host connected via an 100Mbit/s Ethernet network. As we can see, copying

63

64 6. Establishing cost awareness

103

104

105

106

107

108

109

1010

1011

1012

4⋅103 4⋅104 4⋅105 4⋅106 4⋅107 4⋅108

T
im

e
in

 n
s

Data size in bytes

Local
Local + RPC

Remote

Figure 6.6.: Time consumption of data transfers in the same host and over a network

data over a network introduces considerable overhead. For example, copying 400MB on
the local system over a network connection introduces an overhead of 100ms while copying
to a remote host introduces an overhead of 34 s over a 100Mbit/s Ethernet network.

For single kernel executions, data is transferred to device memory before the kernel
execution and transferred back afterwards. Hence, when comparing performance between
an implementation for the CPU and an accelerator, it is important to differentiate between
raw execution time of the compute kernel and total time consumption including the data
transfers. Only if multiple kernels are executed and, between, the data is not required on
the CPU, data transfers between main and device memory can be avoided.

With the methods introduced by now in this work, the implementations are in charge of
memory management and transfer data to the device before kernel execution and back
afterwards. If multiple kernels are executed on the GPU this results in unnecessary overhead
for data transfers. Therefore, an API of the runtime system is introduced that can be
used to make the runtime system aware of the data. With this knowledge, the runtime
system transfers data automatically between main and device memory on demand and also
considers the required time for the transfer during selection of the fastest processing unit.

For each data block that the application registers the runtime system creates an own
management structure. This structure contains necessary information like the start address
and the size of the data in the host RAM. In order to keep track of the data copies in
different memories, these structures are organized in linked lists. In Figure 6.7, examples
of these structures is depicted. The data structures are organized per memory and the
structures for every copy of the data is linked in a so-called siblings list. Each of the siblings
also contains a version counter that is increased by one if a kernel writes data. Thus, when
evaluating the possible destination of a migration, the runtime system can determine which
of the siblings contains the most recent data and if a transfer is required.

The importance of efficient data placement has been motivated before. For example, on
systems with a NUMA architecture, each core can access all memories but the access
latency varies with the distance to the memory. Therefore, placing the data close to the
core that will process the data is crucial for high performance and several projects have
been introduced to automatically improve data and thread placement in such systems. To
improve performance of OpenMP applications on NUMA architectures, Broquedis et al.
introduce an extension of the GOMP OpenMP runtime system that combines dynamic

64

6.3. Memory management and the impact of data locality 65

Figure 6.7.: Management structures for data in main and device memories

thread binding with efficient data placement on architectures with non-uniform memory
access [26, 150]. With a synthetic benchmark, they show how their solution can increase
memory bandwidth and decrease execution time using thread and data migration. In [137],
Schmidl et al. introduce an extension to OpenMP that improves thread bindings for the
execution of nested parallel regions on ccNUMA machines. With selected benchmarks and
real-world simulations, they show that their mechanism increases the memory bandwidth
and speed-up compared to unmodified execution with the OpenMP runtime. In contrast to
this work, they only consider homogeneous systems with one address space spanning over
multiple memories. In heterogeneous systems, efficient data management is more difficult
as most heterogeneous systems have separate memory hierarchies and even if a software
layer provides automatic data transfers, the latencies are much higher than accessing the
memory in another NUMA domain. Furthermore, a thread cannot be simply bound to
another core closer to the required data, as changing the processor usually requires different
code.

But also for heterogeneous systems, different projects exist that simplify and automate
data management [68]. A similar approach to parts of this work was presented by Becchi et
al. [19]. They propose a runtime system that chooses either the CPU or GPU for execution
based on past execution times and data location. However, in their work, they focus mostly
on the memory management concept that is limited in contrast to this work. For example,
they only consider a fixed set of memories and there is only one data block valid or all are
synchronized. In this work, hardware plugins can add an arbitrary number of additional
processing units and corresponding memories. Furthermore, there can be multiple valid
and outdated data copies in different memories as the validity of each copy is determined
using write counters. Also, although they claim that their approach is non-invasive with
regard to the source code, they don’t explain how this is achieved. In a further work [20],
they describe an extension of this work that automatically detects out-of-band accesses to
data blocks under control of the runtime system with the help of the operating system.
They modify the page fault handling in a way that their runtime system is notified if an
access occurs and it can update the data block status accordingly. In contrast to their
previous work, they also describe that they use annotations of the kernel functions in order
to determine the type of accesses in advance without changing the application source code.

Other projects use compiler analysis to automatically determine possible accesses to remote
memories. Jablin et al. also introduced their work towards a similar goal [65]. Their
compiler analyses the source code and data is automatically transferred between CPU and
GPU with the help of a runtime system. In order to reduce transfers, they also identify
short blocks of CPU calculations between GPU calls and transform this code into GPU
functions to avoid the need for expensive transfers from GPU to CPU and back. Pai et al.

65

66 6. Establishing cost awareness

also introduced an approach to avoid the need for manual data transfers between host RAM
and GPU memory [118]. Their approach uses a compiler-based code analyzer that inserts
consistency checks into the source code which dynamically check if the data copy needed
for following statements is up-to-date. They also compare their work with other approaches
and show that their approach is able to avoid more redundant transfers. Compared to this
work, the benefit of these approaches is that special compilers or kernels detect and handle
accesses to remote memories. This work also automatically handles data transfers but the
developer still has to signal following data accesses to the runtime system in advance.

So far, the presented approaches all work CPU centric. This means, the standard way to
process data on a GPU involves several data transfers: first, data is transferred from an
input device, e.g., an image sensor, into main memory, inside the main memory into a
memory-mapped region for the GPU and from there into the actual device memory. As
this significantly increases the latency, Kato et al. proposed a special approach that allows
them to transfer data directly from input memory into the GPU memory by modifying
the memory mapping of these PCIe devices to enable direct data transfers [73]. During
experiments, they showed that they can achieve a latency of only several microseconds that
allows them to control a fusion reactor using an algorithm executing on a GPU. A similar
remarkable work is presented by Fujii et al. [51, 52]. Instead of reconfigure the memory
mapping of the GPU, they reverse engineered the firmware of the GPU and modified
the software executing on the management microcontrollers of the GPU to improve data
transfers.

A project with similar concepts to this work is the Superglue project that also uses data
versioning for dependency calculation [152]. Their task-oriented runtime system considers
different access operations to determine if tasks depend on each other or if they are only
mutual exclusive. In the latter case, tasks can be executed in arbitrary order but not at
the same time. In contrast to this work, the project only targets homogeneous systems
and does not consider dedicated memories or different implementations per task.

6.4. Reacting on competition for resources
A basic requirement for good decisions is the accuracy of the cost predictions. With the
methods introduced in the past sections, the costs under normal conditions are determined.
However, if other applications start to use shared resources, the kernel execution time will
increase, predictions become incorrect and application runtime might increase even more
due to unfortunate decisions. In the following, two approaches are presented that enable
the runtime system to react on such events.

6.4.1. Passive checks

If the best processing unit for a task is affected by competition, the prediction automatically
adapts as every execution of a task is measured and the average moves towards the new
time consumption. Other task mappings are usually never executed except the fastest
mapping suffers from, e.g., competing applications. Normally, this isn’t a problem as the
application is only interested in the fastest mapping. However, this might cause inefficient
performance in case the fastest mapping becomes unusable or in case one of the alternatives
was measured during a period of competition and therefore the runtime system afterwards
wrongly believes it is slower than other mappings.

In order to circumvent such problems, the runtime system periodically checks the execution
time of all mappings. But, if the time between those checks is chosen too short, the
performance can decrease significantly. If it is too long, the probability of imprecise or
outdated data in the database increases. In order to keep the overhead for checks low,

66

6.4. Reacting on competition for resources 67

the runtime system considers the presumable loss of time and only schedules a check of
an alternative mapping if the resulting overhead stays below a relative threshold. For
every task mapping, the runtime system stores the accumulated execution time of other
mappings that were preferred over this one for every execution since this mapping was
executed the last time except for first time measurements or checks of other mappings.
With this value, the runtime system can determine what a relative overhead a check of a
combination would introduce. Given the set of all valid mappings A, the number of task
executions n(a) since the last execution of mapping a and the function e(a, i) that returns
1 if the mapping a was executed as fastest mapping during the i-th task execution, else 0,
the mapping c is checked if expression 6.2 is true and tignored(c) > 0:

tignored(c) =
n(c)∑
i=0

∑
a

texec(a) ∗ e(a, i) a ∈ A \ c (6.1)

tignored(c) + texec(c)
tignored(c) < threshold (6.2)

The value of threshold can be set manually in order to reflect the system environment,
e.g., it can be set to 1 in order to disable checks on systems where the application runs
without competition.

To evaluate the impact of this threshold, an application with two task implementations has
been used. The execution time of the first implementation is about 50 times larger than
the execution time of the second implementation in this example. For this evaluation, the
application executes the task 500 times during one application run. After each application
run, the threshold has been increased and the resulting time consumption of the 500 task
executions is shown in Figure 6.8. Besides the actual time consumption, the diagram also
shows the function f that represents the execution time without checks multiplied by the
threshold. By comparing these lines, one can see that the runtime system successfully
keeps the overhead for checks below the given threshold. The size of the gap between
them depends on the number of task executions and the time difference between the
implementations.

In a further experiment, the behavior of the runtime system during periods of competition
is evaluated. In Figure 6.9, the decision tree of the scheduler is visualized for an example
that periodically calculates a multiplication of square matrices with either a sequential
implementation on the CPU, a parallel implementation on the CPU or a parallel imple-
mentation on the GPU. The y-axis shows the range of problem sizes for which one of the
three task implementations would be chosen and the x-axis shows how these ranges vary
during the application runtime. In the beginning, the sequential implementation is the
fastest for problem sizes between 1 and about 18 which equals matrices with a size of 1x1
until 18x18. The parallel CPU implementation is the fastest from about 18 until about 300.
Afterwards, the GPU implementation is the fastest implementation for matrices with a
size of up to 600x600 which is the largest size considered during this experiment. At time
point A, a competing application is started that also uses the GPU. As we can see, the
runtime system adapts its decision and would only choose the sequential or parallel CPU
implementation until time point B when the competing application stops. Likewise, at
time point C, a competing OpenMP application is started that occupies all CPU cores and
the runtime system ignores the parallel CPU implementation as forking additional threads
is not beneficial anymore. Instead, either the sequential or the GPU implementation is
used until time point D.

Even during the periods without competition, the classification slightly varies over the
time. This is caused by the natural variations of the execution time due to the scheduling

67

68 6. Establishing cost awareness

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1 1.2 1.4 1.6 1.8 2

M
ill

is
ec

on
ds

threshold factor

f(x)=x*f(1)
Time consumption

Figure 6.8.: Overhead caused by checks as function of threshold factor

Figure 6.9.: Visualization of the decision tree during application runtime

of the operating system scheduler. Between time point C and D, also small gaps are visible
that occur because the profiling data is not collected in time due to the high contention.

6.4.2. Shared-memory waiting queues

Queues are a common technique to organize a schedule on the CPU in a multi-tasking
operating system. However, the schedulers of today’s major operating systems are not
involved in scheduling decisions on accelerators. If one or more users start applications
that use an accelerator, the execution of the compute kernels is – depending on the device
driver – either serialized or they have to share the device. In either case, a significant
overhead may occur.

In the previous section, the runtime system detected such a case through the monitoring of
the execution times. However, this method cannot detect competition in advance and a
period of competition ends at an unknown time, thus the runtime system may either use a
busy device for too long or unnecessarily avoid an idle device. To resolve this, maintaining
own waiting queues in userspace has been proposed before [67]. In this work, the runtime

68

6.4. Reacting on competition for resources 69

Figure 6.10.: Structure of waiting queues in shared memory

DLS mutex_attr mutex #PUs
PU description 1

...
PU description N

Figure 6.11.: Structure of the list of processing units in shared memory

system also provides queue structures in memory regions that can be shared between
processes and that regulate the access on devices between cooperative applications. Every
processing unit that the runtime system knows has an own queue and every instance of
the runtime system can check, if another instance has scheduled a kernel on the respective
device. With the entry in the queue, the runtime system also stores the presumable
execution time, thus it can be determined in advance, how long one has to wait until the
device can be used exclusively.

In Figure 6.10, an overview of this design is shown with an example. The first step to
coordinate waiting queues in shared memory is to make all participating applications aware
of the known processing units. As mentioned in Chapter 4.6, applications might not be
aware of all processing units available in a system as they query the hardware on demand
to avoid unnecessary initialization costs. Therefore, at first, the runtime system reads the
so-called system header that contains a list of the currently known processing units. The
detailed structure of this header is shown in Figure 6.11. The first field in this structure
is the string DLS that indicates that the structure is already initialized. The next two
fields are reserved for the mutex that protects the remaining fields: the number of known
processing units followed by a list of their IDs.

For each queue a separate shared memory region is allocated that starts with a header
structure as shown in Figure 6.12. The structure starts again with the string DLS followed
by the name of the queue and the mutex that protects the remaining fields. Head points
to the currently executing queue entry, #used gives the number of the entries that are
currently in use, max_entries represents the number of entries currently allocated in the
shared memory region and start_time indicates when the currently executing task started.
This header is followed by the list of queue entries that each contains additional information
about the corresponding task as indicated in Figure 6.13. The first two items, process ID
and task ID are used to identify an entry. The third value states for how long the unit is
presumably occupied. The fourth is a flag that indicates if the execution time is not known
yet and a check will be performed. In such a case, other applications can either fallback to

69

70 6. Establishing cost awareness

DLS Queue name
mutex_attr mutex head #used max_entries start_time

Queue entry 1
...

Queue entry N

Figure 6.12.: Structure of a queue in shared memory

Figure 6.13.: Structure of a queue entry

a queue with a predictable waiting time or assume a default value as time consumption.
The last entry is a barrier that can be used by threads that wait on the currently executing
task to finish.

To give an example for the benefit of waiting queues in shared memory, this experiment
uses an application implementing a Lattice Boltzmann method to simulate the flow inside
a cube while moving one lid. The application is started two times in parallel on a machine
with an Intel quad-core i7-3610QM CPU and an Nvidia NVS5400M GPU. The cube in
this example has 100x100x100 points and is simulated for 20 time steps. For each time
step, three compute tasks are necessary: MoveTop that simulates the movement of the lid,
CollideStream that calculates the movements inside the grid and StreamBoundary that
calculates the boundary conditions. In Figure 6.14, the Gantt diagram of the executed
tasks with the runtime system that uses only per-process waiting queues is shown. As we
can see, both processes compete for the GPU and only after the measured execution times
exceeded a threshold, one of the processes switched to the CPU. In this example, the last
task finished after approximately 12.3 seconds. With a naive approach that lacks a passive
check mechanism, both would stay on the GPU and the overhead would increase further.

In contrast, the Gantt diagram of this experiment with enabled shared waiting queues is
shown in Figure 6.15. As we can see, the process that started a short time later immediately
switched to the CPU. In this case, the last task finished after about 8.1 seconds. Hence,
by detecting competition in advance, a reduction of the execution time by over 30% was
possible.

6.5. Impact of faults on costs
If the occurrence of faults is taken into consideration during task execution, they create two
challenges for runtime systems: first, the faults must be detected and second, their impact on
further decisions must be determined. A well-known approach to detect faults is redundant

70

6.5. Impact of faults on costs 71

Figure 6.14.: Gantt diagram without shared waiting queues

Figure 6.15.: Gantt diagram with shared waiting queues

71

72 6. Establishing cost awareness

execution. However, redundant execution has a high impact on the performance as a
task has to be executed twice and the results have to be compared afterwards. Therefore,
finding efficient methods to detect faults is an active topic in research. In the following
Section 6.5.1, an adaptation of such an approach, called symptom-based fault detection, is
introduced that leverages the methods presented in this chapter for fault detection.

As mentioned, the other challenge is determining the impact on further decisions in the
runtime system. If a fault is not permanent, i.e., if faults occur only sporadic or for a
limited amount of time on a processing unit, e.g., due to overheating, the processing unit
can still calculate correct results and thus provide a benefit. However, a critical question
is how to determine if a susceptible processing unit is still beneficial with regard to the
other units available in a heterogeneous system. As faults cannot be predicted in advance,
this work proposes a new metric in Section 6.5.2, called fault-aware runtime estimation,
that enables the runtime system to estimate the averaged remaining benefit based on the
observed fault rate and the fault-free runtime.

6.5.1. Symptom-based fault detection

Modern processor architectures provide a high number of hardware performance counters
that enable performance analysis at a low cost. The events that are counted range from
obvious events like executed instructions or cache misses to undocumented events that
occur in the internal microarchitecture of the CPU [162]. Besides performance optimization
and debugging [11], it has been shown that they are also useful for security, e.g., intrusion
detection [43], or dependability, e.g., to detect anomalous execution caused by faults. In the
latter case, performance counters are used directly in the hardware to enable fast detection
and rollbacks [159, 123, 96, 111] or evaluated in software [166, 17, 46].

While these works focus on CPUs, this work also provides an initial evaluation of hardware
performance counters on accelerator architectures and utilizes the suitable counters for
symptom-based fault indication in addition to the redundancy-based methods described
later in Chapter 7.3.4.

A common problem when using hardware performance counters are varying numbers
between different runs of the very same application. Therefore, it is crucial to evaluate
the behavior of the counters in order to determine if deviations caused by faults can
be distinguished from natural fluctuation. For example, on x86_64 architectures, the
counters are incremented with every hardware interrupt [162]. As hardware interrupts can
be measured as well, the inaccuracy can be reduced in this example but other counters
might be influenced in an unknown manner. According to Weaver et al., other sources for
inaccuracy can be instruction overcount [162]. However, as we only compare values on the
same system, these inaccuracies do not vary between multiple runs.

To simplify the access to the hardware performance counters, the runtime system contains
a sensor plugin for the PAPI library 2 that enables uniform access to counters on different
architectures. Besides the counters for common CPU architectures, PAPI also provides
access to GPU counters using a CUDA component that is based on the Nvidia CUDA
Profiling Tools Interface (CUPTI). As the sensor infrastructure already stores observed
costs and the average deviation for the scheduler, reusing this infrastructure enables
symptom-based fault detection with only a small amount of additional code.

As mentioned earlier, the performance counters can vary although the executed instructions
stays the same. The more the counters vary naturally, the more difficult it is to detect faults
during execution that cause only small deviations. To determine the range of deviations,

2http://icl.cs.utk.edu/papi/

72

http://icl.cs.utk.edu/papi/

6.5. Impact of faults on costs 73

1,598,415

1,598,420

1,598,425

1,598,430

1,598,435

1,598,440

 0 10 20 30 40 50 60 70 80 90 100

In
st

ru
ct

io
ns

Iteration

Figure 6.16.: Resulting number of counted instructions for single-threaded pathfinder

the pathfinder application of the Rodinia benchmark suite (with 1000 columns, 100 rows
and a height of 20) and the total instruction counter have been chosen as example. The
following experiments were performed on an eight core AMD Opteron 2378 with Shanghai
architecture using the Ubuntu Linux 12.04.5 operating system with kernel version 3.2.0.

