76 research outputs found

    CMOS Wide Tuning Gilbert Mixer with Controllable IF Bandwidth in Upcoming RF Front End for Multi-Band Multi-Standard Applications

    Get PDF
    The current global system for mobile communications, wireless local area, Bluetooth, and ultra-wideband demands a multi-band/multi-standard RF front end that can access all the available bandwidth specifications. Trade-offs occur between power consumption, noise figure, and linearity in CMOS Gilbert mixer wide tuning designs. Besides, it is preferable to have a constant IF bandwidth for different gain settings as the bandwidth varies with the load impedance when an RF receiver is tuned to a higher frequency. My dissertation consists of three parts. First, a tunable constant IF bandwidth Gilbert mixer is introduced for multi-band standard wireless applications such as 802.11 a/b/g WLAN and 802.16a WMAN, followed by a design synthesis approach to optimize the mixer to meet the design center frequency range, constant IF bandwidth, and power. A synthesized Gilbert mixer with effective prototype inductors, designed in 180 nm CMOS process, is presented in this dissertation with the tunability of 200 MHz IF, a constant IF bandwidth of 50 MHz, a conversion gain of 13.75 dB, a noise figure of 2.9dB, 1-dB compression point of -15.19 dBm, IIP3 of -5.8 dBm, and a power of 9 mW. Next, mixer inductor loss and equivalent electronic circuit analysis are presented to optimize the approach to offset center frequency and bandwidth inaccuracy due to the inductance loss between the actual and ideal prototype inductor. The proposed tunable Gilbert mixer simulations present a tunable IF of 177.8 MHz, an IF bandwidth of 87.57 MHz, a conversion gain of 7.4 dB, a noise figure of 3.14 dB, 1-dB compression point of -17.1 dBm, and IIP3 of -19.8 dBm. Last, a CMOS integrated wide frequency span CMOS low noise amplifier is integrated with the tunable Gilbert mixer to achieve a 27.68 dB conversion gain, a 3.47 dB low noise figure, -14.6 dBm 1-dB compression point, and -18.6 dBm IIP3

    High Performance LNAs and Mixers for Direct Conversion Receivers in BiCMOS and CMOS Technologies

    Get PDF
    The trend in cellular chipset design today is to incorporate support for a larger number of frequency bands for each new chipset generation. If the chipset also supports receiver diversity two low noise amplifiers (LNAs) are required for each frequency band. This is however associated with an increase of off-chip components, i.e. matching components for the LNA inputs, as well as complex routing of the RF input signals. If balanced LNAs are implemented the routing complexity is further increased. The first presented work in this thesis is a novel multiband low noise single ended LNA and mixer architecture. The mixer has a novel feedback loop suppressing both second order distortion as well as DC-offset. The performance, verified by Monte Carlo simulations, is sufficient for a WCDMA application. The second presented work is a single ended multiband LNA with programmable integrated matching. The LNA is connected to an on-chip tunable balun generating differential RF signals for a differential mixer. The combination of the narrow band input matching and narrow band balun of the presented LNA is beneficial for suppressing third harmonic downconversion of a WLAN interferer. The single ended architecture has great advantages regarding PCB routing of the RF input signals but is on the other hand more sensitive to common mode interferers, e.g. ground, supply and substrate noise. An analysis of direct conversion receiver requirements is presented together with an overview of different LNA and mixer architectures in both BiCMOS and CMOS technology

