2,656 research outputs found

    Education and lifelong learning spending review 2007

    Get PDF

    Growing wheat to maturity in reduced gas pressures

    Get PDF
    The main objective of this project was to determine assimilation of CO2 and efficiency of water use in wheat grown to maturity in a low pressure total gas pressure environment. A functional test of the low pressure plant growth chamber system was accomplished in February and March of 1993 wherein this objective was partially achieved. Plants were grown to maturity in the chambers. Data were actively collected during the first 29 days. The plants were allowed to maintain themselves at the CO2 compensation point until day 45 of the study at which point active atmospheric regulation was resumed. This provided data at the vegetative and reproductive stages of the life cycle of the plants. However, this information may not be representative of the performance of the plants due to the loss of low pressure on a number of days during the study, which affected the plants by changing the pressure potential of the tissues. The performance of the system will be discussed on a component by component basis. The maintenance of the plants at the CO2 compensation point was driven by the failure of the computer program operating the system. The software problems that arose during the functional test have since been corrected. Results from the functional test also indicated that the plants were not receiving adequate light and nutrients. The growth chambers have been relocated and the growth room modified to compensate for these deficiencies

    The temporal changes of the pulsational periods of the pre-white dwarf PG 1159-035

    Full text link
    PG 1159-035, a pre-white dwarf with T=140000 K, is the prototype of the PG1159 spectroscopic class and the DOV pulsating class. Changes in the star cause variations in its oscillation periods. The measurement of temporal change in the oscillation periods, dP/dt, allows us to estimate directly rates of stellar evolutionary changes, such as the cooling rate and the envelope contraction rate, providing a way to test and refine evolutionary models for pre-white dwarf pulsating stars. We measured 27 pulsation modes period changes. The periods varied at rates of between 1 and 100 ms/yr, and several can be directly measured with a relative standard uncertainty below 10%. For the 516.0 s mode (the highest in amplitude) in particular, not only the value of dP/dt can be measured directly with a relative standard uncertainty of 2%, but the second order period change, d(dP/dt)/dt, can also be calculated reliably. By using the (O-C) method we refined the dP/dt and estimated the d(dP/dt)/dt for six other pulsation periods. As a first application, we calculated the change in the PG 1559-035 rotation period, dP_rot/dt = -2.13*10^{-6} s/s, the envelope contraction rate dR/dt = -2.2*10^{-13} solar radius/s, and the cooling rante dT/dt = -1.42*10^{-3} K/s.Comment: 8 pages; 2 figures; 2 tables; appendix with 2 table

    HST Studies of the WLM Galaxy. I. The Age and Metallicity of the Globular Cluster

    Full text link
    We have obtained V and I images of the lone globular cluster that belongs to the dwarf Local Group irregular galaxy known as WLM. The color-magnitude diagram of the cluster shows that it is a normal old globular cluster with a well-defined giant branch reaching to M_V=-2.5, a horizontal branch at M_V=+0.5, and a sub-giant branch extending to our photometry limit of M_V=+2.0. A best fit to theoretical isochrones indicates that this cluster has a metallicity of [Fe/H]=-1.52\pm0.08 and an age of 14.8\pm0.6 Gyr, thus indicating that it is similar to normal old halo globulars in our Galaxy. From the fit we also find that the distance modulus of the cluster is 24.73\pm0.07 and the extinction is A_V=0.07\pm0.06, both values that agree within the errors with data obtained for the galaxy itself by others. We conclude that this normal massive cluster was able to form during the formation of WLM, despite the parent galaxy's very small intrinsic mass and size.Comment: 14 pages, 5 figures, 1 tabl

    Bibliographia Chemica Croatica

    Get PDF
    corecore