During early experiments, common functions like printf or malloc have been determined
as sources for large sporadic deviations during runtime. After removing these disturbing
sources from the measured area, the number of counted instructions vary only in a range
of about 20 instructions for the single-threaded version as shown in Figure 6.16.

As PAPI does not handle OpenMP parallel regions automatically, additional effort was
necessary to support the parallel version of the pathfinder benchmark. For each spawned
thread, PAPI must be initialized individually. Hence, either instrumenting the parallel
region is necessary or patching the OpenMP runtime library. As the latter is not possible
with proprietary compilers, we added a function call to the runtime system at the beginning
and at the end of the parallel region for the following results. In Figure 6.17, the initial
results are shown. As we can see, the graph is largely dominated by a few peaks that add
up to 50 million instructions.

As this behavior depends on the chosen OpenMP library and may even vary between
versions, an independent approach would be beneficial. As all initialization routines like
thread spawning are executed by the master thread, the numbers of the master thread have
been left out which results in a graph as shown in Figure 6.18. As we can see, the peaks
vanished and the deviations are reduced to a range of up to 3000 instructions. However,
as the master thread also calculates a part of the results, it cannot be left aside without
sacrificing fault coverage. As a trade-off, the runtime system also includes the numbers of
the master thread but only from the part inside the parallel region. With this trade-off,
the runtime system gets a complete view of the parallel region but loses information about
the code surrounding the parallel region. However, as the parallel region is usually the
most time-consuming part of an implementation and including the other part would make
the numbers unusable, this trade-off is reasonable. The resulting numbers for the OpenMP
version of the pathfinder benchmark are shown in Figure 6.19. As we can see, there are
still peaks but the values vary only in a range of about 1500 instructions.

For the GPU, also the number of executed instructions is measured for the pathfinder
benchmark. As the first GPU, a Nvidia GeForce GTX 275, has a compute capability below

73

74 6. Establishing cost awareness

215,000,000

220,000,000

225,000,000

230,000,000

235,000,000

240,000,000

245,000,000

250,000,000

255,000,000

260,000,000

265,000,000

 0 10 20 30 40 50 60 70 80 90 100

In
st

ru
ct

io
ns

Iteration

Figure 6.17.: Resulting number of counted instructions for OpenMP pathfinder

37,237,000

37,237,500

37,238,000

37,238,500

37,239,000

37,239,500

37,240,000

37,240,500

 0 10 20 30 40 50 60 70 80 90 100

In
st

ru
ct

io
ns

Iteration

Figure 6.18.: Counted instructions for slave threads only

74

6.5. Impact of faults on costs 75

42,435,000

42,435,200

42,435,400

42,435,600

42,435,800

42,436,000

42,436,200

42,436,400

42,436,600

 0 10 20 30 40 50 60 70 80 90 100

In
st

ru
ct

io
ns

Iteration

Figure 6.19.: Counted instructions for the parallel region only

1,923

1,924

1,925

1,926

1,927

1,928

1,929

 0 10 20 30 40 50 60 70 80 90 100

In
st

ru
ct

io
ns

Iteration

Figure 6.20.: Counted instructions for one shared multiprocessor on the GPU

version 2.0, only the cuda:::GeForce_GTX_275:domain_b:instructions counter could
be used which represents the number of instructions executed by one shared multiprocessor
on the GPU. Starting with compute capability 2.0, also the total number of instructions
executed on the GPU is available according to the CUPTI user’s guide in version 2. As
we can see in Figure 6.20, the number only varies by four instructions but these numbers
also only represent one of ten multiprocessors. On the second GPU, the GeForce GTX 560
Ti, the better suited counter cuda:::GeForce_GTX_560_Ti:domain_d:inst_executed is
available. There, the instruction counter reported a constant value of 27104 executed
instructions.

To analyze the accuracy of the symptom-based fault detection despite natural variations,
the OpenMP compute kernel of the pathfinder benchmark has been instrumented to inject
a specific fault under given circumstances. The OpenMP kernel consists of two nested loops
where the inner loop is parallelized with OpenMP. With the instrumentation, the number
of iterations executed by the inner OpenMP loop during the last iteration of the outer
loop can be decreased by setting an environment variable. Thus, the number of executed

75

76 6. Establishing cost awareness

42,206,000

42,208,000

42,210,000

42,212,000

42,214,000

42,216,000

42,218,000

42,220,000

 980 985 990 995 1000
 0

 5

 10

 15

 20

 25

 30

In
st

ru
ct

io
ns

D
et

ec
te

d
fa

ul
ts

Loop iterations

Detected faults
Avg. #instr
Min. #instr
Max. #instr

Figure 6.21.: Detected faults and counted instructions with a decreasing number of loop
iterations

instructions can be decreased step-wise. In this experiment, the pathfinder benchmark is
executed repeatedly and the number of iterations of the inner loop is reduced by one after
every 30th application run. In the chosen configuration, the runtime system considers a
run as suspicious if a counter exceeds a previously measured minimum or maximum value.
In such a case, the runtime system repeats the execution with a backup copy of the input
data and compares the results. If the results are the same, the runtime systems assumes
a correct result and the measured values are added to the database. If not, the values
are discarded. In Figure 6.21, the results of this experiment are shown. As we can see,
the runtime system is only able to detect faults after the inner loop has been shortened
by 6 iterations due to the comparatively high natural fluctuation of the counters. If we
compare the minimum and maximum number of executed instructions during each batch
of runs, we see that the first faults are detected after the minimum number of instructions
decreases by roughly 2000 instructions and the last undetected faults disappear after the
maximum value goes below the same threshold at 42,212,000 instructions. Therefore, the
runtime system suspects a fault if the number of executed instructions decreases by roughly
2000 instructions in this example which is slightly higher than the peak values we saw in
Figure 6.19.

For the next experiment on the second GPU, an if condition and an increment operation
have been added to the kernel that increment one integer in the result during execution of
one of the threads. As the instruction counter on the second GPU is free from deviations,
an additional instruction is immediately visible. In our experiment, the number of executed
instructions rises consequently from 27144 to 27159 whenever a fault was injected. Hence,
even a fault that only causes a deviation of one instruction can be detected on the GPU.

As symptom-based fault detection has been introduced to lower to overhead for fault
detection compared to other mechanisms, an important topic are the costs for querying
the hardware performance counters. If we take a look at the average kernel runtimes
with and without PAPI measurements in Figure 6.22, we can see that the measurements
with PAPI add a considerable overhead. While the overhead for the CUDA version is

76

6.5. Impact of faults on costs 77

0

10

20

30

40

50

60

70

80

Normal With PAPI

M
ill

is
ec

on
ds

 OpenMP
 CUDA

Figure 6.22.: Kernel runtime with and without PAPI measurements

comparatively moderate by doubling the execution time, the overhead for the OpenMP
version is tremendous. In case of OpenMP, the overhead is caused by the frequent readout
of the counters that happens during every iteration of the loop. With adequate support for
profiling in the OpenMP library, a considerable reduction of the overhead should be possible.
In addition, PAPI creates high startup costs. On the test system, simply initializing the
PAPI library takes approximately 1.1 s. As PAPI is usually used for debugging and profiling
during development, one can assume that it is not optimized for performance. Hence, for
permanent profiling as part of symptom-based fault indication, either the performance of
the library has to be improved or architecture-specific sensor plugins without the abstraction
overhead of PAPI are necessary in future work.

To conclude, GPUs appear as promising architectures for symptom-based fault indication
due to the noiseless counters while parallel execution degrades counter accuracy on the
CPU. An interesting topic that is left for future work is the analysis of further counters
and their combination to improve the indication – especially on the CPU to compensate
the varying counters.

6.5.2. Fault-aware runtime estimation

The central topic in this chapter is to determine the single costs for executing a task on
a specific processing unit. However, if a fault occurs during execution and it corrupts
the results, the calculation has to be repeated. Hence, the actual cost for choosing the
processing unit does not match the predicted costs which might cause an evitable loss of
performance.

In a homogeneous system, a susceptible processing unit can simply be ignored as long as
another idle unit is available as both usually provide equal performance. In heterogeneous
systems, however, the processing units can exhibit a considerably different performance and
switching to another unit might cause a higher loss than repeating the calculation. Therefore,
avoiding a processing unit as soon as it calculated one wrong result is not advisable. But,
sticking to a susceptible unit can also decrease performance if the calculation has to be
repeated multiple times. Thus, another method is necessary to guide the decision if a
valuable but susceptible processing unit is still beneficial compared to the other units.

This work proposes a new metric called fault-aware runtime estimation that enables the
runtime system to estimate the remaining benefit of processing units compared to the other
units in a system. The fault-aware runtime represents the fault-free execution time plus the

77

78 6. Establishing cost awareness

Figure 6.23.: Visual example for calculating the fault-aware runtime

average time required until the processing unit calculates a correct result. The fault-aware
runtime Fi of the processing unit i with its fault probability pi ∈ [0, 1), the number of past
valid runs vi, total number of runs ti and fault-free runtime Ri is defined as follows:

pi = vi

ti

Fi = Ri ∗
1

1− pi

A fault probability of 1 is handled like an infinite fault-aware runtime and the corresponding
processing unit is only used in predefined check intervals to determine if it is still malfunc-
tioning. A visual example for the metric is shown in Figure 6.23, where the solid boxes
represent the fault-free runtime and the dashed boxes represent the fault-aware runtime
for the given fault probability. In this example, GPU 2 is one of the fastest units but it is
considered as the worst possible choice for task execution by the runtime system due to its
fault probability of 0.75 which equals a fault-aware runtime that is four times higher as the
fault-free runtime. The runtime system would choose GPU 1 for execution despite its fault
probability of 0.25 as the calculation can be repeated up to three times before it requires
more time than CPU 1.

An evaluation of this metric is presented later in Chapter 7.5.2.2 in combination with the
other methods for fault detection.

78

7. Anticipatory scheduling in
heterogeneous systems

The previous chapters described how usable implementations and processing units for
a system can be determined and which single cost factors have to be considered. The
remaining problem, this chapter tackles, is to combine this information and take the actual
decision how an application and its tasks should be executed as illustrated in Figure 7.1. The
first section introduces the fundamental concept for simulation of application execution on
task level that enables a scheduler to evaluate the outcome of different decisions in advance.
The second section then describes how different task mappings and other execution variants
are implemented atop of this concept. Before presenting the results of the evaluation,
section four will introduce the available mechanisms and schedulers for the actual decision
making. Parts of this chapter are based on prior publications [76, 79, 77].

7.1. Introduction
Compared to common homogeneous systems, the scheduling in heterogeneous systems
is considerably more difficult due to, for example, the disjoint memory hierarchies. If
a task is mapped to a certain processing unit, additional data transfers into the unit’s
own memory might be necessary that delay the start of the task. Hence, decisions for

Figure 7.1.: Combining gathered information and initiating decision making

79

80 7. Anticipatory scheduling in heterogeneous systems

previous tasks determine the location of the most recent data and have a considerable
impact on the best choice for the following tasks. With greedy algorithms like HEFT, that
is preferred by related works, for example, tasks can be scheduled and executed one after
another. The scheduler can simply analyze the current state of the memories and calculate
necessary transfers for each possible mapping of a task before choosing and executing the
best mapping. However, for more complex algorithms, multiple tasks might need to be
scheduled at once, e.g., to evaluate a complete schedule of a task graph in advance. Hence,
to determine the best mapping for a later task, the state of the memories before this task
would be executed is necessary to make a prediction of required transfers for each task
mapping. In such a case, the scheduler could either log intermediate data transfers and
calculate the future state when required or, as in this work, the changes of the global state
can be simulated during the scheduling in so-called containers. The benefit of simulation
is that multiple schedules could be evaluated in parallel, that the latest state is always
immediately known and the routines of the runtime system can be kept simple as they do
not have to know if they modify the real global state or if they work on a hypothetical
state inside a container.

Similar to the state of the memories, also the state of the waiting queues and the task
graph itself can be modified inside a container. Especially the latter is important for the
development of schedulers. For example, while task splitting can reduce the execution time
of a task, it also introduces a management overhead, e.g., for splitting the data. Hence, if
already enough task parallelism is available to utilize the system, task splitting might only
decrease performance and determining such a case in advance can be difficult. Furthermore,
if also additional objectives like reliability come into consideration, including all these
execution variants and their implications on each other into the decision making results in
increasingly complex schedulers.

Therefore, the runtime system in this work not only considers normal tasks, in the following
referred to as compute tasks, but encapsulates every operation, that might be performed
during execution and requires a considerable amount of time, into own special task types,
e.g., for memory allocation or data transfers. Such tasks are in the following referred
to as supplementary tasks. After a scheduling decision for a task has been made, the
required supplementary tasks are also inserted into the task graph and the waiting queues
as shown in the example in Figure 7.2. On the left, the submitted task graph with chosen
implementations is shown and on the right resulting graph with the additional transfers
between host and GPU RAM. Hence, based on the state of the waiting queues in the
container, a scheduler can simply determine the resulting costs, e.g., the makespan, of
the made decisions without having to know the purpose and implications of every task.
Furthermore, before starting the execution, the entries in the waiting queues of the best
container can simply be copied into the real queues without the need to recalculate necessary
actions in the context of the global state.

In Figure 7.3, an overview of the execution planning process is shown. First, an application
submits one or more tasks that the runtime system passes to the currently chosen scheduler.
The scheduler can choose from different options to modify the tasks, e.g., duplicate a task
for redundant execution, or to just map the tasks to a processing unit. It even can choose
another existing scheduler to make a decision on its behalf. After a decision has been
made for one or all tasks, the scheduler can then choose to directly execute the tasks or
create further schedules with different decisions in a separate container, e.g., to compare
different scheduling algorithms. If several schedules were created, they can be analyzed
and compared before a voting algorithm of the scheduler determines the best according to
chosen criteria, e.g., best performance. Afterwards, the container of the best schedule is
then merged into the global state and executed.

80

7.1. Introduction 81

Figure 7.2.: Example of a graph with chosen implementations per compute task and the
resulting graph with supplementary tasks

Figure 7.3.: Overview execution planning

81

82 7. Anticipatory scheduling in heterogeneous systems

Figure 7.4.: Example of a container hierarchy

Figure 7.5.: Creating a modifiable copy of an object

7.2. Online simulation of task execution

In order to simulate task execution with different variations but without altering the global
state, e.g., of the memory, waiting queues and the initial task graph, this work proposes the
concept of so-called containers. Containers are organized in a hierarchy with the so-called
root container, that represents the global state, at the top as shown in Figure 7.4. Every
container can have an arbitrary number of sub-containers that each may contain new,
removed or modified objects of its parent. While working in the context of a container,
each operation is performed as if the previous alterations would represent the current
global state and all changes that are made will also be only visible in the context of this
container and its sub-containers. Hence, a scheduler can apply different modifications inside
individual sub-containers and afterwards the resulting system states in each container can
be compared. The container with the best result will be merged into the parent container
and the other containers will be released.

New or deleted objects in a sub-container can simply be added or removed from the
parent container if both are merged. However, if an object is modified, the modifications
are performed on a copy of the original object. Due to the hierarchical organization of
containers, the copy is created from either the original object or another copy in a superior
container as depicted in Figure 7.5. In this example, container 1 is a sub-container of the
root container with the original objects and container 2 is a sub-container of container 1.
If container 1 modifies data object A and container 2 modifies data object B, both are
copied from the root container. If container 2 modifies the data object C, it is copied from
container 1 as container 1 already has a – potentially modified – copy of data object C.

While creating a copy is a comparatively simple operation, the opposite operation, merging
an object into a superior container, is more difficult in this case. Objects usually contain
multiple links to other objects that may have a different type, e.g., a transfer task links
may link to its entry in a waiting queue, to other tasks it depends on and to the source
and destination data blocks. In Figure 7.6, an example is given how a typical set of tasks,
their queue entries and data objects are connected.

82

7.3. Building blocks for scheduling decisions 83

Figure 7.6.: Links between objects for a typical set of tasks

If an object is not present in the superior container, the object can simply be moved into
the superior container and the links of other objects to this object are still valid as its
address in memory does not change. However, if there is already a copy in the superior
container, two approaches were implemented in this work. Following the initial approach,
the object is merged into the object in the superior container. The runtime system had to
compare the two objects, apply the changes to the superior object and update other objects
that link to it as the inferior object will be released. The advantage of this approach is that
the original object and its links stay valid but it requires additional efforts to determine
and apply the changes as well as checking and updating all links.

Following the other approach, the inferior object simply replaces the object in the superior
container. The benefit of this approach is that changes do not have to be applied again
and the copy can be used as it is in the superior container. To avoid searching for links
that have to be corrected, this approach is enhanced with automatic reference logging.
Whenever an object references another, the address of the pointer in the source object is
logged as well as the referenced object. Afterwards, if the source or the referenced object
will be replaced, the runtime system simply walks through the list of references and replaces
the address of the pointers with the address of the new object.

Besides the state of the memories, waiting queues and task graphs, also the progress of
other types of objects can be simulated. For example, the runtime system also creates
management structures for the available processing units in a system. Before mapping a
compute task to a processing unit, it reads a flag in the management structure to check if
the unit is already initialized. If not, an initialization task is created which the compute
task depends on and the flag of the management structure is set in the current container.
Hence, if the container is merged into the parent container, also the state of the processing
unit is automatically updated and the initialization task is only created once. Similar to the
initialization, also other properties of the processing unit can be of interest. For example,
also the power state or the chosen frequency of the chip could be added to simulate if
changing these properties would improve the performance and power consumption.

7.3. Building blocks for scheduling decisions
As on homogeneous systems, there are several generic parameters during application
execution on heterogeneous systems that affect performance but do not alter the results
of the computations. For example, the number of OpenMP threads can be varied or a
different processing unit can be chosen for the execution of a task. Such variations exist on
different levels and a few examples of possible generic variations are listed in Table 7.1.
On task graph level, it might be beneficial to split a task among multiple processing units
or use an alternative sequence of tasks that, e.g., target a different optimization goal. On

83

84 7. Anticipatory scheduling in heterogeneous systems

Task Graph alternative sequence of tasks, task splitting, ...
↓

Implementation GPU thread block size, number of threads, ...
↓

Hardware Data location, Data transfer vs. mapping, ...

Table 7.1.: Examples for execution variations on different levels

Figure 7.7.: Generating a candidate with container from a proxy task

implementation level, well-known parameters are the thread block size on GPUs, or the
number of OpenMP threads on the CPU. On hardware level, it can be possible to choose
between different memories that can hold input and output data or to choose different
methods to make the data accessible like explicit data transfers to device memory or
mapping the data from host RAM into device memory.