    HIGH PERFORMANCE CMOS WIDE-BAND RF FRONT-END WITH SUBTHRESHOLD OUT OF BAND SENSING

    Get PDF
    In future, the radar/satellite wireless communication devices must support multiple standards and should be designed in the form of system-on-chip (SoC) so that a significant reduction happen on cost, area, pins, and power etc. However, in such device, the design of a fully on-chip CMOS wideband receiver front-end that can process several radar/satellite signal simultaneously becomes a multifold complex problem. Further, the inherent high-power out-of-band (OB) blockers in radio spectrum will make the receiver more non-linear, even sometimes saturate the receiver. Therefore, the proper blocker rejection techniques need to be incorporated. The primary focus of this research work is the development of a CMOS high-performance low noise wideband receiver architecture with a subthreshold out of band sensing receiver. Further, the various reconfigurable mixer architectures are proposed for performance adaptability of a wideband receiver for incoming standards. Firstly, a high-performance low- noise bandwidthenhanced fully differential receiver is proposed. The receiver composed of a composite transistor pair noise canceled low noise amplifier (LNA), multi-gate-transistor (MGTR) trans-conductor amplifier, and passive switching quad followed by Tow Thomas bi-quad second order filter based tarns-impedance amplifier. An inductive degenerative technique with low-VT CMOS architecture in LNA helps to improve the bandwidth and noise figure of the receiver. The full receiver system is designed in UMC 65nm CMOS technology and measured. The packaged LNA provides a power gain 12dB (including buffer) with a 3dB bandwidth of 0.3G – 3G, noise figure of 1.8 dB having a power consumption of 18.75mW with an active area of 1.2mm*1mm. The measured receiver shows 37dB gain at 5MHz IF frequency with 1.85dB noise figure and IIP3 of +6dBm, occupies 2mm*1.2mm area with 44.5mW of power consumption. Secondly, a 3GHz-5GHz auxiliary subthreshold receiver is proposed to estimate the out of blocker power. As a redundant block in the system, the cost and power minimization of the auxiliary receiver are achieved via subthreshold circuit design techniques and implementing the design in higher technology node (180nm CMOS). The packaged auxiliary receiver gives a voltage gain of 20dB gain, the noise figure of 8.9dB noise figure, IIP3 of -10dBm and 2G-5GHz bandwidth with 3.02mW power consumption. As per the knowledge, the measured results of proposed main-high-performancereceiver and auxiliary-subthreshold-receiver are best in state of art design. Finally, the various viii reconfigurable mixers architectures are proposed to reconfigure the main-receiver performance according to the requirement of the selected communication standard. The down conversion mixers configurability are in the form of active/passive and Input (RF) and output (IF) bandwidth reconfigurability. All designs are simulated in 65nm CMOS technology. To validate the concept, the active/ passive reconfigurable mixer configuration is fabricated and measured. Measured result shows a conversion gain of 29.2 dB and 25.5 dB, noise figure of 7.7 dB and 10.2 dB, IIP3 of -11.9 dBm and 6.5 dBm in active and passive mode respectively. It consumes a power 9.24mW and 9.36mW in passive and active case with a bandwidth of 1 to 5.5 GHz and 0.5 to 5.1 GHz for active/passive case respectively

    Energy-Efficient Wireless Circuits and Systems for Internet of Things

    Full text link
    As the demand of ultra-low power (ULP) systems for internet of thing (IoT) applications has been increasing, large efforts on evolving a new computing class is actively ongoing. The evolution of the new computing class, however, faced challenges due to hard constraints on the RF systems. Significant efforts on reducing power of power-hungry wireless radios have been done. The ULP radios, however, are mostly not standard compliant which poses a challenge to wide spread adoption. Being compliant with the WiFi network protocol can maximize an ULP radio’s potential of utilization, however, this standard demands excessive power consumption of over 10mW, that is hardly compatible with in ULP systems even with heavy duty-cycling. Also, lots of efforts to minimize off-chip components in ULP IoT device have been done, however, still not enough for practical usage without a clean external reference, therefore, this limits scaling on cost and form-factor of the new computer class of IoT applications. This research is motivated by those challenges on the RF systems, and each work focuses on radio designs for IoT applications in various aspects. First, the research covers several endeavors for relieving energy constraints on RF systems by utilizing existing network protocols that eventually meets both low-active power, and widespread adoption. This includes novel approaches on 802.11 communication with articulate iterations on low-power RF systems. The research presents three prototypes as power-efficient WiFi wake-up receivers, which bridges the gap between industry standard radios and ULP IoT radios. The proposed WiFi wake-up receivers operate with low power consumption and remain compatible with the WiFi protocol by using back-channel communication. Back-channel communication embeds a signal into a WiFi compliant transmission changing the firmware in the access point, or more specifically just the data in the payload of the WiFi packet. With a specific sequence of data in the packet, the transmitter can output a signal that mimics a modulation that is more conducive for ULP receivers, such as OOK and FSK. In this work, low power mixer-first receivers, and the first fully integrated ultra-low voltage receiver are presented, that are compatible with WiFi through back-channel communication. Another main contribution of this work is in relieving the integration challenge of IoT devices by removing the need for external, or off-chip crystals and antennas. This enables a small form-factor on the order of mm3-scale, useful for medical research and ubiquitous sensing applications. A crystal-less small form factor fully integrated 60GHz transceiver with on-chip 12-channel frequency reference, and good peak gain dual-mode on-chip antenna is presented.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162975/1/jaeim_1.pd

    A Low-Power, Laser-Based Delta-Sigma Modulator for the Measurement of Atmospheric Gas Composition

    Get PDF
    With the increased attention on monitoring the atmosphere’s gas composition, new ways of accurately measuring these concentrations are needed. Along with the needed increase in measurement accuracy; size, space, and power reduction is also essential in modern systems. As semiconductor technology has advanced, the abilities to meet the previously mentioned criteria are becoming more realizable. Instrumentation used to measure the atmosphere’s composition is traditionally large, taking up much needed space and using larger amounts of power. While the larger instrumentation provides the necessary accuracy, the other constraints are sacrificed. For this reason, a smaller, yet highly accurate solution is needed. The Proof-of-Concept (POC) solution that is proposed in this thesis is a Delta-Sigma (ΔΣ) Modulator designed in a 0.5 micron (µm) Bulk CMOS Process. Using a 1.55 micron (µm) laser as the signal input while using a specified reference, the Delta-Sigma Modulator will use oversampling and noise shaping to provide an accurate, one-bit digital output count that correlates the difference between the reference signal and the laser’s intensity that is input to the system. This allows for the possibility of a high resolution output, with high accuracy, and significant reductions in space used and power consumed

    Study of substrate noise and techniques for minimization

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (p. 155-158).This thesis presents a study of the effects of substrate noise on analog circuits in mixed-signal chips and techniques for minimizing these harmful effects on sensitive analog circuits. A microchip built in a 0.25um CMOS epitaxial process was designed, fabricated, and tested for this research. Through the use of an on-chip sampling scope, the effect of substrate noise generated by digital inverters with coupling capacitors to the substrate on analog circuits was characterized. Substrate noise coupled into a representative analog circuit, a switched capacitor delta-sigma modulator primarily through the asymmetrical parasitics of the input sampling circuit. Furthermore, since some of the parasitics are nonlinear with input voltage, substrate noise couples into the analog circuits producing an input signal dependent component and an input signal independent component. The substrate noise, with decay time constants of a few nanoseconds and ringing frequencies of few hundred megahertz, can decrease analog circuit performance. In the case of a delta-sigma modulator, substrate noise caused the signal to noise power ratio to decrease by more than 18dB, 3 bits in terms of analog-to-digital converter metrics. In addition, two techniques of minimizing the substrate noise and its effects were explored. The first used a replica delta-sigma modulator on the same chip to subtract the effects of substrate noise from the original delta-sigma modulator. This method proved useful for removing input signal independent substrate noise, but not input signal dependent substrate noise which dominates in-band noise for large input signal magnitudes. The second technique involved an active substrate noise cancellation system.(cont.) A discrete time feedback loop senses the substrate noise, processes it through a filter, and uses an array of digital inverters to cancel the substrate noise. The principal advantages of this technique are the shaping of substrate noise through a designed filter without a significant power penalty and design independence from the analog and digital components. Measured data shows that this technique is capable of over 20dB reduction in substrate noise on the substrate voltage itself. Measured data also shows over 10dB improvement in SNDR of the delta-sigma modulator in certain cases.by Mark Shane Peng.Ph.D

    Broadband RF Front-End Design for Multi-Standard Receiver with High-Linearity and Low-Noise Techniques