The following sections describe how the variations implemented in this initial work are
mapped to the container concept and how they can be used by a scheduler as building
blocks for decision making.

7.3.1. Task mapping

For each suitable combination of implementation, processing unit and memory, the runtime
system creates a so-called mapping candidate as shown in Figure 7.7. Besides the chosen
implementation, processing unit and memory for the data, each candidate also contains an
own container. Depending on the state in the superior container and the list of data objects
the compute task will access, the runtime system calculates the necessary supplementary
tasks for this mapping.

In case the input data is not in an accessible memory by the processing unit, the data
has to be transferred or memory mapped into the address space of the unit. In the best
case, the data can be simply transferred from one memory into the other. However, if the
accelerator shall be changed, e.g., from GPU to FPGA, direct transfers are usually not
possible. In such a case, data has to be transferred into host RAM first. More intermediate
transfers can become necessary if a remote accelerator shall be used as data has to be
transferred into host memory, into the remote host memory and then into the memory of
the remote accelerator. A visual example of these cases is shown in Figure 7.8.

Figure 7.8.: Examples of necessary data transfers under different conditions

84

7.3. Building blocks for scheduling decisions 85

Figure 7.9.: Example of two candidates and their containers

Figure 7.10.: Determining the final costs of a candidate

In Figure 7.9, an example of two candidate containers for task B that requires write access
on the data is shown. On the left, we see the current state of the graph and the data after
task A has been mapped to the CPU. On the right site, there are two candidates that map
task B either to the CPU or to the GPU. If the CPU would be chosen for task B, the task
can be started after task A has finished. If task B would be mapped to the GPU, two
supplementary tasks are necessary. Memory has to be allocated in the GPU memory and
the corresponding data structure has to be created.

To determine dependencies between tasks, each data structure contains a list of reading
tasks and a link to the last writing task. If a task reads from the data, it will add itself to
the reader list and add a dependency on the last writing task. If a task writes the data,
it will add dependencies to all tasks in the reader list, so it won’t write new data until
all readers have finished, and then clear the reader list and register itself as the new last
writer.

After this step, the runtime system knows the required actions for the input data and their
individual costs. However, to determine the final costs, it is necessary to know when each
action can be even started. Therefore the runtime system consults its internal waiting
queues, registers the new tasks and calculates the resulting finish time of all tasks in the
container as visualized in Figure 7.10. In this example, task B depends on task A that was
mapped to the CPU. Although the single tasks for mapping task B on the GPU take more
time than the execution on the CPU, the mapping on the CPU would result in a delayed
finish time for task B as a parallel task M is already scheduled on the CPU. Hence, by
comparing the finish time of the compute task in the candidate containers, a scheduler can
simply determine the best mapping for this task without having to know how the task is
executed.

7.3.2. Conditional task graphs
Similar to different implementations of a task, an application may contain alternative
sequences of tasks that calculate the same end result but use a different algorithm designed

85

86 7. Anticipatory scheduling in heterogeneous systems

Figure 7.11.: Regular and conditional task graph with alternative sequences of tasks

for different situations like a different optimization goal, for example. With approaches
proposed by related work, the developer would be responsible for evaluating and selecting
the best sequence for the current system or situation. Instead, a developer can explicitly
submit tasks in an alternative sequence with this work and the runtime system will use its
mechanisms to determine the best sequence automatically under given circumstances.

In order to avoid duplicating the whole graph for each possible sequence, the runtime
system uses so-called conditional task graphs. In a regular directed acyclic graph, every
task of the graph is executed once. In a conditional task graph, there exist tasks that are
mutually exclusive. The decision which of them will be executed can either be guided by
an actual condition, e.g., if at least x bytes of memory are free, or be made dynamically
by a scheduling algorithm, e.g., depending on the chosen optimization goal. In related
work, conditional task graphs have only been used so far to model different sequences of
tasks that may be executed during application execution which enables analysis of possible
schedulings offline [99].

In Figure 7.11, an example of a normal task graph on the left side and a conditional graph
on the right is given. In the graph on the right, one can either execute the tasks B, C and
E or the tasks B’, C’, D and E’ after the initial task A and before the final task F. In this
example, the left sequence in the conditional graph can be beneficial in situations where
only one processing unit is free and the right if there are two free processing units and they
can execute task C’ and D in parallel.

The actual design of such a conditional task graph in the code is shown in Figure 7.12. To
simplify the algorithm for graph traversal, each task sequence has a special start and stop
task. As we can see in this figure, the region with alternative sequences is replaced with a
special task called switch task. In this task, each alternative sequence is managed as an
own graph. This considerably simplifies code that operates on graphs and also enables
nesting of graphs, e.g., to represent a case where alternative sequences contain multiple
sequences themselves.

As the alternatives have to be self-contained, each one has an own container similar to the
candidates in the previous section. In Figure 7.13, an example of a resulting container
hierarchy is shown. On the top level, the container of the main task graph is shown. On
the second level, we see the the container of one of the alternatives for the switch task. On

86

7.3. Building blocks for scheduling decisions 87

Figure 7.12.: Alternative sequences are encapsulated in special switch tasks

Figure 7.13.: Example of a container hierarchy

the bottom, one of the candidate containers is shown. In the second and third container,
the tasks that are only virtual copies of the tasks in a superior container are shown with
dashed circles. For example, in the candidate container, the task B’ – that belongs to
the path container – is required, as we need to modify its descendant list and replace the
link to C’ with a link to the transfer task that, in turn, links to C’. We cannot modify B’
directly as a candidate that does not require a transfer keeps B’ linked with C’.

Similar to the candidates, if a scheduling algorithm chooses an alternative path sequence,
its container is merged into the superior container.

To submit a task, the runtime system provides the variadic function dls_submit_task().
An example is given in the following code:
dls_submit_task (matmul , "wrr", C, A, B);

As first argument this function expects the name or functionality of the compute task,
e.g., matmul, and the second argument is a format string similar to the one of the printf
function. Each character in this string represents one of the following arguments and
determines the usage of the argument. In this example, w means the task requires write
access on data object C and r means read access on the data objects A and B. Other
example are v that states that the parameter shall be passed unmodified to the kernel, p
that determines the problem size or a that appends this task to the path of the given task
as we will see below.

87

88 7. Anticipatory scheduling in heterogeneous systems

Figure 7.14.: Resulting graph of the given example

The submitted tasks are first organized in a linked list that represents the sequential order
of execution. From this ordering, the runtime system calculates the dependencies between
the tasks using the given data access modes.

If a developer wants to submit conditional tasks, he has to create the so-called switch task
first. To start a new alternative path, the first task of each path has to be appended to the
switch task using the a format specifier. As an example, a matrix multiplication can be
either calculated using a regular multiplication or by transposing the second matrix and
using a special multiplication function to improve cache utilization in the following code:
switch_task = dls_task_create_switch ();

// path 1
mm_task = dls_submit_task (matmul , "awrr", switch_task , C, A, B);

// path 2
transp_task = dls_submit_task (transpose , "awr", switch_task , BT , B);
mm_task = dls_submit_task (trans_matmul , "awrr", \

transp_task , C, A, BT);

As we can see, the matmul and the transpose task are appended to the switch task and
each form the beginning of a new alternative path. In contrast, the second task in the
transpose path trans_matmul is appended to the transpose task. The resulting graph of
this example is shown in Figure 7.14.

7.3.3. Task splitting

To lower the application runtime, a high task throughput is necessary. Therefore, a
scheduling algorithm tries to distribute tasks to all available processing units in parallel. If
there is not enough task parallelism to employ all processing units, the system remains
underutilized and an application cannot reach maximum performance. As most tasks that
benefit from heterogeneous systems are inherently parallel, one approach to increase task
parallelism is task splitting [85, 80, 133, 101, 92, 119, 70].

Common approaches for programming heterogeneous systems, e.g., OpenCL, simplify
task splitting due to their programming models. With such models, a developer writes a
compute kernel that processes one work item and submits the kernel and the number of
work items to the respective runtime system. In turn, the corresponding runtime system
spawns threads that process each work item, e.g., one thread per core on the CPU or
one thread per work item on the GPU. Usually, the compute kernels are written in a way
that one thread does not depend on other threads or only on neighboring threads in a
work group. Therefore, single threads or groups of threads can be spawned on different
processing units as visualized in Figure 7.15 where three work items are distributed among
a CPU and a GPU. If, however, these processing units possess dedicated memories or
exhibit different latencies to memories in the same address space, e.g., as in heterogeneous
systems or on NUMA architectures, not only the threads but also the data has to be

88

7.3. Building blocks for scheduling decisions 89

Figure 7.15.: Splitting work and data for parallel execution on CPU and GPU

Figure 7.16.: Splitting work items and data for a grid where each point requires data from
the left and top neighbor

distributed among participating processing units and memories to permit task splitting
and to increase performance.

In the simplest case, each work item reads one element from one or more input arrays and
writes one element into one or more output arrays. Here, the data can be split equally to
the threads. However, if a thread requires other data, e.g., of neighboring points in a grid
for stencil operations or simulations, partitioning the data becomes difficult. In Figure 7.16,
we give an example where the data of the left and top neighbor in a grid is required as
shown in sub-figure 7.16a). If we consider the 4x4 grid from sub-figure 7.16b) and want
to calculate this grid using two threads, we can split the work load into two equally sized
blocks as shown in sub-figure 7.16c). However, as we need the data in row two to calculate
the data in row three, row two is required by both threads. Therefore, we get two cut lines
as shown in sub-figure 7.16d) and thread one requires the data of row one and two, while
thread two requires row two, three and four, as pictured in sub-figure 7.16e) and 7.16f). If
the two threads run on devices with different memories, row two will be present in two
memories. If this grid is calculated multiple times, e.g., for a simulation, data consistency
becomes a critical topic. As thread one will calculate the new values for row two, the row
has to be copied to memory two after each timestep.

In the following, the next section shows how work items and threads can be partitioned
between multiple OpenCL devices. Afterwards, the fine-grained data management mecha-
nism of the runtime system is introduced that also enables data partitioning and automatic
synchronization across multiple devices. In the last section, the algorithm to determine a
balanced partitioning is explained.

89

90 7. Anticipatory scheduling in heterogeneous systems

7.3.3.1. Thread partitioning with OpenCL

To start an OpenCL computation, a developer has to state the amount of threads that
are required to calculate the total amount of work. To split the amount of work, e.g., in
two parts, one could just start the computation twice with half the threads each time.
However, this only works if the kernel source code is prepared for this case. In many cases,
e.g., simulations, boundary conditions have to be considered. To determine if a boundary
condition has to be considered, the threads check their assigned thread index that is used
to calculate to corresponding position in a grid, for example. Without prepared code, these
conditions are not determined correctly. For example, if a grid is split in two parts, a
thread with thread index zero will be executed for each half while only one thread zero
would be executed if only one computation would be started.

As this works strives for automatic task splitting, one approach could be automatic source
code transformations. However, a simpler option is possible due to the OpenCL API. In
addition to the amount of threads, an offset can be passed to the OpenCL library that sets
the initial thread index. So, in the given example, the computation of the second half can
be started with the corresponding offset and any thread index is only assigned once.

7.3.3.2. Fine-grained data management

With the method in the previous section, threads can be automatically distributed among
the available OpenCL devices. If the involved devices share an address space, the remaining
step is to efficiently balance the workload [70]. If not, the data has to be distributed before
as well.

With most programming models, input and output data is allocated and transferred en bloc.
Hence, it is unknown to the runtime libraries, which values in the data blocks a thread will
access exactly. However, this information is necessary to determine which part of the data
is required on each OpenCL device. To solve this issue, related work either copy all data
into the device memories [119] or they depend on additional work of the developer [101],
code instrumentation [80] or code analysis [85, 133, 92] to determine the access patterns of
the threads. An important unanswered question for such automatic approaches is their
versatility. For example, an approach based on code instrumentation may fail to detect a
pattern that changes with the input data and that has not been experienced or trained
before. An approach based on code analysis may not be able to correctly determine all
accesses if they depend on input parameters as well, e.g., if they cause a varying number
of loop iterations or they influence the array offset that will be read or written. Also, if
the data is simply copied to all devices – which causes additional time overhead – the
following problem is to determine which parts of the different data copies contain the actual
results as the distributed results have to be merged back into the original data area before
returning them to the application. Pandit et al. propose to keep a copy of the original
data and compare it with the distributed results to detect new data [119]. However, this
also creates additional overhead. In this initial work, the runtime system also depends on
the developer to state the access patterns of individual threads as the other approaches
either cause additional overhead or may not work in all cases.

In Chapter 6.3, the basic data management of the runtime system was introduced. This
basic mechanism only works with complete copies of the original data. To split the data, a
developer could use this mechanism nonetheless and simply manually divide the data. As
the runtime system handles each data block individually, all necessary parts of the data
will be present in the required memory. However, the data subsets might not be placed in
contiguous memory locations as every subset is allocated individually. This is necessary,
though, as the threads usually address the data using their continuous thread index as
offset and they do not support gaps between the data. Therefore, an extended version of

90

7.3. Building blocks for scheduling decisions 91

Figure 7.17.: Original data, split data and resulting data for two threads

Original data block

Sub blocks

Host RAM GPU1 RAM GPU2 RAM

Figure 7.18.: Memory state example after subdivision

the data management is required that supports dividing data into smaller pieces but keeps
the necessary parts at contiguous addresses in the memory.

If we reconsider the example in Figure 7.15, it is necessary to split the original data in
three parts as shown in Figure 7.17. Row one is only required in memory A, row three
and four only in memory B and row two is present in both memories. Therefore, the
runtime system enables internal subdivision of data blocks into smaller parts that form
own logically independent blocks themselves for the runtime system. If we split the given
example in two parts and map the parts to two GPUs, the data would be split as shown in
Figure 7.18. All rows are present in the host RAM, row one and two are present in GPU1
RAM and row two, three and four in GPU2 RAM.

As mentioned, the downside of the independence of each sub-block is that there is no
guarantee that two subsequent memory allocations receive contiguous addresses. Due
to the relative addressing, however, it is necessary that logical neighbors also lie in the
spatial neighborhood as in the original memory. Therefore, the runtime system uses so-
called intermediate blocks that span the size of the underlaying sub-blocks and are used for
allocating and representing the memory area used for the sub-blocks as shown in Figure 7.19
with the dotted boxes. After the intermediate blocks are allocated in destination memory,
the sub-blocks can be transferred independently but they share the continuous memory
region of the intermediate block.

The downside of OpenCL for this approach is that it does not allow modifications of the

Original data block

Sub blocks

Host RAM GPU1 RAM GPU2 RAM

Intermediate blocks

Figure 7.19.: Memory state example with intermediate blocks for allocation

91

92 7. Anticipatory scheduling in heterogeneous systems

Original data block

Sub blocks

Host RAM GPU1 RAM GPU2 RAM

Intermediate blocks

Figure 7.20.: Intermediate blocks for OpenCL kernels

data pointers passed to the kernels. The pointers may only contain the address returned
by the allocation function and may not point to an address inside the allocated region.
Therefore, adjusting the address to the offset of each device is not possible. This is a
problem as kernels usually access the data relatively to their assigned thread index – passing
only a part of the original data to kernel would result in incorrect data access. For example,
if thread number 2 wants to access the grid data at index 32 and it receives the address
0x1010 to its part of the data starting at offset 16, it would consequently access the data
at index 0x1010+32=0x1030 although index 32 starts at address 0x1000+32=0x1020. For
programming models that permit pointer modifications the runtime system can simply
adjust the pointer by subtracting the corresponding offset from the starting address of
the partial data so the kernel accesses the correct data nonetheless. In the given example,
the runtime system would pass the address 0x1000 although the allocated block starts at
0x1010 and the thread would access the correct data at offset 0x1000+32=0x1020 without
causing an incorrect access. However, the tested OpenCL implementation do not return
the actual address in the device memory but a pointer to a management structure that
is replaced with the correct address before kernel execution. Therefore, the procedure
of the runtime system for OpenCL kernels slightly differs. As we can see in Figure 7.20,
the runtime system allocates intermediate blocks in destination memory that have the
size of the original data block in host RAM but it transfers only the required data to the
respective position. This approach enables task splitting despite unmodifiable data pointers
at the expense of increased memory usage.

7.3.3.3. Reaching equilibrium

To maximize the benefit of task splitting, the assigned work to each device should be chosen
in a way that all devices finish their work at the same time. For heterogeneous systems,
this is difficult as considering only the execution time of each device is not sufficient. E.g.,
due to the different memories, additional tasks for memory allocation and data transfers
might be necessary. To make things worse, the time consumption of each task varies with
the amount of work and data assigned to each device. While it can be assumed that the
time consumption rises with the amount of work and data, the time consumption per
problem size can only be roughly approximated and this approximation does not account
special effects, e.g., caused by caches. Therefore, this work uses an iterative approach
to determine the work portions resulting in an equilibrium of runtimes. This iterative
approach is possible due to the container concept that enables an evaluation of different
work distributions in advance including necessary supplementary tasks like data transfers.

To determine the best partitioning, related work uses machine learning [85], decision trees
[92] or iterative algorithms [133] as in this work. Also, Pandit et al. chose an approach
closer to typical load balancing [119]. Instead of calculating a distribution in advance, they
start executing the single parts on a CPU and a GPU from each end of the workload in
parallel. With proper synchronization, each processing unit continues processing the next
part until the next part is already taken by the other processing unit. While this approach

92

7.3. Building blocks for scheduling decisions 93

avoids the overhead of calculating a balanced distribution, it is only usable for distributing
data among two processing units.

In this work, the initial distribution is calculated using the time consumption for executing
the complete task on each device. Based on the time consumption, the algorithm calculates
the ratio of runtime per problem size and assigns the work accordingly. Afterwards, these
steps are repeated with the time consumption for calculating the assigned work load.

To enable this approach, further problems have to be solved. One problem is that most
OpenCL implementations and devices do not support arbitrary number of work items
but expect a multiple of the local work group size. But even working with a multiple of
usual work group sizes becomes problematic. Work group sizes are usually multiple of 8
in the range from 8 to 64. Especially for simulations with a large grid, the problem sizes
can become quite large. Consequently, the intermediate result of an iteration can easily
result in an unprofiled distribution. To avoid unnecessary evaluations of distributions with
small variations, the algorithm starts with work sizes for each device that are a multiple of
the required work group size and not smaller than 1/100 of the original problem size, if
possible. The algorithm stops if a distribution has been found where to runtimes do not
differ more than 50 µs. If the maximum difference does not decrease for two iterations, the
algorithm decreases the granularity by factor 2. This loop is interrupted if no acceptable
distribution is found after 16 iterations.