    Get PDF
    Future wireless communication devices must support multiple standards and features on a single-chip. The trend towards software-defined radio requires flexible and efficient RF building blocks which justifies the adoption of broadband receiver front-ends in modern and future communication systems. The broadband receiver front-end significantly reduces cost, area, pins, and power, and can process several signal channels simultaneously. This research is mainly focused on the analysis and realization of the broadband receiver architecture and its various building blocks (LNA, Active Balun-LNA, Mixer, and trans-impedance amplifier) for multi-standard applications. In the design of the mobile DTV tuner, a direct-conversion receiver architecture is adopted achieving low power, low cost, and high dynamic-range for DVB-H standard. The tuner integrates a single-ended RF variable gain amplifier (RFVGA), a current-mode passive mixer, and a combination of continuous and discrete-time baseband filter with built-in anti-aliasing. The proposed RFVGA achieves high dynamic-range and gain-insensitive input impedance matching performance. The current-mode passive mixer achieves high gain, low noise, and high linearity with low power supplies. A wideband common-gate LNA is presented that overcomes the fundamental trade-off between power and noise match without compromising its stability. The proposed architecture can achieve the minimum noise figure over the previously reported feedback amplifiers in common-gate configuration. The proposed architecture achieves broadband impedance matching, low noise, large gain, enhanced linearity, and wide bandwidth concurrently by employing an efficient and reliable dual negative-feedback. For the wideband Inductorless Balun-LNA, active single-to-differential architecture has been proposed without using any passive inductor on-chip which occupies a lot of silicon area. The proposed Balun-LNA features lower power, wider bandwidth, and better gain and phase balance than previously reported architectures of the same kind. A surface acoustic wave (SAW)-less direct conversion receiver targeted for multistandard applications is proposed and fabricated with TSMC 0.13?m complementary metal-oxide-semiconductor (CMOS) technology. The target is to design a wideband SAW-less direct coversion receiver with a single low noise transconductor and current-mode passive mixer with trans-impedance amplifier utilizing feed-forward compensation. The innovations in the circuit and architecture improves the receiver dynamic range enabling highly linear direct-conversion CMOS front-end for a multi-standard receiver

    System-Level Design of All-Digital LTE / LTE-A Transmitter Hardware

    Get PDF
    This thesis presents a detailed system-level analysis of an all-digital transmitter hardware based on the Direct-Digital RF-Modulator (DDRM). The purpose of the presented analysis is to evaluate whether this particular transmitter architecture is suitable to be used in LTE / LTE-A mobile phones. The DDRM architecture is based on the Radio Frequency Digital-to-Analog Converter (RF-DAC), whose system-level characteristics are investigated in this work through mathematical analysis and MATLAB simulations. In particular, a new analytical model for the timing error in the distributed upconversion is developed and verified. Moreover, this thesis reviews the LTE and LTE-A standards, and describes how a baseband environment for signal generation/demodulation can be implemented in MATLAB. The presented system enables much more flexibility with respect to current commercial softwares like Agilent Signal Studio. Simulation results show that the most challenging specification to meet is the out-of-band noise floor, because of the stringent linearity and timing requirements posed on the RF-DAC. This suggests that new means of reducing the out-of-band noise in all-digital transmitters should be researched, in order not to make their design more complicated than for their analog counterpart

    SiGe BiCMOS RF front-ends for adaptive wideband receivers

    Get PDF
    The pursuit of dense monolithic integration and higher operating speed continues to push the integrated circuit (IC) fabrication technologies to their limits. The increasing process variation, associated with aggressive technology scaling, is having a negative impact on circuit yield in current IC technologies, and the problem is likely to become worse in the future. Circuit solutions that are more tolerant of the process variations are needed to fully utilize the benefits of technology scaling. The primary goal of this research is to develop high-frequency circuits that can deliver consistent performance even under the threat of increasing process variation. These circuits can be used to build ``self-healing" systems, which can detect process imperfections and compensate accordingly to optimize performance. In addition to improving yield, such adaptive circuits and systems can provide more robust and efficient solutions for a wide range of applications under varying operational and environmental conditions.Silicon-germanium (SiGe) BiCMOS technology is an ideal platform for highly integrated systems requiring both high-performance analog and radio-frequency (RF) circuits as well as large-scale digital functionality. This research is focused on designing circuit components for a high-frequency wideband self-healing receiver in SiGe BiCMOS technology. An adaptive image-reject mixer, low insertion-loss switches, a wideband low-noise amplifier (LNA), and a SiGe complementary LC oscillator were designed. Healing algorithms were developed, and automated self-healing of multiple parameters of the mixer was demonstrated in measurement. A monte-carlo simulation based methodology was developed to verify the effectiveness of the healing procedure. In summary, this research developed circuits, algorithms, simulation tools, and methods that are useful for building "self-healing" systems.Ph.D

    Integration of broadband direct-conversion quadrature modulators

    Get PDF
    To increase spectral efficiency, transmitters usually send only one of the information carrying sidebands centered around a single radio-frequency carrier. The close-lying mirror, or image, sideband will be eliminated either by the filtering method or by the phasing method. Since filter Q-values rise in direct relation to the transmitted frequencies, the filtering method is generally not feasible for integrated microwave transmitters. A quadrature modulator realizes the phasing method by combining signals phased at quadrature (i.e. at 90° offsets) to produce a single-sideband (SSB) output. In this way output filtering can be removed or its specifications greatly relieved so as to produce an economical microwave transmitter. The proliferation of integrated circuit (IC) technologies since the 1980s has further boosted the popularity of quadrature modulator as an IC realization makes possible the economical production of two closely matched doubly balanced mixers, which suppress carrier and even-order spurious leakage to circuit output. Another strength of IC is its ability to perform microwave quadrature generation accurately on-chip, and thereby to avoid most of the interconnect parasitics which could ruin high-frequency quadrature signaling. Nevertheless, all quadrature modulator implementations are sensitive to phasing and amplitude errors, which are born as a result of mismatches, from the use of inaccurate differential signaling, and from inadequacies in the phasing circuitry itself. A 2° phase error is easily produced, and it reduces the image-rejection ratio (IRR) to −30 dBc. Therefore, as baseband signals synthesized by digital signal processing (DSP) are sufficiently accurate, this thesis concentrates on analyzing and producing the microwave signal path of a direct-conversion quadrature modulator with special emphasis on broadband, multimode radio-compatible operation. A model of the direct-conversion quadrature modulator operation has been developed, which reveals the effect the circuit non-linearities and mismatch-related offsets have on available performance. Further, theoretical proof is given of the well-known property of improving differential signal balance that cascaded differential pairs exhibit. Among the practical results, a current reuse mixer has been developed, which improves the transmitted signal-to-noise-ratio (SNR) by 3 dB, with a maximum measured dynamic range of +158 dB. The complementary bipolar process was further used to extend the bipolar push-pull stage bandwidth to 9.5 GHz. At the core of this work is the parallel switchable polyphase (PP) filter quadrature generator that was developed, since it makes possible accurate broadband IQ generation without the high loss that usually results from the application of PP filtering. Two IQ modulator prototypes were realized to test simulated and theoretically derived data: the 0.8 µm SiGe IC achieves an IRR better than −40 dBc over 0.75-3.6 GHz, while the 0.13 µm digital bulk CMOS IC achieves better than −37 dBc over 0.56-4.76 GHz. For this IRR performance the SiGe prototype boasts the inexpensive solution of integrated baluns, while the CMOS one utilizes a coil-transmission line hybrid transformer at its LO input to drive the switchable PP filters.Taajuuksien käytön tehostamiseksi lähettimet lähettävät yleensä vain toisen informaatiota sisältävistä sivukaistoistaan yhdelle radiotaajuuksiselle kantoaallolle