7.3.4. Taking precautions against faults

In order to detect and tolerate faults during compute kernel execution, special precautions
have to be taken. The first challenge is to detect faults during execution. A well-known
approach to detect faults is redundant execution. However, to employ redundancy in
heterogeneous systems, different circumstances have to be considered as this work describes
in Chapter 7.3.4.2. As redundant execution inevitably increases the costs in terms of
execution time or energy consumption, approaches with less overhead are topic of current
research but in most cases they trade the overhead with limited fault coverage. In
Chapter 6.5.1, one such method to detect faults has already been introduced. In the
following Chapter 7.3.4.1, another light-weight method to detect certain types of faults is
described.

To tolerate a fault after it has been detected, this work repeats the calculation until a
presumably correct result can be determined. Hence, in order to repeat calculations without
altering the global state, a task implementation may only access data that is registered
and preserved by the runtime system and must not access global variables or data in the
file system, for example. In order to be considered as correct, the same result has to be
calculated by at least two redundant executions. However, a system administrator can
specify more strict requirements, e.g., demand at least x redundant executions and that
the majority of the runs calculate the same result.

7.3.4.1. Light-weight fault tolerance

If a runtime system does not take special precautions before executing a compute kernel,
a fault that occurs during kernel execution might lead to an inevitable abort of the
application. For example, if a data block is used for input and output and a fault occurs
during execution, the calculation cannot be restarted as the input data is in an inconsistent
state and therefore lost. Or if a fault corrupts pointers and leads to a segmentation fault,
the whole application is aborted.

In order to be able to recover from faults, the runtime system offers an operation mode for
light-weight fault tolerance. In this mode, the data management of the runtime system

93

94 7. Anticipatory scheduling in heterogeneous systems

Figure 7.21.: Creating backup data on demand to enable rollbacks

slightly differs. Before execution, the runtime system checks the versions of the input data
in the different memories. If there is only one data block with the most recent version,
the data is duplicated to enable a rollback after a fault. In Figure 7.21, an example of
this process is shown. Initially, the original data (v1) has been transferred to GPU 1 that
modified the data (v2). Afterwards, if the second task is executed on the CPU, the data is
transferred back and the CPU can use the original memory block to modify the data (v3)
as the task’s input data (v2) is still available in the memory of GPU 1. If a fault occurs on
the CPU, the data can be transferred from the GPU memory again. If the second task
is executed on GPU 1, the data has to be duplicated in the GPU 1 memory in order to
preserve a backup of the data. In case the memory of GPU 1 is too small, an alternative
would be to transfer the data back into host memory. If the second task is executed on
GPU 2, a new data block is allocated in GPU 2 memory. Similar to the first case, it is not
necessary to duplicate the data, as the input data is still available in GPU 1 memory.

For the task execution, the runtime system uses a separate thread from its thread pool
and installs an own signal handler to catch segmentation faults. If a segmentation fault
occurs, only the thread is aborted and the runtime system can restart execution on another
processing unit. However, this approach works under the assumption that the thread did
not modify other data except the data it has been assigned. If a fault caused corrupted
pointers, it is possible that a thread has modified data at arbitrary addresses before an
access to an unmapped address caused the resulting segmentation fault. Therefore, if the
thread modified other data, using an own segmentation fault handler might only postpone
the abortion of the application in some cases.

If a separate thread is executing a task, the original thread usually waits until the the task
thread has finished. However, as the runtime system knows the usual execution time of the
task, it can estimate if the thread is overdue and set a timeout in order to abort it in case
the processing unit is non-responsive, e.g., if it is stuck in an endless loop. As the execution
times always vary to a certain extent, the timeout is calculated from the execution time
multiplied by a sufficiently large value. A good value for the timeout depends on the actual
system, as other applications might delay the execution. However, choosing a too high or
too low value has no impact on correctness and only degrades the performance as execution
is either aborted too late or too soon.

7.3.4.2. N-modular redundancy

Despite its high costs under certain conditions, redundant execution with result comparison
is still a common approach to detect and tolerate faults. Theoretically, it can detect and
tolerate all kinds of faults that would lead to incorrect results except the very unlikely case
that the faults falsify all results in the same way.

In homogeneous systems, usually only faults in hardware can be detected as the same
task implementation is executed on different processing units. However, in heterogeneous

94

7.4. Decision making 95

103

104

105

106

107

108

109

10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8

N
an

os
ec

on
ds

Data size in bytes

 Serial
 OpenMP

 CUDA

Figure 7.22.: Time consumption for data comparison with different programming models
and sizes

systems, not only different processing units are available but also different implementations
of a task. Therefore, also faults in software can be automatically detected if different
implementations are used. To leverage this opportunity, different circumstances have to be
considered, though.

After the redundant runs have finished, the results have to be compared. The comparison
can consume a considerable amount of time that – similar to a regular compute task –
depends on the input data size and location as well as the chosen processing unit as it can
be seen in Figure 7.22. Therefore, the runtime system also considers the comparison as an
own task that is mapped using the normal scheduler. If desired, the comparison can be
even redundantly executed itself.

The actual comparison of the results is done by bit-wise comparison of values in most cases,
e.g., if the values are common integer types. However, if the values have a special type
such as floating-point numbers, also special mechanisms are necessary for heterogeneous
systems: as it is possible that the order of instructions and the rounding modes differ
between the various types of processing units, the results may diverge although they are
correct. For such a case, the programmer may define a maximum that determines how
much two floating-point numbers are allowed to differ while they are still considered equal
by the voter in the runtime system. During the experiments with the OpenMP and CUDA
implementations of the Rodinia benchmarks, the floating point values in the results differed
by 0.001% to 0.1% depending on the application. Therefore, a delta of 0.1% was set as
acceptable for the calculations with single precision.

7.4. Decision making
The previous sections introduced different possible execution variants and abstract models
that uniformly encapsulate specific properties of these variants and thus enable a standard-
ized estimation of costs. The remaining step before actual execution is determining the
best combination of tasks and execution variants. In the following, this work introduces
the implemented mechanisms that make such a decision under given circumstances.

For graph scheduling, an extensive amount of research has been conducted [27, 89, 131, 90].
For a scheduling algorithm, the system architecture of today’s general-purpose computers

95

96 7. Anticipatory scheduling in heterogeneous systems

is most akin to heterogeneous distributed systems. There are multiple processing units
that offer different performance for the same task, possess their their own memory and
are connected over comparatively slow interconnect hardware which creates considerable
communication costs. However, the number of individually controllable processing units
are yet low in today’s systems, e.g., threads can be bound to single CPU cores but a user
has no control over the thread scheduling on a GPU with its several hundred cores. As
CPU implementations usually exploit all CPU cores, e.g., using OpenMP, the remaining
choice of a task mapper is either the CPU or the GPU, in most cases.

Most approaches consider performance differences between processing units and dynamically
select the best unit based on previously measured execution times [67, 164, 21] or, in addition,
maintain per-device waiting queues which equals the Heterogeneous Earliest Finish Time
(HEFT) algorithm [154, 153, 13, 24]. In contrast to basing decisions on past experiences,
other projects use source code features and machine learning to select the best processing
unit for execution [58].

Many approaches also offer different scheduling algorithms but they commit themselves to
a standard algorithm that is only changed on the initiative of a user. Instead, Dastgeer and
Kessler introduced an initial evaluation of pattern-based selection of scheduling heuristics
[36]. In their work, they use annotated source code to mark specific task patterns like
concurrently executable or dependent tasks and show that the patterns benefit from different
heuristics. In a subsequent publication, they extended this approach with annotations
similar to the attribute approach in this work [37]. In this work, the runtime system is
also able to switch between different scheduling algorithms but their benefit is evaluated
dynamically for the given application.

Similar to the other modern approaches, this work provides different scheduling algorithms
like the HEFT algorithm. In Figure 7.23, the resulting application runtime with this
algorithm is shown using the OpenCL version of the Rodinia benchmarks. In the chosen
system, three processing units are available: an Intel i7-3610QM CPU with HyperThreading
resulting in 8 logical cores, an integrated Intel IvyBridge HD4000 GPU and a dedicated
Nvidia NVS 5400M GPU. First, the application runtime was measured with each OpenCL
library of the respective vendor and without the runtime system. Afterwards, the runtime
with the OpenCL wrapper and the HEFT algorithm has been measured. For each processing
unit, the scheduler can choose between two execution variants: one time, the data is
explicitly transferred and the other time the data is mapped into the address space of
the unit. Hence, for each task, the scheduler can choose between six candidates. In the
figure, we used the runtime on the CPU as baseline and show the increase or decrease
of the runtimes as factor relative to the CPU. As we can see, most of the benchmarks
show better performance when they are executed on the GPU, except for the gaussian
and the kmeans benchmark. In some of the cases, the runtime system with the HEFT
algorithm is almost as fast as always executing on the fastest processing unit and for
benchmarks with a short runtime even slightly faster as the runtime system only loads and
initializes OpenCL libraries on demand. In some cases, however, the dynamic selection is
considerably slower than always executing on the fastest processing unit. For example, in
case of heartwall or kmeans, we can see that the runtime is similar to another result with
a specific processing unit, which indicates a wrong choice of the HEFT algorithm. Also, if
we reconsider Table 4.1, we observe an increased runtime especially for the benchmarks
with:

• high number of tasks,

• a low number of tasks per task graph and

• a low average time consumption per task

96

7.4. Decision making 97

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

b+tree
backprop

bfs cfd gaussian

heartwall

hotspot

kmeans

lavaMD
leukocyte

lud nn nw pathfinder

srad
streamcluster

R
el

at
iv

e
ru

nt
im

e
CPU

int. GPU
ded. GPU

DLS HEFT

Figure 7.23.: Comparison of application runtimes with native OpenCL libraries and the
DLS OpenCL wrapper with HEFT algorithm

namely cfd, gaussian, srad and streamcluster.

The problem with HEFT scheduling in these cases is that it is unable to determine the
best choice which reveals the other problem that there is a high scheduling-to-execution
time ratio per task for the latter benchmarks with a low average runtime per task. A
common problem for HEFT are high startup costs and first tasks with a short runtime like
initialization tasks that set up the structures for following long running tasks, for example.
If we compare the initialization costs of the OpenCL libraries in the following table:

Intel CPU: 255ms
Intel GPU: 25ms

Nvidia GPU: 181ms

with the runtimes of the first tasks, e.g., 28-40 µs for the gaussian benchmark, it is not
suprising that HEFT tends to choosing the internal Intel GPU for execution. To make
things worse, a switch to a faster processing unit for later long-running tasks becomes more
unlikely, as they have to compensate their initialization costs plus the time required for
transferring the data from the memory of the initial processing unit. To document this
behavior, we listed the number of compute tasks that are mapped to either of the three
processing units in Table 7.2. Only for the leukocyte and pathfinder benchmarks, the
HEFT algorithm chose also a processing unit other than the internal Intel GPU. However,
in both cases, the switch to the dedicated GPU is too late and the performance is slightly
worse than choosing the dedicated GPU from the beginning.

An initial attempt to solve this drawback of the HEFT algorithm was to employ the
container mechanism and simulate the execution with different algorithms. For cases with
a strong bias towards a single processing unit, we added a scheduler that simply chooses
the same execution variant for every task and repeats the simulation for every available
variant. In Figure 7.24, the results with this multi-scheduler are shown. As we can see, this

97

98 7. Anticipatory scheduling in heterogeneous systems

Benchmark CPU int. GPU ded. GPU
b+tree 0 2 0
backprop 0 2 0
bfs 0 24 0
cfd 0 16004 0
gaussian 0 2046 0
heartwall 0 20 0
hotspot 0 1 0
kmeans 0 38 0
lavaMD 0 1 0
leukocyte 0 2 10
lud 0 46 0
nn 0 1 0
nw 0 255 0
pathfinder 0 1 4
srad 0 502 0
streamcluster 0 4833 0

Table 7.2.: Number of tasks mapped to each processing unit by HEFT algorithm

approach still does not improve the situation and the runtimes get even worse due to the
additional scheduling overhead. After analyzing the runtimes calculated by the simulation,
the low number of tasks per task graph has been determined as cause for this behavior.
Due to the frequent synchronizations, the graphs are too small and even when forcing an
suboptimal mapping in the beginning, the number of following tasks is too small and the
overhead cannot be compensated within one task graph.

During the following analysis of the source codes, also unnecessary synchronization com-
mands were found in the gaussian and heartwall benchmarks for performance measure-
ments. As we see in Figure 7.25, removing these commands improves the performance
of the gaussian benchmark and results in an almost on-par performance with the best
processing unit for the heartwall benchmark as in both cases, only at the end of the
application a data transfer is really necessary and all tasks now appear in the same graph.
The remaining overhead in case of the gaussian benchmark is caused by the scheduling of
the numerous but small similar tasks. For most of the benchmarks with a high number
of tasks, a large amount of the tasks are repetitions of a group of one to eight tasks. As
most scheduling algorithms will make the same decisions for each repetition, the runtime
system uses loop detection to avoid estimating the costs of each execution variant for each
task. As shown in Figure 7.26, the repeating tasks are replaced by a special loop task
that contains a list of tasks that represent one iteration of the loop body and a list of
all tasks in this loop. As the task dependencies may differ between the beginning, the
middle and the end of the loop, the loop detection only creates a loop task if the loop body
repeats at least four times. For instance, if we consider another example in Figure 7.27,
we see that the dependencies of the tasks C and D differ between the first iteration, the
iterations in the middle and the last iteration. Therefore, the runtime system first unrolls
two iterations of the loop body and uses the second iteration as sample for the remaining
iterations. If a scheduling algorithm wants to reevaluate the decisions for the body, e.g.,
in case a competing application is running, the unrolling can also be interrupted after a
chosen number of iterations and continued with a new body sample.

To remove the remaining mispredictions, a scheduler requires a complete view of all tasks
executed during one application run. Therefore, the runtime system accumulates all

98

7.4. Decision making 99

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

b+tree
backprop

bfs cfd gaussian

heartwall

hotspot

kmeans

lavaMD
leukocyte

lud nn nw pathfinder

srad
streamcluster

R
el

at
iv

e
ru

nt
im

e

DLS-HEFT
DLS Multi-Sched

Figure 7.24.: Application runtimes with HEFT and the container-based multi-scheduler

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

gaussian

heartwall

R
el

at
iv

e
ru

nt
im

e

CPU
int. GPU

ded. GPU
DLS Multi-Sched

DLS MS w/o sync.

Figure 7.25.: Runtimes after removing unnecessary synchronization

99

100 7. Anticipatory scheduling in heterogeneous systems

Figure 7.26.: Loop detection and resulting loop task

Figure 7.27.: Loop unrolling

submitted tasks during an application run and starts the multi-scheduler again at the end
of the application run without executing the schedule. The best scheduler is then stored
and used for following application runs. In Figure 7.28, the resulting runtimes with a
cached scheduler and loop detection is shown in comparison to the original runtimes and
the runtimes with the normal HEFT scheduler. As we can see, this technique enables the
multi-scheduler to successfully determine the fastest processing unit. Except for the cfd,
gaussian, srad and streamcluster benchmark the resulting runtime is equal or even slightly
faster than choosing the best processing unit manually. If we consider Table 4.1 again, the
performance of the runtime system is slightly worse for the benchmarks with a high number
of task graphs. Similar to the loop detection for tasks, either avoiding synchronization or a
caching mechanism for graph schedules would be necessary to lower the overhead in such
cases.

While the multi-scheduler already alleviates the problem of the HEFT algorithm with high
initialization costs, both may not find the global optimum in certain cases. To give an
example of an algorithm that may find a global optimum, simulated annealing has been
implemented as part of this work [83]. Simulated annealing is an iterative algorithm that
chooses a random task in a schedule and a new random location for this task in one of
the waiting queues for the available processing units in every iteration. If the resulting
schedule is better, e.g., if the makespan is lower than any previous schedule this schedule is
stored and used for further iterations. If the schedule is worse, it is either discarded or it
may be accepted nonetheless with a certain probability. This probability depends on how
much worse the schedule is and on the current so-called temperature value. Before the
algorithm is started, a range of temperatures is calculcated and the temperature decreases
from the highest to the lowest temperature. If the lowest value is reached the algorithm is
terminated. The closer the makespan is to the previously chosen schedule and the higher
the temperature is, the higher is also the probability for an acception of a worse schedule.

As proposed by Orsila et al. [117], the initial temperature T0 is calculcated from a constant
k with k ≥ 1, the maximum execution time for any task on any processing unit tmax and

100

7.4. Decision making 101

 0

 0.5

 1

 1.5

 2

 2.5

 3

b+tree
backprop

bfs cfd gaussian

heartwall

hotspot

kmeans

lavaMD
leukocyte

lud nn nw pathfinder

srad
streamcluster

R
el

at
iv

e
ru

nt
im

e
CPU

int. GPU
ded. GPU

DLS HEFT
DLS MS compl. graph

Figure 7.28.: Runtimes with complete graph analysis and best scheduler caching

the sum of execution times for all tasks on the fastest processing unit tminsum as follows:

T0 = k ∗ tmax

tminsum
(7.1)

In turn, the final temperature Tf is calculated from the minimum execution time for any
task on any processing unit tmin, the same constant k and the sum of execution times for
all tasks on the slowest processing unit tmaxsum as follows:

Tf = tmin

k ∗ tmaxsum
(7.2)

In this work, the constant k has been set to 1. A new temperature Ti for iteration i is
calculated from the previous temperature Ti−1, a geometric temperature scaling factor q
and the number of mapping iterations per temperature L as follows:

Ti = Ti−1 ∗ qb
i
L
c (7.3)

In this work, q has been set to 0.95. Orsila et al. calculate the number of mapping iterations
per temperature level L using the number of tasks N and the number of processing units
M as follows:

L = N(M − 1) (7.4)

As the runtime system offers more options per tasks as the number of processing units, e.g.,
multiple implementations for the same processing unit, M equals the average number of
execution variants that are available for each task in this work. For example, for a switch
task that includes alternative sequences of tasks, M would equal the number of alternative
sequences.

101

102 7. Anticipatory scheduling in heterogeneous systems

Figure 7.29.: Original graph and resulting graph after randomly selecting an alternative
branch

If a worse schedule is accepted, depends on an accept function a that is calculated from the
difference between the makespan of the last accepted schedule and the current makespan
∆C, the makespan of the initial schedule C0 and the current temperature T as follows:

a(∆C, T) = 1
1 + exp ∆C

0.5∗C0∗T
(7.5)

A worse schedule will be accepted if a new random value is below the result of the accept
function a. In addition to the temperature underrun, the algorithm in this work is also
terminated if Rmax = min(L, 50) consecutive schedules have been rejected.

In order to receive a schedule that is at least as good as the schedule calculated by the
HEFT algorithm, this schedule is used as initial schedule. During every iteration, a new
sub-container is created and the previously accepted schedule is applied again except for
one random task. First, a new valid position for this task in the order of tasks is determined
randomly. Afterwards, if the task is a compute task, a random task mapping is chosen.
If the task is a switch task, a random sequence of tasks is chosen. This sequence is then
inserted in the graph after the switch task as shown in Figure 7.29. Hence, for further
iterations, the algorithm can also choose new positions and mappings for the tasks in a
conditional branch and it can randomly select a different branch.

Afterwards, the makespan can be calculated and the container is either released if the
schedule is not accepted or kept in the background if it is accepted. If the algorithm
terminates, the container with the best schedule is merged and executed.

A comparison of this algorithm with the other schedulers is presented in the following
Section 7.5.1.

7.5. Evaluation
In this section, this work presents the results of further experiments. First, a case study is
presented for the preprocessing of medical imaging. Afterwards, the mechanisms for fault
tolerance are evaluated.

102

7.5. Evaluation 103

Figure 7.30.: The 3D USCT II system for ultrasound computer tomography [22]

7.5.1. Case study: Preprocessing for medical imaging

One project at the Institute for Data Processing and Electronics (IPE) led by Prof. Dr.
Marc Weber at the Karlsruhe Institute for Technology is ultrasound computer tomography
(USCT) for early breast cancer detection 1. Breast cancer is the most common type of
cancer for women in western countries. To raise the probability for a successful recovery, it
is very important to detect cancer as early as possible before metastases were built in the
vital parts of the body.

The benefits of USCT are no radiation exposure and a painfree procedure. In the past, the
resolution of such approaches enabled the detection of cancer with a size of 1 cm or more.
For cancer of this size, the probability for metastases is at 30% [23]. The goal of the USCT
project is to enable the detection of objects with a size of less than 1mm in order to lower
the probability of metastases below 5% while keeping the time consumption of the image
processing low and enable an examination by a doctor during one consultation. To achieve
this goal, the scientists at the IPE work on all parts of the process: from the ultrasound
receivers in the device (q.v. Figure 7.30) to the actual image reconstruction on a computer.

In order to lower the time consumption of the image reconstruction, heterogeneous systems
with different accelerators are evaluated [15]. As we can see in Figure 7.31, this procedure is
separated in three main steps: the signal acquisition, signal processing and the actual image
reconstruction. In this scenario, FPGAs are used for the signal acquisition and GPUs for the
image reconstruction but, for the reconstruction, other types of architectures are evaluated
as well. Besides the hardware, the scientists also research new algorithms to increase the
performance of the system. Finding the best schedule in such cases becomes a considerable
amount of work for the developers as each improvement of one task implementation or new
hardware might change the best schedule. While related work already provides mechanisms
to find the best schedule for multiple tasks in a heterogeneous system, the support of
conditional task graphs in this work also enables the automatic evaluation of alternative
algorithms. As an example, this chapter presents an evaluation of this work in combination
with the preprocessing stage of the image reconstruction. This stage consists of five tasks
that have to be executed in sequential order but each task can be executed on a CPU or
GPU. In addition, alternative algorithms for three of these tasks are considered in this
example. Each of these tasks can either operate in the so-called time or frequency domain
and to switch between the two domains, the data has to be transformed. In Figure 7.32,
the task graph the runtime system constructs from the submitted tasks is shown. On the

1http://www.ipe.kit.edu/167.php

103

http://www.ipe.kit.edu/167.php

104 7. Anticipatory scheduling in heterogeneous systems

Figure 7.31.: The main steps for image reconstruction [88]

left, we see the branch with the tasks that operate in the time domain and, on the right,
the tasks that operate in the frequency domain as well as two transformation tasks that
convert the data into the required format.

To simplify development, the main procedure as well as new algorithms are written in
Matlab and proven algorithms are ported to C/C++ and accelerator-specific programming
models afterwards by hardware experts. To minimize the impact on this workflow, this
work introduced the Matlab interface of the runtime system in Chapter 4.3. With this
interface, the developers can still control the main logic as well as the runtime system from
within Matlab and can add internal Matlab functions or external C/C++ functions as
implementations for each task. As example, the code generating the above graph is listed
in Appendix A.

The evaluation was performed on an Intel Core i7-3930K system with 12 CPU cores, two
Nvidia GeForce GTX 690 and one GTX Titan running OpenSUSE 12.2 64bit. Hence, in
addition to the alternative implementations, there are four execution variants for every
task. During evaluation, the execution time of the task graph and the time consumption of
the HEFT, simulated annealing, brute force and multisched algorithms has been measured.
The average results after 40 runs with the HEFT algorithm as baseline for the speedup are
presented in the following table:

Algorithm Exec. time [s] Speedup Search time [s] Ex.-to-search ratio
HEFT 0.262 - 0.177 1.48
Simulated annealing 0.223 1.17 0.462 0.482
Brute force 0.223 1.17 4.229 0.052
Multisched 0.218 1.20 0.198 1.101

Despite the small differences of the execution times between simulated annealing, brute
force and multisched, all three find the best schedule that chooses the time domain branch
and maps all tasks to the GTX Titan GPU. Due to the high initial costs, HEFT maps the
first task of the time domain branch on the CPU. As the multisched scheduler provides
the best execution time per search time ratio of the successful algorithms, it is the best
scheduler in this example. To find the best scheduling, simulated annealing evaluated
between 100 and 200 schedules and the brute force algorithm 2048 possible combinations.

7.5.2. Fault-tolerant task execution
To evaluate the mechanisms for fault-tolerant task execution, selected applications from
the Rodinia benchmark suite [29] and the Nvidia CUDA SDK were used. However, some

104

7.5. Evaluation 105

Figure 7.32.: Input task graph of the preprocessing example

applications of these collections were not used as they were not suitable for the DMR
concept, e.g., benchmarks where the OpenMP and the CUDA versions calculate different
results, e.g., due to different data structures, or the versions make use of static variables
which exclude a parallel execution of the functions.

To simulate faults, a small routine was integrated in the kernels of the applications that
causes a fault under predefined conditions. By setting a specific environment variable, the
routine either causes a segmentation fault, sleeps for an infinite time or writes a wrong
value into the results. This routine is called at the end of the kernel, therefore the following
results represent the worst-case execution times.

The evaluation was conducted on a dual AMD Opteron 2378 machine equipped with 8
CPU cores, an Nvidia GeForce GTX 275 and a GeForce GTX 560Ti GPU running with
Ubuntu Linux 12.04. In order to decrease runtime variation due to competing tasks on the
system, the number of OpenMP threads was limited to 7. Therefore, competing tasks like
maintenance routines can execute on the eighth CPU core without increasing fluctuations
of the measurements.

7.5.2.1. Comparison of the different operation modes

The runtime system provides different fault detection mechanisms that have varying impact
on the performance. In this experiment, this impact is quantified using the selected applica-
tions. First, the raw execution time of the kernels on the different processing units is shown
in Figure 7.33. Then, the required time with the runtime system and performance-oriented
mapping (Perf), with performance-oriented mapping and checkpointing (Perf+CP) for
light-weight fault tolerance, normal Dual-Modular Redundancy (DMR) and heterogeneous
Dual-Modular Redundancy (HetDMR) are depicted in Figure 7.34. As we can see, the
checkpointing adds a small additional overhead for creating redundant copies of the output
data and the DMR strategy increases the runtime by factor 1x to 3x. Except for the

105

106 7. Anticipatory scheduling in heterogeneous systems

 0

 2

 4

 6

 8

 10

bfs cfd matmul

nn pathfinder

srad

Sl
ow

do
w

n

GTX 560 Ti
GTX 275
OpenMP

Figure 7.33.: Comparison of average kernel execution time on different processing units

 0

 2

 4

 6

 8

 10

 12

 14

bfs cfd matmul

nn pathfinder

srad
v 1

Sl
ow

do
w

n

Perf
Perf+CP

DMR
HetDMR

Figure 7.34.: Overhead of the three modes compared to performance-oriented task mapping

pathfinder benchmark, the HetDMR strategy enlarges the overhead significantly as the
OpenMP kernel is considerably slower than the CUDA kernels. DMR and HetDMR are
about the same for the pathfinder benchmark, as the OpenMP kernel is the fastest here
and thus DMR and HetDMR choose the same processing units (the CPU and one GPU)
for execution.

In order to determine the overhead in case of a fault, the described fault routine was
integrated in the implementations. In the Perf+CP mode, a segmentation fault was
induced while in each case one result during DMR and HetDMR measurements was falsified.
The results of this evaluation are presented in Figure 7.35 with the fault-free performance-
oriented mapping (Perf) mode as baseline. As we can see, a fault during Perf+CP mode
causes a slowdown of around 2x while the DMR and HetDMR mode introduce a similar
high overhead as in both cases the task is executed on all processing units, the CPU and
the two GPUs, and the runtime system has to wait on the slowest processing unit in any
case.

106

7.5. Evaluation 107

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

bfs cfd matmul

nn pathfinder

srad
v 1

Sl
ow

do
w

n

Perf
Perf+CP w/ fault

DMR w/ fault
HetDMR w/ fault

Figure 7.35.: Slowdown of the different modes in case of a single fault

7.5.2.2. Benefit of the fault-aware runtime estimation

In Chapter 6.5.2, a new metric, called fault-aware runtime estimation, was introduced.
This metric is used by the runtime system to determine the remaining benefit of susceptible
processing units. In this experiment, the benefit of this metric is shown using the pathfinder
application of the Rodinia benchmarks. With a varying probability, a segmentation fault
is injected during the execution of the OpenMP implementation and the required time
until the correct result is returned to the application is measured one time with the
normal, performance-oriented task mapping and checkpointing (Perf+CP) and one time
with the same strategy which uses the fault-aware runtime estimation for selection, though
(Rel+Perf+CP).

As the OpenMP kernel is roughly 3x faster than the best GPU kernel, the runtime system
with the new metric should prefer the slower GPU kernel if the fault probability of the
OpenMP mapping rises above p = 1− 1

3 = 66%. In Figure 7.36, it can be seen that, as
expected, the reliability-aware approach reduces the required time beginning with a fault
probability of 70%. Compared to avoiding the CPU as soon as it caused a fault, this
approach is, e.g., for 10% fault probability, more than 2 times faster. In case of a permanent
fault (100% probability), this approach saves 30% of the execution time compared to always
choosing the fastest processing unit.

7.5.2.3. Handling multiple failing devices

So far, only cases where one processing unit caused corrupted results were considered.
However, it is also possible that multiple processing units fail in parallel, e.g., due to a failing
system fan which causes spatial overheating. Therefore, this experiment demonstrates the
behavior of the runtime system in such a case using again the pathfinder benchmark. In this
experiment, the runtime system executes all tasks with a dual-modular redundancy strategy.
To tolerate two misbehaving devices, the DMR strategy requires four devices. Under normal
conditions, only three units (CPU, GPU 1 and GPU 2) can be used individually in the test
system as OpenMP occupies all CPU cores at once. Therefore, the number of OpenMP
threads has been manually limited to one thread for each run or task. Consequently, the
runtime system can use the eight CPU cores individually and it has enough redundancy to
tolerating two misbehaving devices.

107

108 7. Anticipatory scheduling in heterogeneous systems

 10

 15

 20

 25

 30

 35

 40

 45

 50

0 10 20 30 40 50 60 70 80 90 100

M
ill

is
ec

on
ds

Fault probability in %

Perf+CP
Rel+Perf+CP

Figure 7.36.: Runtime with performance-oriented and fault-aware task mapping

In Figure 7.37, the results of this experiment are shown. The application was started
several times and the X-axis shows the progress of time measured in number of application
runs. The right Y-axis shows the fault probabilities of GPU 1 and GPU 2 and the left
Y-axis shows the processing units that are used during this experiment. The probabilities
are drawn as lines and the blue boxes represent a correct calculation on the respective
processing unit during that application run.

At the beginning, all devices work properly, so the runtime system receives correct results
from GPU 1 and 2 as indicated by the blue boxes. Between application run number 5 and
20, a segmentation fault was induced in GPU 1. This results in the expected increase of
the fault probability and the runtime system starts to execute the task on CPU core 1
as well. Afterwards, a segmentation fault was also induced during execution on GPU 2
between application run 15 and 30. Thus, between run 15 and 20, both GPUs suffer from
an intermittent fault and both CPUs are required for 5 runs to determine the correct result.
At application run 20 and 30, the GPUs continue to produce correct results and their fault
probability decreases to zero. Hence, in case there is no usable processing unit of a certain
type left, the runtime system is able to continue execution on any other type of processing
unit with an available implementation.

108

7.5. Evaluation 109

GPU 1

GPU 2

CPU 1

CPU 2

 0 10 20 30 40 50
 0

 0.25

 0.5

 0.75

 1

Fa
ul

t p
ro

ba
bi

lit
y

Number of application run

GPU 1
GPU 2

Figure 7.37.: Measured fault probability and correct calculations during intermittent faults
on GPU 1 and 2

109

8. Conclusion

In this chapter, the presented work is concluded with a summary of the contributions and
with an outlook on future works and opportunities.

8.1. Summary
A multitude of challenges await developers while adding support for heterogeneous systems
to their applications and optimizing the performance. Considering and handling all these
challenges in the source code of the application requires considerable efforts from a developer
and makes the development and the resulting application considerably more complex.

To improve the portability of applications without loosing the benefits of hardware-optimized
task implementations, this work proposed a decoupled development concept that outsources
hardware-specific implementations into separate libraries and uses a new runtime system to
dynamically load only executable implementations which also fulfill the requirements of the
application. Using this concept, not only the portability of applications is improved but also
already compiled applications can automatically benefit from new implementations, e.g.,
optimized BLAS libraries bundled with new accelerators, if they share the same interface.
In the evaluation, it has been shown that, with this concept, the very same applications
were successfully executed on systems with different configurations that would otherwise
inhibit the execution of the application due to missing dependencies.

While most other related works expect exclusive usage of a flawless system, this work also
considers competing applications and faults occurring during task execution. Different
methods to detect such events are included and a new metric has been introduced that
enables a scheduler to trade off performance benefits with the observed fault rate in order to
dismiss a processing unit only if the average effort for fault recovery exceeds the performance
benefits compared to other units in the system. Compared with naive approaches that
either keep using a susceptible processing unit or avoid it as soon as it calculated one
wrong result, this metric reduces the average execution time by up to 50%. Similarly,
with the integration of shared-memory waiting queues, adjusting the scheduling decisions
during periods of competition enables a reduction of the execution time by 30% compared
to an approach that relies solely on the operating system and device drivers to resolve
competition.

To improve the performance, related work mostly focus on specific optimizations of ap-
plication and use a rather simple but effective greedy scheduling algorithm. However,

111

112 8. Conclusion

to gain good performance, multiple optimizations have to be evaluated and dynamically
applied and a greedy algorithm might not find the best schedule for an application and
system. Evaluating the benefit of multiple optimizations at once and their implications
on each other as well as enabling demanding scheduling algorithms that can find the
global optimum becomes considerably complex. Therefore, this work introduced a concept
based on so-called containers that enable an online simulation of application execution on
task level to evaluate the outcome of a combination of different techniques and to enable
scheduling algorithms like simulated annealing which require a considerable amount of
iterations before a good schedule may be found. By simulating application execution in
advance with different scheduling algorithms, this approach achieved a reduction of the
execution time by 20% compared to the common greedy scheduler.

As one goal of these mechanisms is to lower the complexity of an application’s source
code, a considerable topic is also the required effort for integrating these mechanisms
themselves. Therefore, besides a native C interface that enables an integration in different
other languages, this work also introduces wrapper libraries for Matlab and OpenCL appli-
cations that facilitate rapid prototyping and enable a completely transparent integration,
respectively.

To conclude, while related works only simplify and automate specific aspects to lower the
complexity, this work proposed a new framework implemented with an online-learning
runtime system that provides a common basis for different mechanisms to simplify develop-
ment and make applications more portable, efficient and reliable across different systems.
Furthermore, the framework also provides a tool for computer scientists and hardware
experts that encourages the research of new runtime optimizations and hardware-optimized
task implementations.

8.2. Outlook

Due to the raising interest in accelerators, the programming of heterogeneous systems
will become easier with new languages and tools that specifically target parallelism and
heterogeneity. Especially due to unified address spaces, sharing data between the CPU and
accelerators becomes significantly less troublesome and error-prone. However, hardware-
specific optimizations and efficient data placement will still be necessary to maximize
performance. In addition, with tightly coupled CPU and GPU cores, heterogeneous
computing might become also ubiquitous for more general applications besides high-
performance computing or games that use the parallelism available in modern CPUs but
only offer a small profit margin for accelerators that is immediately neutralized by necessary
data transfers. Hence, if the execution times on the available processing units become closer
with a unified memory hierarchy, a general assumption which type of processing unit is
the most profitable on the current system might inhibit optimal performance and carefully
choosing the best processing unit for a task will be necessary. However, as we saw in this
work, the performance cannot always be accurately predicted for certain processing units.
Therefore, improving such predictions, e.g., by combining different hardware performance
counters, will be a topic of future works that also benefits dependability. If also the
overhead for querying these counters is reduced, symptom-based fault detection can be
enabled for any task similar to the monitoring of the execution time in this work.

As the fault coverage of symptom-based fault detection is limited, this work also offers
mechanisms for redundant execution to detect faults leading to corrupted results. Which
of these mechanisms are enabled during execution can be chosen dynamically. Hence,
the effort for dependability can be adjusted by a scheduler, e.g., for single tasks, which
encourages future works that balance dependability with other objectives.

112

8.2. Outlook 113

In this work, the experiments focused on the reduction of the execution time. However, due
to its modular design, the framework in this work can be extended to consider other types
of objectives. For example, with appropriate power sensors, the energy consumption of a
task mapping can be measured in addition to the execution time and used as determinant
for decision making. Also, the abstract model of processing units during simulation of task
execution can be extended to include other parameters like the current frequency or voltage
of a processing unit. Hence, in combination with power sensors, different schedulings can
be evaluated in advance if they comply with given power limitations and deadlines, for
example.

Similar to high-performance computing, also the demand for computational power in mobile
devices like mobile phones or wearable computers rises for augmented reality applications
or games, for example. However, due to the power and size limitations, such devices
will stay less powerful than, e.g., desktop or server systems. Especially for wearables like
Google Glass or smartwatches, the computational power is severely limited and some even
depend on additional devices like the mobile phone. As the next generation of wireless
communication protocols will provide a considerable increase of the data transfer rate
to up to several tens of Gbit/s for 5g networks with a latency down to 1ms [9] and up
to several Gbit/s for 802.11ad wireless LANs [120], it might become beneficial to offload
certain calculations to more powerful devices in order to improve the quality-of-service. As
a connection might not always be available or it has to be shared with other participants,
the benefit of offloaded calculcations can vary. Hence, a dynamic decision might become
necessary here as well to determine if a remote device can be used under given constraints
like data transfer speeds and latency.