keskitettynä. Viereinen peilitaajuus eli sivukaista vaimennetaan joko suodattamalla tai vaiheistamalla signalointia sopivasti. Koska suodattimen hyvyysluvut nousevat suorassa suhteessa käytettyyn taajuuteen, ei suodatusmenetelmä ole yleensä mahdollinen mikroaaltotaajuusalueen lähettimissä. Kvadratuurimodulaattori toteuttaa vaiheistusmenetelmän yhdistämällä 90-asteen vaihesiirroksin vaiheistetut signaalit yksisivukaistaisen lähetteen tuottamiseksi. Näin voidaan korvata lähdön suodatus joko kokonaan tai lieventämällä vaadittavia suoritusarvoja, jolloin mikroaaltoalueen lähetin voidaan tuottaa taloudellisesti. Integroitujen piiriratkaisujen yleistyminen 1980-luvulta lähtien on edesauttanut kvadratuurimodulaattorin suosiota, koska integroidulle piirille voidaan taloudellisesti tuottaa kaksi hyvin ominaisuuksiltaan toisiaan vastaavaa kaksoisbalansoitua sekoitinta, ja nämä tunnetusti vaimentavat kantoaaltovuotoa ja parillisia harmoonisia piirin lähdössä. Toinen integroitujen piirien vahvuus on kyky tarkkaan mikroaaltoalueen kvadratuurisignalointiin samalla piirillä, jolloin vältetään suurin osa kytkentöjen parasiittisista jotka muutoin voisivat tuhota korkeataajuuksisen 90-asteen vaiheistuksen. Kaikki kvadratuurimodulaattorit ovat joka tapauksessa herkkiä vaiheistus- ja amplitudieroille, joita syntyy komponenttiarvojen satunnaishajonnasta, epätarkan differentiaalisen signaloinnin käytöstä, ja itse vaiheistuspiiristön puutteellisuuksista. Kahden asteen vaihevirhe syntyy helposti, ja tällöin sivukaistavaimennus heikkenee -30 dBc:n tasolle. Tämänvuoksi, ja olettaen että digitaalisella signaaliprosessorilla luotu kantataajuuksinen signalointi on riittävän tarkkaa, tämä väitöskirja keskittyy kvadratuurimodulaattorin mikroaaltotaajuuksisen signaalipolun analysointiin ja tuottamiseen painottaen erityisesti laajakaistaista, monisovellusradioiden kanssa yhteensopivaa toimivuutta. Kvadratuurimodulaattorin toimintamallia on kehitetty siten, että mallissa huomioidaan epälineaarisuuksien ja piirielementtien satunnaishajontojen vaikutus saavutettavalle suorituskyvylle. Lisäksi on teoreettisesti todistettu sinänsä hyvin tunnettu peräkkäin kytkettyjen vahvistinasteiden differentiaalisen signaloinnin symmetrisyyttä parantava vaikutus. Käytännön tuloksista voidaan mainita kehitetty virtaakierrättävä sekoitin, joka parantaa signaali-kohinasuhdetta +3 dB, suurimman mitatun dynaamisen alueen ollessa +158 dB. Samaa komplementaarista bipolaariprosessia käytettiin edelleen bipolaarisen vuorovaihe-asteen kaistan levittämisessä 9.5 GHz:iin. Yhtenä tämän työn tärkeimmistä tuloksista on kehitetty kytkimin valittavista rinnakkaisista monivaihesuodattimista koostuva kvadratuurigeneraattori, jolla on mahdollista tuottaa laajakaistaista IQ-signalointia ilman suurta häviötä joka yleensä liittyy monivaihesuodattimien käyttöön. Kaksi IQ-modulaattoriprototyyppiä toteutettiin simuloitujen ja teoreettisesti mallinnettujen tulosten testaamiseksi: 0.8 µm SiGe integroitu piiri saavuttaa paremman sivukaistavaimennuksen kuin -40 dBc yli 0.75-3.6 GHz, kun taas 0.13 µm digitaalipiirien tuottamiseen tarkoitetulla CMOS prosessilla toteutettu integroitu piiri saavuttaa paremman sivukaistavaimennuksen kuin -37 dBc taajuusalueella 0.56-4.76 GHz. Näihin sivukaistavaimennuksiin SiGe prototyyppi pääsee edullisesti integroiduin symmetrointimuuntajin, kun taas CMOS piirillä käytetään kela-siirtojohto-tyyppistä yhdistelmämuuntajaa LO-sisääntulossa josta ajetaan erikseen kytkettäviä monivaihesuodattimia.reviewe
    corecore