113

Bibliography

[7] E. Ajkunic, H. Fatkic, E. Omerovic, K. Talic, and N. Nosovic. A comparison of five
parallel programming models for C++. In MIPRO, 2012 Proceedings of the 35th
International Convention, pages 1780–1784, May 2012.

[8] Guilherme Andrade, Gabriel Ramos, Daniel Madeira, Rafael Sachetto, Esteban
Clua, Renato Ferreira, and Leonardo Rocha. Efficient Dynamic Scheduling of
Heterogeneous Applications in Hybrid Architectures. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing, SAC ’14, pages 866–871, New York,
NY, USA, 2014. ACM.

[9] J.G. Andrews, S. Buzzi, Wan Choi, S.V. Hanly, A. Lozano, A.C.K. Soong, and J.C.
Zhang. What Will 5G Be? Selected Areas in Communications, IEEE Journal on,
32(6):1065–1082, June 2014.

[10] R. Aoki, S. Oikawa, R. Tsuchiyama, and T. Nakamura. Hybrid OpenCL: Connecting
Different OpenCL Implementations over Network. In Computer and Information
Technology (CIT), 2010 IEEE 10th International Conference on, pages 2729 –2735,
29 2010-july 1 2010.

[11] Joy Arulraj, Po-Chun Chang, Guoliang Jin, and Shan Lu. Production-run Software
Failure Diagnosis via Hardware Performance Counters. In Proceedings of the Eigh-
teenth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’13, pages 101–112, New York, NY, USA, 2013.
ACM.

[12] Cédric Augonnet, Samuel Thibault, and Raymond Namyst. Automatic Calibration of
Performance Models on Heterogeneous Multicore Architectures. In 3rd Workshop on
Highly Parallel Processing on a Chip (HPPC 2009), Delft, Pays-Bas, August 2009.

[13] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. StarPU: a unified platform for task scheduling on heterogeneous multicore
architectures. Concurr. Comput. : Pract. Exper., 23(2):187–198, February 2011.

[14] Enes Bajrovic, Siegfried Benkner, Jiri Dokulil, and Martin Sandrieser. Autotuning
of Pattern Runtimes for Accelerated Parallel Systems. In PARCO 2013, September
2013, Munich, Germany, Advances of Parallel Computing. IOS Press, 2013.

[15] M. Balzer, M. Birk, R. Dapp, H. Gemmeke, E. Kretzek, S. Menshikov, M. Zapf, and
N.V. Ruiter. 3D ultrasound computer tomography for breast cancer diagnosis. In
Real Time Conference (RT), 2012 18th IEEE-NPSS, pages 1–4, June 2012.

[16] A. Barak, T. Ben-Nun, E. Levy, and A. Shiloh. A package for OpenCL based
heterogeneous computing on clusters with many GPU devices. In Cluster Comput-
ing Workshops and Posters (CLUSTER WORKSHOPS), 2010 IEEE International
Conference on, pages 1 –7, sept. 2010.

115

116 Bibliography

[17] K.A Bare, S. Kavulya, and P. Narasimhan. Hardware performance counter-based
problem diagnosis for e-commerce systems. In Network Operations and Management
Symposium (NOMS), 2010 IEEE, pages 551–558, April 2010.

[18] Michael Bauer, Henry Cook, and Brucek Khailany. CudaDMA: Optimizing GPU
Memory Bandwidth via Warp Specialization. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis, SC
’11, pages 12:1–12:11, New York, NY, USA, 2011. ACM.

[19] Michela Becchi, Surendra Byna, Srihari Cadambi, and Srimat Chakradhar. Data-
aware Scheduling of Legacy Kernels on Heterogeneous Platforms with Distributed
Memory. In Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’10, pages 82–91, New York, NY, USA, 2010. ACM.

[20] Michela Becchi, Srihari Cadambi, and Srimat Chakradhar. Enabling Legacy Applica-
tions on Heterogeneous Platforms. In Proceedings of HotPar 2010, June 2010.

[21] Mehmet E. Belviranli, Laxmi N. Bhuyan, and Rajiv Gupta. A Dynamic Self-scheduling
Scheme for Heterogeneous Multiprocessor Architectures. ACM Trans. Archit. Code
Optim., 9(4):57:1–57:20, January 2013.

[22] M. Birk, A Guth, M. Zapf, M. Balzer, N. Ruiter, M. Hubner, and J. Becker. Acceler-
ation of image reconstruction in 3D ultrasound computer tomography: An evaluation
of CPU, GPU and FPGA computing. In Design and Architectures for Signal and
Image Processing (DASIP), 2011 Conference on, pages 1–8, Nov 2011.

[23] Matthias Birk. Effiziente Datenverarbeitung auf heterogenen Rechnerarchitekturen
für die 3D-Ultraschall-Computertomographie. PhD thesis, Karlsruher Institut für
Technologie (KIT), München, 2014. Zugl.: Karlsruhe, KIT, Diss., 2014.

[24] Michael Boyer, Kevin Skadron, Shuai Che, and Nuwan Jayasena. Load balancing
in a changing world: dealing with heterogeneity and performance variability. In
Proceedings of the ACM International Conference on Computing Frontiers, CF ’13,
pages 21:1–21:10, New York, NY, USA, 2013. ACM.

[25] Alexander Branover, Denis Foley, and Maurice Steinman. AMD Fusion APU: Llano.
IEEE Micro, 32(2):28–37, March 2012.

[26] François Broquedis, Nathalie Furmento, Brice Goglin, Raymond Namyst, and Pierre-
André Wacrenier. Dynamic Task and Data Placement over NUMA Architectures: An
OpenMP Runtime Perspective. In Proceedings of the 5th International Workshop on
OpenMP: Evolving OpenMP in an Age of Extreme Parallelism, IWOMP ’09, pages
79–92, Berlin, Heidelberg, 2009. Springer-Verlag.

[27] T.L. Casavant and J.G. Kuhl. A taxonomy of scheduling in general-purpose distributed
computing systems. Software Engineering, IEEE Transactions on, 14(2):141–154,
Feb 1988.

[28] Sang Kil Cha, Brian Pak, David Brumley, and Richard Jay Lipton. Platform-
independent programs. In Proceedings of the 17th ACM conference on Computer and
communications security, CCS ’10, pages 547–558, New York, NY, USA, 2010. ACM.

[29] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-Ha Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous computing. In Workload
Characterization, 2009. IISWC 2009. IEEE International Symposium on, pages 44–54,
Oct 2009.

[30] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell broadband engine architecture
and its first implementation: a performance view. IBM Journal of Research and
Development, 51:559–572, September 2007.

116

Bibliography 117

[31] Dan Connors, Kyle Dunn, and Jeff Wiencrot. Adaptive OpenCL (ACL) execution in
GPU architectures. In Proceedings of the 3rd International Workshop on Adaptive
Self-Tuning Computing Systems, ADAPT ’13, pages 4:1–4:6, New York, NY, USA,
2013. ACM.

[32] Pete Cooper, Uwe Dolinsky, AlastairF. Donaldson, Andrew Richards, Colin Riley,
and George Russell. Offload – Automating Code Migration to Heterogeneous Mul-
ticore Systems. In Yale N. Patt, Pierfrancesco Foglia, Evelyn Duesterwald, Paolo
Faraboschi, and Xavier Martorell, editors, High Performance Embedded Architectures
and Compilers, volume 5952 of Lecture Notes in Computer Science, pages 337–352.
Springer Berlin Heidelberg, 2010.

[33] Cristian Ţăpuş, I-Hsin Chung, and Jeffrey K. Hollingsworth. Active Harmony:
Towards Automated Performance Tuning. In Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, Supercomputing ’02, pages 1–11, Los Alamitos, CA,
USA, 2002. IEEE Computer Society Press.

[34] Mayank Daga, Ashwin M. Aji, and Wu-chun Feng. On the Efficacy of a Fused
CPU+GPU Processor (or APU) for Parallel Computing. In Proceedings of the 2011
Symposium on Application Accelerators in High-Performance Computing, SAAHPC
’11, pages 141–149, Washington, DC, USA, 2011. IEEE Computer Society.

[35] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C. Roth,
Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The Scalable Heterogeneous
Computing (SHOC) Benchmark Suite. In Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units, GPGPU ’10, pages
63–74, New York, NY, USA, 2010. ACM.

[36] Usman Dastgeer and Christoph Kessler. Towards global composition of performance-
aware components for GPU-based systems. In Proceedings of the 17th Int. Workshop
on Compilers for Parallel Computers (CPC-2013), 2013.

[37] Usman Dastgeer and Christoph Kessler. Conditional component composition for
GPU-based systems. In Proceedings of the 7th Workshop on Programmability Issues
for Heterogeneous Multicores (MULTIPROG-2014), 2014.

[38] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian
Le. RAPL: Memory Power Estimation and Capping. In Proceedings of the 16th
ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED
’10, pages 189–194, New York, NY, USA, 2010. ACM.

[39] Carlos S. de la Lama, Pablo Toharia, Jose Luis Bosque, and Oscar D. Robles. Static
Multi-device Load Balancing for OpenCL. In Proceedings of the 2012 IEEE 10th
International Symposium on Parallel and Distributed Processing with Applications,
ISPA ’12, pages 675–682, Washington, DC, USA, 2012. IEEE Computer Society.

[40] Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalamanchili, and Nathan
Clark. Ocelot: A Dynamic Optimization Framework for Bulk-synchronous Applica-
tions in Heterogeneous Systems. In Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques, PACT ’10, pages 353–364,
New York, NY, USA, 2010. ACM.

[41] Martin Dimitrov, Mike Mantor, and Huiyang Zhou. Understanding Software Ap-
proaches for GPGPU Reliability. In Proceedings of 2Nd Workshop on General Purpose
Processing on Graphics Processing Units, GPGPU-2, pages 94–104, New York, NY,
USA, 2009. ACM.

117

118 Bibliography

[42] José Duato, Antonio J. Peña, Federico Silla, Rafael Mayo, and Enrique S. Quintana-
Ortí. rCUDA: Reducing the number of GPU-based accelerators in high performance
clusters. In High Performance Computing and Simulation (HPCS), 2010 International
Conference on, pages 224–231, June 2010.

[43] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M.
Chen. ReVirt: Enabling Intrusion Analysis Through Virtual-machine Logging and
Replay. SIGOPS Oper. Syst. Rev., 36(SI):211–224, December 2002.

[44] Bo Fang, Karthik Pattabiraman, Matei Ripeanu, and Sudhanva Gurumurthi. GPU-
Qin: A Methodology for Evaluating the Error Resilience of GPGPU Applications. In
Performance Analysis of Systems and Software (ISPASS), 2014 IEEE International
Symposium on, 2014.

[45] Jianbin Fang, A.L. Varbanescu, and H. Sips. A Comprehensive Performance Com-
parison of CUDA and OpenCL. In Parallel Processing (ICPP), 2011 International
Conference on, pages 216 –225, sept. 2011.

[46] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke. Shoestring: Prob-
abilistic Soft Error Reliability on the Cheap. In Proceedings of the Fifteenth Edition
of ASPLOS on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XV, pages 385–396, New York, NY, USA, 2010. ACM.

[47] Wu-chun Feng, Heshan Lin, Thomas Scogland, and Jing Zhang. OpenCL and the
13 dwarfs: a work in progress. In Proceedings of the third joint WOSP/SIPEW
international conference on Performance Engineering, ICPE ’12, pages 291–294, New
York, NY, USA, 2012. ACM.

[48] Roger Ferrer, Judit Planas, Pieter Bellens, Alejandro Duran, Marc Gonzalez, Xavier
Martorell, Rosa M. Badia, Eduard Ayguade, and Jesus Labarta. Optimizing the
exploitation of multicore processors and GPUs with OpenMP and OpenCL. In
Proceedings of the 23rd international conference on Languages and compilers for
parallel computing, LCPC’10, pages 215–229, Berlin, Heidelberg, 2011. Springer-
Verlag.

[49] Jason Flinn and M. Satyanarayanan. Managing Battery Lifetime with Energy-aware
Adaptation. ACM Trans. Comput. Syst., 22(2):137–179, May 2004.

[50] Holger Fröning, Mondrian Nüssle, David Slogsnat, Heiner Litz, and Ulrich Brün-
ing. The HTX-Board: A Rapid Prototyping Station. In 3rd annual FPGAWorld
Conference, 2006.

[51] Yusuke Fujii, Takuya Azumi, Nobuhiko Nishio, and Shinpei Kato. Exploring Micro-
controllers in GPUs. In Proceedings of the 4th Asia-Pacific Workshop on Systems,
APSys ’13, pages 2:1–2:6, New York, NY, USA, 2013. ACM.

[52] Yusuke Fujii, Takuya Azumi, Nobuhiko Nishio, Shinpei Kato, and Masato Edahiro.
Data Transfer Matters for GPU Computing. In Proceedings of the 19th IEEE
International Conference on Parallel and Distributed Systems, ICPADS ’13, 2013.

[53] Benedict R. Gaster and Lee Howes. OpenCL C++. In Proceedings of the 6th
Workshop on General Purpose Processor Using Graphics Processing Units, GPGPU-6,
pages 86–95, New York, NY, USA, 2013. ACM.

[54] Mohamed Gomaa, Chad Scarbrough, T. N. Vijaykumar, and Irith Pomeranz.
Transient-fault Recovery for Chip Multiprocessors. In Proceedings of the 30th Annual
International Symposium on Computer Architecture, ISCA ’03, pages 98–109, New
York, NY, USA, 2003. ACM.

118

Bibliography 119

[55] Ivan Grasso, Simone Pellegrini, Biagio Cosenza, and Thomas Fahringer. libWater:
Heterogeneous Distributed Computing Made Easy. In Proceedings of the 27th inter-
national ACM conference on International conference on supercomputing, ICS ’13,
pages 161–172, New York, NY, USA, 2013. ACM.

[56] S. Grauer-Gray, Lifan Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos. Auto-
tuning a high-level language targeted to GPU codes. In Innovative Parallel Computing
(InPar), 2012, pages 1–10, 2012.

[57] Dominik Grewe. Prius: A Runtime for Hybrid Computing. In Proceedings of the First
International Workshop on Code OptimiSation for MultI and Many Cores, COSMIC
’13, pages 3:1–3:3, New York, NY, USA, 2013. ACM.

[58] Dominik Grewe and Michael O’Boyle. A Static Task Partitioning Approach for
Heterogeneous Systems Using OpenCL. In Jens Knoop, editor, Compiler Construction,
volume 6601 of Lecture Notes in Computer Science, pages 286–305. Springer Berlin /
Heidelberg, 2011.

[59] Jayanth Gummaraju, Laurent Morichetti, Michael Houston, Ben Sander, Benedict R.
Gaster, and Bixia Zheng. Twin Peaks: A Software Platform for Heterogeneous
Computing on General-purpose and Graphics Processors. In Proceedings of the
19th International Conference on Parallel Architectures and Compilation Techniques,
PACT ’10, pages 205–216, New York, NY, USA, 2010. ACM.

[60] Azzam Haidar, Chongxiao Cao, Asim YarKhan, Piotr Luszczek, Stanimire Tomov,
Khairul Kabir, and Jack Dongarra. Unified Development for Mixed Multi-GPU
and Multi-Coprocessor Environments using a Lightweight Runtime Environment.
In Proceeding of the 28th IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2014.

[61] IS. Haque and V.S. Pande. Hard Data on Soft Errors: A Large-Scale Assessment
of Real-World Error Rates in GPGPU. In Cluster, Cloud and Grid Computing
(CCGrid), 2010 10th IEEE/ACM International Conference on, pages 691–696, May
2010.

[62] Sylvain Henry. ViperVM: A Runtime System for Parallel Functional High-performance
Computing on Heterogeneous Architectures. In Proceedings of the 2Nd ACM SIG-
PLAN Workshop on Functional High-performance Computing, FHPC ’13, pages 3–12,
New York, NY, USA, 2013. ACM.

[63] Sylvain Henry, Alexandre Denis, Denis Barthou, Marie-Christine Counilh, and Ray-
mond Namyst. Toward OpenCL Automatic Multi-Device Support. In Fernando
Silva, Inês Dutra, and Vítor Santos Costa, editors, Euro-Par 2014 Parallel Process-
ing, volume 8632 of Lecture Notes in Computer Science, pages 776–787. Springer
International Publishing, 2014.

[64] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and
Anant Agarwal. Application Heartbeats: A Generic Interface for Specifying Program
Performance and Goals in Autonomous Computing Environments. In Proceedings of
the 7th International Conference on Autonomic Computing, ICAC ’10, pages 79–88,
New York, NY, USA, 2010. ACM.

[65] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, Stephen R.
Beard, and David I. August. Automatic CPU-GPU Communication Management
and Optimization. In Proceedings of the 32Nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’11, pages 142–151, New
York, NY, USA, 2011. ACM.

119

120 Bibliography

[66] J. Jeffers and J. Reinders. Intel Xeon Phi Coprocessor High-performance Programming.
Morgan Kaufmann. Elsevier Science & Technology Books, 2013.

[67] Víctor J. Jiménez, Lluís Vilanova, Isaac Gelado, Marisa Gil, Grigori Fursin, and
Nacho Navarro. Predictive Runtime Code Scheduling for Heterogeneous Architectures.
In Proceedings of the 4th International Conference on High Performance Embedded
Architectures and Compilers, HiPEAC ’09, pages 19–33, Berlin, Heidelberg, 2009.
Springer-Verlag.

[68] Hai Jin, Bo Li, Ran Zheng, Qin Zhang, and Wenbing Ao. memCUDA: Map Device
Memory to Host Memory on GPGPU Platform. In Chen Ding, Zhiyuan Shao, and
Ran Zheng, editors, Network and Parallel Computing, volume 6289 of Lecture Notes
in Computer Science, pages 299–313. Springer Berlin Heidelberg, 2010.

[69] Rajshekar Kalayappan and Smruti R. Sarangi. A Survey of Checker Architectures.
ACM Comput. Surv., 45(4):48:1–48:34, August 2013.

[70] Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Brian T. Lewis, Chunling
Hu, and Keshav Pingali. Adaptive Heterogeneous Scheduling for Integrated GPUs.
In Proceedings of the 23rd International Conference on Parallel Architectures and
Compilation, PACT ’14, pages 151–162, New York, NY, USA, 2014. ACM.

[71] SeungGu Kang, Hong Jun Choi, Cheol Hong Kim, Sung Woo Chung, DongSeop
Kwon, and Joong Chae Na. Exploration of CPU/GPU Co-execution: From the
Perspective of Performance, Energy, and Temperature. In Proceedings of the 2011
ACM Symposium on Research in Applied Computation, RACS ’11, pages 38–43, New
York, NY, USA, 2011. ACM.

[72] Thomas Karcher and Victor Pankratius. Run-Time Automatic Performance Tuning
for Multicore Applications. In Emmanuel Jeannot, Raymond Namyst, and Jean
Roman, editors, Euro-Par 2011 Parallel Processing, volume 6852 of Lecture Notes in
Computer Science, pages 3–14. Springer Berlin / Heidelberg, 2011.

[73] Shinpei Kato, Jason Aumiller, and Scott Brandt. Zero-copy I/O Processing for
Low-latency GPU Computing. In Proceedings of the ACM/IEEE 4th International
Conference on Cyber-Physical Systems, ICCPS ’13, pages 170–178, New York, NY,
USA, 2013. ACM.

[74] A. Kawai, K. Yasuoka, K. Yoshikawa, and T. Narumi. Distributed-Shared CUDA:
Virtualization of Large-Scale GPU Systems for Programmability and Reliability.
In FUTURE COMPUTING 2012, The Fourth International Conference on Future
Computational Technologies and Applications, page 7–12, 2012.

[75] Mario Kicherer. Design and Implementation of a Low-overhead Run-time System for
Self-X Architectures. Diplomarbeit, Universität Karlsruhe (TH), 2008.

[76] Mario Kicherer, Rainer Buchty, and Wolfgang Karl. Cost-aware function migration
in heterogeneous systems. In Proceedings of the 6th International Conference on
High Performance and Embedded Architectures and Compilers, HiPEAC ’11, pages
137–145, New York, NY, USA, 2011. ACM.

[77] Mario Kicherer and Wolfgang Karl. Heterogeneity-aware Fault Tolerance using
a Self-Organizing Runtime System. ArXiv e-prints, First Workshop on Resource
awareness and adaptivity in multi-core computing, May 2014.

[78] Mario Kicherer, Fabian Nowak, Rainer Buchty, and Wolfgang Karl. Extending a Light-
weight Runtime System by Dynamic Instrumentation For Performance Evaluation.
In Michael Beigl and Franciso J. Cyzorla-Almeida, editors, ARCS 2010 Workshop
Proceedings, pages 279–284. VDE, February 2010.

120

Bibliography 121

[79] Mario Kicherer, Fabian Nowak, Rainer Buchty, and Wolfgang Karl. Seamlessly
portable applications: Managing the diversity of modern heterogeneous systems.
ACM Trans. Archit. Code Optim., 8(4):42:1–42:20, January 2012.

[80] Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. Achieving a Single
Compute Device Image in OpenCL for Multiple GPUs. In Proceedings of the 16th
ACM symposium on Principles and practice of parallel programming, PPoPP ’11,
pages 277–288, New York, NY, USA, 2011. ACM.

[81] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin
Lee. SnuCL: An OpenCL Framework for Heterogeneous CPU/GPU Clusters. In
Proceedings of the 26th ACM international conference on Supercomputing, ICS ’12,
pages 341–352, New York, NY, USA, 2012. ACM.

[82] Volodymyr Kindratenko. Novel computing architectures. Computing in Science and
Engineering, 11(3):54–57, 2009.

[83] Peter Koch. Strategies for Realistic and Efficient Static Scheduling of Data Indepen-
dent Algorithms onto Multiple Digital Signal Processors. PhD thesis, 1996.

[84] L. Koesterke, J. Boisseau, J. Cazes, K. Milfeld, and D. Stanzione. Early Experiences
with the Intel Many Integrated Cores Accelerated Computing Technology. In Pro-
ceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, TG ’11, pages
21:1–21:8, New York, NY, USA, 2011. ACM.

[85] Klaus Kofler, Ivan Grasso, Biagio Cosenza, and Thomas Fahringer. An Automatic
Input-Sensitive Approach for Heterogeneous Task Partitioning. In Proceedings of the
27th international ACM conference on International conference on supercomputing,
ICS ’13, pages 149–160, New York, NY, USA, 2013. ACM.

[86] Kazuhiko Komatsu, Katsuto Sato, Yusuke Arai, Kentaro Koyama, Hiroyuki Takizawa,
and Hiroaki Kobayashi. Evaluating Performance and Portability of OpenCL Programs.
In The Fifth International Workshop on Automatic Performance Tuning, June 2010.

[87] David Kramer, Thorsten Vogel, Rainer Buchty, Fabian Nowak, and Wolfgang Karl.
A general purpose HyperTransport-based Application Accelerator Framework. In
Proceedings of the First International Workshop on HyperTransport Research and
Applications (WHTRA2009), pages 30–38. Computer Architecture Group, Institute
for Computer Engineering (ZITI), University of Heidelberg, February 2009.

[88] Ernst Kretzek, Michael Zapf, Matthias Birk, Hartmut Gemmeke, and Nicole V.
Ruiter. GPU based acceleration of 3D USCT image reconstruction with efficient
integration into MATLAB. Proc. SPIE, 8675, 2013.

[89] Yu-Kwong Kwok and I Ahmad. Benchmarking the task graph scheduling algorithms.
In Parallel Processing Symposium, 1998. IPPS/SPDP 1998. Proceedings of the First
Merged International ... and Symposium on Parallel and Distributed Processing 1998,
pages 531–537, Mar 1998.

[90] Yu-Kwong Kwok and Ishfaq Ahmad. Static Scheduling Algorithms for Allocating
Directed Task Graphs to Multiprocessors. ACM Comput. Surv., 31(4):406–471,
December 1999.

[91] Jens Lang and Gudula Rünger. High-Resolution power profiling of GPU functions
using low-resolution measurement. In Proceedings of the 19th international conference
on Parallel Processing, Euro-Par’13, pages 801–812, Berlin, Heidelberg, 2013. Springer-
Verlag.

121

122 Bibliography

[92] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. Transparent
CPU-GPU Collaboration for Data-Parallel Kernels on Heterogeneous Systems. In
Proceedings of the 22nd international conference on Parallel architectures and com-
pilation techniques, PACT ’13, pages 245–256, Piscataway, NJ, USA, 2013. IEEE
Press.

[93] Jongwon Lee, Yohan Ko, Kyoungwoo Lee, Jonghee M. Youn, and Yunheung Paek.
Dynamic Code Duplication with Vulnerability Awareness for Soft Error Detection on
VLIW Architectures. ACM Trans. Archit. Code Optim., 9(4):48:1–48:24, January
2013.

[94] Seyong Lee, Dong Li, and Jeffrey S Vetter. Interactive Program Debugging and
Optimization for Directive-Based, Efficient GPU Computing. In Proceedings of the
28th IEEE International Parallel and Distributed Processing Symposium. IEEE, 2014.

[95] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,
Per Hammarlund, Ronak Singhal, and Pradeep Dubey. Debunking the 100X GPU
vs. CPU Myth: An Evaluation of Throughput Computing on CPU and GPU. In
Proceedings of the 37th Annual International Symposium on Computer Architecture,
ISCA ’10, pages 451–460, New York, NY, USA, 2010. ACM.

[96] Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V. Adve,
Vikram S. Adve, and Yuanyuan Zhou. Understanding the Propagation of Hard
Errors to Software and Implications for Resilient System Design. In Proceedings of
the 13th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XIII, pages 265–276, New York, NY, USA,
2008. ACM.

[97] Michael D. Linderman, James Balfour, Teresa H. Meng, and William J. Dally. Em-
bracing Heterogeneity: Parallel Programming for Changing Hardware. In Proceedings
of the First USENIX Conference on Hot Topics in Parallelism, HotPar’09, pages
3–3, Berkeley, CA, USA, 2009. USENIX Association.

[98] Cong Liu, Jian Li, Wei Huang, Juan Rubio, Evan Speight, and Xiaozhu Lin. Power-
efficient Time-sensitive Mapping in Heterogeneous Systems. In Proceedings of the
21st International Conference on Parallel Architectures and Compilation Techniques,
PACT ’12, pages 23–32, New York, NY, USA, 2012. ACM.

[99] Michele Lombardi and Michela Milano. Allocation and Scheduling of Conditional
Task Graphs. Artificial Intelligence, 174(7-8):500–529, may 2010.

[100] ARM Ltd. big.LITTLE Technology: The Future of Mobile, 2013.

[101] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: exploiting parallelism
on heterogeneous multiprocessors with adaptive mapping. In Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO
42, pages 45–55, New York, NY, USA, 2009. ACM.

[102] Kai Ma, Xue Li, Wei Chen, Chi Zhang, and Xiaorui Wang. GreenGPU: A Holistic
Approach to Energy Efficiency in GPU-CPU Heterogeneous Architectures. In Pro-
ceedings of the 2012 41st International Conference on Parallel Processing, ICPP ’12,
pages 48–57, Washington, DC, USA, 2012. IEEE Computer Society.

[103] Alberto Magni, Dominik Grewe, and Nick Johnson. Input-aware Auto-tuning for
Directive-based GPU Programming. In Proceedings of the 6th Workshop on General
Purpose Processor Using Graphics Processing Units, GPGPU-6, pages 66–75, New
York, NY, USA, 2013. ACM.

122

Bibliography 123

[104] Gabriel Martinez, Mark Gardner, and Wu-chun Feng. CU2CL: A CUDA-to-OpenCL
Translator for Multi- and Many-Core Architectures. In Parallel and Distributed
Systems (ICPADS), 2011 IEEE 17th International Conference on, pages 300 –307,
dec. 2011.

[105] Giuseppe Massari, Chiara Caffarri, Patrick Bellasi, and William Fornaciari. Ex-
tending a Run-time Resource Management Framework to Support OpenCL and
Heterogeneous Systems. In Proceedings of Workshop on Parallel Programming and
Run-Time Management Techniques for Many-core Architectures and Design Tools
and Architectures for Multicore Embedded Computing Platforms, PARMA-DITAM
’14, pages 21:21–21:26, New York, NY, USA, 2014. ACM.

[106] Michael Matz1, Jan Hubička, Andreas Jaeger, and Mark Mitchell. System V Appli-
cation Binary Interface, AMD64 Architecture Processor Supplement, 2006.

[107] Mojtaba Mehrara, Mona Attariyan, Smitha Shyam, Kypros Constantinides, Valeria
Bertacco, and Todd Austin. Low-cost Protection for SER Upsets and Silicon Defects.
In Proceedings of the Conference on Design, Automation and Test in Europe, DATE
’07, pages 1146–1151, San Jose, CA, USA, 2007. EDA Consortium.

[108] Perhaad Mistry, Yash Ukidave, Dana Schaa, and David Kaeli. Valar: A Benchmark
Suite to Study the Dynamic Behavior of Heterogeneous Systems. In Proceedings of
the 6th Workshop on General Purpose Processor Using Graphics Processing Units,
GPGPU-6, pages 54–65, New York, NY, USA, 2013. ACM.

[109] Subhasish Mitra. Globally Optimized Robust Systems to Overcome Scaled CMOS
Reliability Challenges. In Proceedings of the Conference on Design, Automation and
Test in Europe, DATE ’08, pages 941–946, New York, NY, USA, 2008. ACM.

[110] C. Muller, S. Frey, M. Strengert, C. Dachsbacher, and T. Ertl. A Compute Unified
System Architecture for Graphics Clusters Incorporating Data Locality. Visualization
and Computer Graphics, IEEE Transactions on, 15(4):605 –617, july-aug. 2009.

[111] Satish Narayanasamy, Ayse K. Coskun, and Brad Calder. Transient Fault Prediction
Based on Anomalies in Processor Events. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’07, pages 1140–1145, San Jose, CA, USA,
2007. EDA Consortium.

[112] Fabian Nowak, Rainer Buchty, and Mario Kicherer. Providing Guidance Information
for Application-Mapping on Heterogeneous Parallel Systems. In Parallel-Algorithmen
und Rechnerstrukturen, volume 26 of Mitteilungen, pages 115–122. Gesellschaft für
Informatik e.V., December 2009.

[113] Fabian Nowak, Mario Kicherer, Rainer Buchty, and Wolfgang Karl. Delivering
guidance information in heterogeneous systems. In Michael Beigl and Franciso J.
Cyzorla-Almeida, editors, ARCS 2010 Workshop Proceedings, pages 95–101. VDE,
February 2010.

[114] Nvidia. Whitepaper NVIDIA’s Next Generation CUDA Compute Architecture: Kepler
GK110. v1.0.

[115] Michael F. P. O’Boyle, Zheng Wang, and Dominik Grewe. Portable Mapping of Data
Parallel Programs to OpenCL for Heterogeneous Systems. In Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimization (CGO),
CGO ’13, pages 1–10, Washington, DC, USA, 2013. IEEE Computer Society.

[116] Tetsuya Odajima, Taisuke Boku, Mitsuhisa Sato, Toshihiro Hanawa, Yuetsu Kodama,
Raymond Namyst, Samuel Thibault, and Olivier Aumage. Adaptive Task Size Control

123

124 Bibliography

on High Level Programming for GPU/CPU Work Sharing. In Rocco Aversa, Joanna
Kołodziej, Jun Zhang, Flora Amato, and Giancarlo Fortino, editors, Algorithms and
Architectures for Parallel Processing, volume 8286 of Lecture Notes in Computer
Science, pages 59–68. Springer International Publishing, 2013.

[117] H. Orsila, E. Salminen, and T.D. Hamalainen. Parameterizing simulated annealing
for distributing kahn process networks on multiprocessor socs. In System-on-Chip,
2009. SOC 2009. International Symposium on, pages 019–026, Oct 2009.

[118] Sreepathi Pai, R. Govindarajan, and Matthew J. Thazhuthaveetil. Fast and Effi-
cient Automatic Memory Management for GPUs Using Compiler-assisted Runtime
Coherence Scheme. In Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques, PACT ’12, pages 33–42, New York, NY,
USA, 2012. ACM.

[119] Prasanna Pandit and R. Govindarajan. Fluidic Kernels: Cooperative Execution of
OpenCL Programs on Multiple Heterogeneous Devices. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization, CGO
’14, pages 273:273–273:283, New York, NY, USA, 2014. ACM.

[120] E. Perahia, Carlos Cordeiro, Minyoung Park, and L.L. Yang. IEEE 802.11ad:
Defining the Next Generation Multi-Gbps Wi-Fi. In Consumer Communications and
Networking Conference (CCNC), 2010 7th IEEE, pages 1–5, Jan 2010.

[121] Jacques A. Pienaar, Anand Raghunathan, and Srimat Chakradhar. MDR: perfor-
mance model driven runtime for heterogeneous parallel platforms. In Proceedings of
the international conference on Supercomputing, ICS ’11, pages 225–234, New York,
NY, USA, 2011. ACM.

[122] Artur Podobas, Mats Brorsson, and Vladimir Vlassov. Exploring heterogeneous
scheduling using the task-centric programming model. In Proceedings of the 18th
international conference on Parallel processing workshops, Euro-Par’12, pages 133–
144, Berlin, Heidelberg, 2013. Springer-Verlag.

[123] P. Racunas, K. Constantinides, S. Manne, and S.S. Mukherjee. Perturbation-based
Fault Screening. In High Performance Computer Architecture, 2007. HPCA 2007.
IEEE 13th International Symposium on, pages 169–180, Feb 2007.

[124] Joydeep Ray, James C. Hoe, and Babak Falsafi. Dual Use of Superscalar Datapath
for Transient-fault Detection and Recovery. In Proceedings of the 34th Annual
ACM/IEEE International Symposium on Microarchitecture, MICRO 34, pages 214–
224, Washington, DC, USA, 2001. IEEE Computer Society.

[125] M. Rebaudengo, M.S. Reorda, M. Violante, and Marco Torchiano. A source-to-
source compiler for generating dependable software. In Source Code Analysis and
Manipulation, 2001. Proceedings. First IEEE International Workshop on, pages 33–42,
2001.

[126] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient Fault Detection
via Simultaneous Multithreading. In Proceedings of the 27th Annual International
Symposium on Computer Architecture, ISCA ’00, pages 25–36, New York, NY, USA,
2000. ACM.

[127] Ruymán Reyes, Iván López, Juan J. Fumero, and Francisco de Sande. accULL: an
OpenACC implementation with CUDA and OpenCL support. In Proceedings of the
18th international conference on Parallel Processing, Euro-Par’12, pages 871–882,
Berlin, Heidelberg, 2012. Springer-Verlag.

124

Bibliography 125

[128] Ruymán Reyes, Iván López, Juan J. Fumero, and Francisco de Sande. A prelimi-
nary evaluation of OpenACC implementations. J. Supercomput., 65(3):1063–1075,
September 2013.

[129] Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, and Emmett
Witchel. PTask: Operating System Abstractions to Manage GPUs As Compute
Devices. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 233–248, New York, NY, USA, 2011. ACM.

[130] E. Rotem, A Naveh, D. Rajwan, A Ananthakrishnan, and E. Weissmann. Power-
Management Architecture of the Intel Microarchitecture Code-Named Sandy Bridge.
Micro, IEEE, 32(2):20–27, March 2012.

[131] H.G. Rotithor. Taxonomy of dynamic task scheduling schemes in distributed com-
puting systems. Computers and Digital Techniques, IEE Proceedings -, 141(1):1–10,
Jan 1994.

[132] D. Sabena, M. Sonza Reorda, L. Sterpone, P. Rech, and L. Carro. On the evaluation
of soft-errors detection techniques for GPGPUs. In Design and Test Symposium
(IDT), 2013 8th International, pages 1–6, Dec 2013.

[133] Amit Sabne, Putt Sakdhnagool, and Rudolf Eigenmann. Scaling Large-Data Compu-
tations on Multi-GPU Accelerators. In Proceedings of the 27th international ACM
conference on International conference on supercomputing, ICS ’13, pages 443–454,
New York, NY, USA, 2013. ACM.

[134] L.M. Sanchez, F. Fernandez, R. Sotomayor, and J.D. Garcia. A Comparative Evalua-
tion of Parallel Programming Models for Shared-Memory Architectures. In Parallel
and Distributed Processing with Applications (ISPA), 2012 IEEE 10th International
Symposium on, pages 363–370, July 2012.

[135] Martin Sandrieser, Siegfried Benkner, and Sabri Pllana. Improving programmability
of heterogeneous many-core systems via explicit platform descriptions. In Proceedings
of the 4th International Workshop on Multicore Software Engineering, IWMSE ’11,
pages 17–24, New York, NY, USA, 2011. ACM.

[136] Ute Schiffel, André Schmitt, Martin Süsskraut, Stefan Weigert, and Christof Fetzer.
Parallelizing Software-Implemented Error Detection. In Proceedings of the 7th IFIP
WG 10.2 International Workshop on Software Technologies for Embedded and Ubiq-
uitous Systems, SEUS ’09, pages 215–226, Berlin, Heidelberg, 2009. Springer-Verlag.

[137] Dirk Schmidl, Christian Terboven, Dieter an Mey, and Martin Bücker. Binding
nested OpenMP programs on hierarchical memory architectures. In Proceedings
of the 6th international conference on Beyond Loop Level Parallelism in OpenMP:
accelerators, Tasking and more, IWOMP’10, pages 29–42, Berlin, Heidelberg, 2010.
Springer-Verlag.

[138] Jie Shen, Ana Lucia Varbanescu, Henk Sips, Michael Arntzen, and Dick G. Simons.
Glinda: A Framework for Accelerating Imbalanced Applications on Heterogeneous
Platforms. In Proceedings of the ACM International Conference on Computing
Frontiers, CF ’13, pages 14:1–14:10, New York, NY, USA, 2013. ACM.

[139] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi. Modeling the
effect of technology trends on the soft error rate of combinational logic. In Dependable
Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on,
pages 389–398, 2002.

[140] Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan, Mark D.
Corner, and Emery D. Berger. Eon: A Language and Runtime System for Perpetual

125

126 Bibliography

Systems. In Proceedings of the 5th International Conference on Embedded Networked
Sensor Systems, SenSys ’07, pages 161–174, New York, NY, USA, 2007. ACM.

[141] Kyle Spafford, Jeremy Meredith, and Jeffrey Vetter. Maestro: Data Orchestration
and Tuning for OpenCL devices. In Proceedings of the 16th international Euro-
Par conference on Parallel processing: Part II, Euro-Par’10, pages 275–286, Berlin,
Heidelberg, 2010. Springer-Verlag.

[142] Kyle L. Spafford, Jeremy S. Meredith, Seyong Lee, Dong Li, Philip C. Roth, and
Jeffrey S. Vetter. The Tradeoffs of Fused Memory Hierarchies in Heterogeneous
Computing Architectures. In Proceedings of the 9th Conference on Computing
Frontiers, CF ’12, pages 103–112, New York, NY, USA, 2012. ACM.

[143] John A. Stratton, Christopher Rodrigrues, I-Jui Sung, Nady Obeid, Liwen Chang,
Geng Liu, and Wen-Mei W. Hwu. Parboil: A Revised Benchmark Suite for Scien-
tific and Commercial Throughput Computing. Technical Report IMPACT-12-01,
University of Illinois at Urbana-Champaign, Urbana, March 2012.

[144] Toshio Suganuma, Rajaram B. Krishnamurthy, Moriyoshi Ohara, and Toshio
Nakatani. Scaling Analytics Applications with OpenCL for Loosely Coupled Hetero-
geneous Clusters. In Proceedings of the ACM International Conference on Computing
Frontiers, CF ’13, pages 35:1–35:10, New York, NY, USA, 2013. ACM.

[145] Enqiang Sun, Dana Schaa, Richard Bagley, Norman Rubin, and David Kaeli. Enabling
task-level scheduling on heterogeneous platforms. In Proceedings of the 5th Annual
Workshop on General Purpose Processing with Graphics Processing Units, GPGPU-5,
pages 84–93, New York, NY, USA, 2012. ACM.

[146] Oussama Tahan and Mohamed Shawky. Using dynamic task level redundancy for
OpenMP fault tolerance. In Proceedings of the 25th international conference on
Architecture of Computing Systems, ARCS’12, pages 25–36, Berlin, Heidelberg, 2012.
Springer-Verlag.

[147] Hiroyuki Takizawa, Katsuto Sato, and Hiroaki Kobayashi. SPRAT: Runtime processor
selection for energy-aware computing. In Proc. IEEE Int’l. Conf. Cluster Computing
(CLUSTER), pages 386–393. IEEE, 2008.

[148] Hiroyuki Takizawa, Katsuto Sato, Kazuhiko Komatsu, and Hiroaki Kobayashi.
CheCUDA: A Checkpoint/Restart Tool for CUDA Applications. In Proceedings
of the 2009 International Conference on Parallel and Distributed Computing, Appli-
cations and Technologies, PDCAT ’09, pages 408–413, Washington, DC, USA, 2009.
IEEE Computer Society.

[149] George Teodoro, Timothy D. R. Hartley, Umit Catalyurek, and Renato Ferreira.
Run-time optimizations for replicated dataflows on heterogeneous environments.
In Proceedings of the 19th ACM International Symposium on High Performance
Distributed Computing, HPDC ’10, pages 13–24, New York, NY, USA, 2010. ACM.

[150] Samuel Thibault, François Broquedis, Brice Goglin, Raymond Namyst, and Pierre-
André Wacrenier. An Efficient OpenMP Runtime System for Hierarchical Architec-
tures. In Proceedings of the 3rd international workshop on OpenMP: A Practical
Programming Model for the Multi-Core Era, IWOMP ’07, pages 161–172, Berlin,
Heidelberg, 2008. Springer-Verlag.

[151] Xiang Tian and Khaled Benkrid. Mersenne Twister Random Number Generation
on FPGA, CPU and GPU. In Proceedings of the 2009 NASA/ESA Conference on
Adaptive Hardware and Systems, AHS ’09, pages 460–464, Washington, DC, USA,
2009. IEEE Computer Society.

126

Bibliography 127

[152] Martin Tillenius. SuperGlue: A shared memory framework using data versioning for
dependency-aware task-based parallelization. Technical Report 2014-010, Uppsala
University, Division of Scientific Computing, 2014.

[153] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. Task Scheduling Algorithms for
Heterogeneous Processors. In Proceedings of the Eighth Heterogeneous Computing
Workshop, HCW ’99, pages 3–, Washington, DC, USA, 1999. IEEE Computer Society.

[154] Haluk Topcuouglu, Salim Hariri, and Min-you Wu. Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing. IEEE Trans. Parallel
Distrib. Syst., 13(3):260–274, March 2002.

[155] Rafael Ubal, Byunghyun Jang, Perhaad Mistry, Dana Schaa, and David Kaeli.
Multi2Sim: A Simulation Framework for CPU-GPU Computing. In Proceedings
of the 21st International Conference on Parallel Architectures and Compilation
Techniques, PACT ’12, pages 335–344, New York, NY, USA, 2012. ACM.

[156] Xavier Vera, Jaume Abella, Javier Carretero, and Antonio González. Selective
Replication: A Lightweight Technique for Soft Errors. ACM Trans. Comput. Syst.,
27(4):8:1–8:30, January 2010.

[157] Cheng Wang, Ho-seop Kim, Youfeng Wu, and Victor Ying. Compiler-Managed
Software-based Redundant Multi-Threading for Transient Fault Detection. In Pro-
ceedings of the International Symposium on Code Generation and Optimization, CGO
’07, pages 244–258, Washington, DC, USA, 2007. IEEE Computer Society.

[158] Hao Wang, Vijay Sathish, Ripudaman Singh, Michael J. Schulte, and Nam Sung Kim.
Workload and Power Budget Partitioning for Single-chip Heterogeneous Processors.
In Proceedings of the 21st International Conference on Parallel Architectures and
Compilation Techniques, PACT ’12, pages 401–410, New York, NY, USA, 2012. ACM.

[159] Nicholas J. Wang and Sanjay J. Patel. ReStore: Symptom-Based Soft Error Detection
in Microprocessors. IEEE Trans. Dependable Secur. Comput., 3(3):188–201, July
2006.

[160] Perry H. Wang, Jamison D. Collins, Gautham N. Chinya, Hong Jiang, Xinmin Tian,
Milind Girkar, Nick Y. Yang, Guei-Yuan Lueh, and Hong Wang. EXOCHI: Architec-
ture and Programming Environment for a Heterogeneous Multi-core Multithreaded
System. In Proceedings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’07, pages 156–166, New York, NY,
USA, 2007. ACM.

[161] Ute Wappler and Martin Müller. Software Protection Mechanisms for Dependable
Systems. In Proceedings of the Conference on Design, Automation and Test in Europe,
DATE ’08, pages 947–952, New York, NY, USA, 2008. ACM.

[162] V.M. Weaver, D. Terpstra, and S. Moore. Non-determinism and overcount on modern
hardware performance counter implementations. In Performance Analysis of Systems
and Software (ISPASS), 2013 IEEE International Symposium on, pages 215–224,
April 2013.

[163] Rick Weber, Akila Gothandaraman, Robert J. Hinde, and Gregory D. Peterson.
Comparing Hardware Accelerators in Scientific Applications: A Case Study. IEEE
Transactions on Parallel and Distributed Systems, 22:58–68, 2011.

[164] John Robert Wernsing and Greg Stitt. Elastic Computing: a Framework for Trans-
parent, Portable, and Adaptive Multi-core Heterogeneous Computing. In Proceedings
of the ACM SIGPLAN/SIGBED 2010 conference on Languages, compilers, and tools
for embedded systems, LCTES ’10, pages 115–124, New York, NY, USA, 2010. ACM.

127

128 Bibliography

[165] R. Clint Whaley and Jack J. Dongarra. Automatically Tuned Linear Algebra Software.
In Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, SC ’98, pages
1–27, Washington, DC, USA, 1998. IEEE Computer Society.

[166] Cemal Yilmaz and Adam Porter. Combining Hardware and Software Instrumentation
to Classify Program Executions. In Proceedings of the Eighteenth ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE ’10, pages
67–76, New York, NY, USA, 2010. ACM.

[167] Bobby Dalton Young, Sudeep Pasricha, Anthony A. Maciejewski, Howard Jay Siegel,
and James T. Smith. Heterogeneous Makespan and Energy-constrained DAG Schedul-
ing. In Proceedings of the 2013 Workshop on Energy Efficient High Performance
Parallel and Distributed Computing, EEHPDC ’13, pages 3–12, New York, NY, USA,
2013. ACM.

[168] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts. A fully integrated multi-CPU,
GPU and memory controller 32nm processor. In Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), 2011 IEEE International, pages 264–266, Feb
2011.

[169] Lei Zhang, Yinhe Han, Qiang Xu, and Xiaowei Li. Defect Tolerance in Homogeneous
Manycore Processors Using Core-level Redundancy with Unified Topology. In Pro-
ceedings of the Conference on Design, Automation and Test in Europe, DATE ’08,
pages 891–896, New York, NY, USA, 2008. ACM.

128

Appendix

A. Case study: Preprocessing for medical imaging

The Matlab code for the preprocessing stage of the image reconstruction as described in
Chapter 7.5.1 without the code for loading and storing the data:

i f ~ e x i s t (’DLS_MATLAB_INIT’)
% add implementat ions only once
DLS_MATLAB_INIT=1;

d l s (’ add_impl ’ , ’ doTransformT2F ’ , ’ doTransform_T2F ’)
d l s (’ add_impl ’ , ’ doTransformF2T ’ , ’ doTransform_F2T ’)

d l s (’ add_impl ’ , ’ doDeOffset_FD ’ , ’doDeOffsetFDinFDout_CPU_OMP ’)
d l s (’ add_impl ’ , ’ doDeOffset_FD ’ , ’doDeOffsetFDinFDout_GPU_CUDA ’)

d l s (’ add_impl ’ , ’ doEnvelopeGeneration_FD ’ , \
’doEnvelopeGenerationFDinFDout_CPU_OMP ’)

d l s (’ add_impl ’ , ’ doEnvelopeGeneration_FD ’ , \
’doEnvelopeGenerationFDinFDout_GPU_CUDA ’)

d l s (’ add_impl ’ , ’ doMatchedFiltering_FD ’ , \
’ doMatchedFilteringFDinFDout_CPU_OMP ’)

d l s (’ add_impl ’ , ’ doMatchedFiltering_FD ’ , \
’ doMatchedFilteringFDinFDout_GPU_CUDA ’)

d l s (’ add_impl ’ , ’ doDeOffset_TD ’ , ’doDeOffsetTDinTDout_CPU_OMP ’)
d l s (’ add_impl ’ , ’ doDeOffset_TD ’ , ’doDeOffsetTDinTDout_GPU_CUDA ’)

d l s (’ add_impl ’ , ’ doEnvelopeGeneration_TD ’ , \
’doEnvelopeGenerationTDinTDout_CPU_OMP ’)

d l s (’ add_impl ’ , ’ doEnvelopeGeneration_TD ’ , \
’doEnvelopeGenerationTDinTDout_GPU_CUDA ’)

d l s (’ add_impl ’ , ’ doMatchedFiltering_TD ’ , \
’doMatchedFilteringTDinTDout_CPU_OMP ’)

d l s (’ add_impl ’ , ’ doMatchedFiltering_TD ’ , \
’doMatchedFilteringTDinTDout_GPU_CUDA ’)

d l s (’ add_impl ’ , ’ doPeakDetection_TD ’ , \
’doPeakDetectionTDinTDout_CPU_OMP ’)

d l s (’ add_impl ’ , ’ doPeakDetection_TD ’ , \

129

130 Appendix

’doPeakDetectionTDinTDout_GPU_CUDA ’)

d l s (’ add_impl ’ , ’ doOptPulseConv_TD ’ , ’doOptPulseConvTDinTDout_CPU_OMP ’)
d l s (’ add_impl ’ , ’ doOptPulseConv_TD ’ , ’doOptPulseConvTDinTDout_GPU_CUDA ’)

end

% −−> load ing input data <−−

% r e g i s t e r i n g data at the runtime system , r e tu rn s r e f e r e n c e s
data_A = d l s (’ reg_data ’ , ascans_A) ;
data_B = d l s (’ reg_data ’ , ascans_B) ;
mf_fdptr = d l s (’ reg_data ’ , mf_fd) ;
mf_tdptr = d l s (’ reg_data ’ , mf_td) ;
h i l p t r = d l s (’ reg_data ’ , h i l) ;
op_fdptr = d l s (’ reg_data ’ , op_fd) ;
op_tdptr = d l s (’ reg_data ’ , op_td) ;
f f tparamspt r = d l s (’ reg_data ’ , f f tparams) ;

% c r ea t e a switch as f i r s t task
switch_task = d l s (’ create_switch ’) ;

%%%%%%%%%%%%%
%%% FD branch

% submit a task " doTransformT2F " with :
% − no return value ,
% − read ac c e s s on data_A ,
% − wr i t e a c c e s s on data_B ,
% − three r e gu l a r parameters that are passed unmodif ied to
% the implementation
% − and append i t to a new branch in switch_task
f = d l s (’ submit_task ’ , ’ doTransformT2F ’ , 0 , ’ rwvvva ’ , \

data_A , data_B , mf_fdptr , f f tparamsptr , 0 , switch_task) ;

f 1 = d l s (’ submit_task ’ , ’ doDeOffset_FD ’ , 0 , ’ rwa ’ , data_B , \
data_A , f) ;

f 2 = d l s (’ submit_task ’ , ’ doMatchedFiltering_FD ’ , 0 , ’ rrwa ’ , \
data_A , mf_fdptr , data_B , f1) ;

f 3 = d l s (’ submit_task ’ , ’ doEnvelopeGeneration_FD ’ , 0 , \
’ rrwra ’ , data_B , h i l p t r , data_A , f f tparamsptr , f 2) ;

d l s (’ submit_task ’ , ’ doTransformF2T ’ , 0 , ’ rwvvva ’ , data_A , \
data_B , mf_fdptr , f f tparamsptr , 1 , f 3)

%%%%%%%%%%%%%
%%% TD branch

t1 = d l s (’ submit_task ’ , ’ doDeOffset_TD ’ , 0 , ’ rwa ’ , data_A , \
data_B , switch_task) ;

t2 = d l s (’ submit_task ’ , ’ doMatchedFiltering_TD ’ , 0 , ’ rrwa ’ , \
data_B , mf_tdptr , data_A , t1) ;

t3 = d l s (’ submit_task ’ , ’ doEnvelopeGeneration_TD ’ , 0 , \
’ rrwra ’ , data_A , h i l p t r , data_B , f f tparamsptr , t2) ;

%%%%%%%%%%%%%
%%% common

d l s (’ submit_task ’ , ’ doPeakDetection_TD ’ , 0 , ’ rvw ’ , data_B , \
2 , data_A)

130

A. Case study: Preprocessing for medical imaging 131

d l s (’ submit_task ’ , ’ doOptPulseConv_TD ’ , 0 , ’ rrw ’ , data_A , \
op_tdptr , data_B)

% ca l c u l a t e a task graph from submitted ta sk s
tgraph = d l s (’ calc_tgraph ’) ;

% s t a r t execut ion
d l s (’ exec_tgraph ’ , tgraph)

% −−> s to r e / forward data <−−

% f r e e a l l o c a t e d data
d l s (’ unreg_data ’ , ascansptr , mf_fdptr , mf_tdptr , h i l p t r , \

op_fdptr , op_tdptr , preprocessDataptr , f f tpa ramspt r)

131

	Contents
	1 Introduction
	2 Background and related work
	2.1 Heterogeneous systems
	2.2 Programming models and code generation for heterogeneous systems
	2.3 Automatic optimization of hardware-specific implementations
	2.4 Data and task mapping
	2.5 Enhancing dependability in modern systems

	3 A unified approach
	4 Light-weight integration and transparent task migration
	4.1 Introduction
	4.2 Native C interface
	4.2.1 Pointer-based function migration
	4.2.2 Explicit integration using the DLS programming interface
	4.2.3 Discussion

	4.3 Integration in Matlab for rapid prototyping
	4.4 Transparent OpenCL wrapper
	4.5 Call stack infrastructure
	4.6 Extensible hardware interface
	4.7 Ad-hoc work offloading in local networks

	5 Implementation management and application portability
	5.1 Introduction
	5.2 Related work
	5.3 Decoupled application development
	5.3.1 Implications on source code and build systems
	5.3.2 Assembling applications and implementations
	5.3.3 Supporting fault diagnostics during development

	5.4 Balancing requirements and abilities
	5.5 Evaluation
	5.5.1 Overhead for matching requirements and abilities
	5.5.2 Performance with Rodinia benchmarks
	5.5.3 Use case: random number generation
	5.5.4 Portable MPI application

	6 Establishing cost awareness
	6.1 Introduction
	6.2 Learning costs during application execution
	6.3 Memory management and the impact of data locality
	6.4 Reacting on competition for resources
	6.4.1 Passive checks
	6.4.2 Shared-memory waiting queues

	6.5 Impact of faults on costs
	6.5.1 Symptom-based fault detection
	6.5.2 Fault-aware runtime estimation

	7 Anticipatory scheduling in heterogeneous systems
	7.1 Introduction
	7.2 Online simulation of task execution
	7.3 Building blocks for scheduling decisions
	7.3.1 Task mapping
	7.3.2 Conditional task graphs
	7.3.3 Task splitting
	7.3.4 Taking precautions against faults

	7.4 Decision making
	7.5 Evaluation
	7.5.1 Case study: Preprocessing for medical imaging
	7.5.2 Fault-tolerant task execution

	8 Conclusion
	8.1 Summary
	8.2 Outlook

	Bibliography
	Appendix
	A Case study: Preprocessing for medical imaging

