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Abstract 

 

 With the increased attention on monitoring the atmospheric gas composition, new 

ways of accurately measuring these concentrations are needed. Along with the needed 

increase in measurement accuracy; size, space, and power reduction are also essential in 

modern systems. As semiconductor technology has advanced, the abilities to meet the 

previously mentioned criteria are becoming more realizable. 

 Instrumentation used to measure the atmospheric composition is traditionally 

large, taking up much needed space and using larger amounts of power. While the larger 

instrumentation provides the necessary accuracy, the other constraints are sacrificed. For 

this reason, a smaller, yet highly accurate solution is needed. The proof-of-concept (POC) 

solution that is proposed in this thesis is a delta-sigma (ΔΣ) modulator designed in a 0.5 

micron (µm) bulk CMOS process. Using a 1.55 micron (µm) laser as the signal input 

while using a specified reference, the delta-sigma modulator will use oversampling and 

noise shaping to provide an accurate, one-bit digital output count that correlates the 

difference between the reference signal and the  intensity of the laser signal that is input 

to the system. This allows for the possibility of a high resolution output, with high 

accuracy, and significant reductions in space used and power consumed.  
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Chapter 1 

Introduction  

 

 

1.1 Motivation  

Beginning in the 18th century, the first scientific studies to determine the gas 

composition of the Earth’s atmosphere were conducted. In 1774, Joseph Priestly used an 

inverted container elevated above his work table to capture gases that were given off 

during various experiments. The gases were sealed inside the container using a pool of 

water or mercury. The gas was tested to see if it could sustain a flame or support life. 

Priestly found that a mouse would pass away when put into a container that could not 

support a flame. He then discovered that placing a green plant inside this container while 

exposing it to sunlight would “refresh” the air, permitting a flame to be sustained or a 

mouse to survive several times longer than before. What he discovered is now known as 

photosynthesis and oxygen [1]. Other chemists during this time were also conducting 

experiments and discovered carbon dioxide, hydrogen, and nitrogen to be among the 

other elements that comprised what they called air [1].  

The discoveries of these individual elements led to more research into their effects 

on human health as well as their environmental impacts. In the 19th century, scientists 

started to hypothesize that the different gases that comprised the atmosphere could affect 

the climate. Joseph Fourier performed experiments that determined that the atmosphere 

allowed energy from the Sun to penetrate and reach the surface but would not let the 

infrared radiation escape back into space, thus keeping the Earth warmer than it would be 
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without this atmosphere [2]. In 1859, carbon dioxide and water vapor had been found to 

be the main contributors to the “greenhouse effect” [3]. While water vapor is a large 

component of the atmosphere, carbon dioxide was determined to be more influential in 

the Earth’s long-term equilibrium temperature. In 1896, Svante Arrhenius completed his 

mathematical calculations that modeled the effect of removing half of the CO2 in the 

atmosphere. It was found that removing half of the CO2 concentration would reduce 

global temperatures by as much as 4 – 5 ⁰C [4]. This was one of first times that a 

numerical value could be linked to the temperature of the Earth due to a specific amount 

of a certain gas in the atmosphere.  

In 1938 it was observed by Callendar that over the last century that the 

atmospheric CO2 concentration had risen approximately 10%. Along with this rise in CO2 

concentration, the surface temperature had also increased over the same time span [5]. 

This data collected by Callendar demonstrates that knowing the concentration of CO2 in 

the atmosphere can give a direct correlation in monitoring and explaining surface 

temperature fluctuations.  

By the late 21st century, computer models simulating the effects of increased 

atmospheric CO2 substantiated earlier claims by scientists. Along with these models, ice 

core samples helped give scientists a window into the past to study the levels of CO2 that 

were present in the soil. These ice core samples gave 150,000 years of history and they 

revealed that the climate had an up-down-up-down cycle with respect to temperature and 

CO2 levels [6].  
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With the conclusion that monitoring the concentration of gases in the atmosphere 

is of great importance, specifically greenhouse gases, the ability to collect high resolution 

data becomes vital. Traditional chemical methods of measuring atmospheric composition 

have proven to have a major disadvantage. This disadvantage is the ability to only 

provide point monitoring measurements. Many times, more than a single point is needed 

in order to observe concentration changes over a period of time or in a specified area or 

volume. One method of retrieving atmospheric composition data is through laser 

detection. Using high powered pulsed lasers in conjunction with a differential absorption 

technique gives the ability to acquire a distribution of the gases in a large area [7].  

Some concerns arise when looking at the laser detection methods currently in use.  

The first problem to be addressed is the large high-powered lasers that are necessary to 

perform accurate measurements. With the increasing need for reducing power costs along 

with physical size in sensing systems, the power of the laser need to be scaled down. 

With this scaling down of laser power, the sensing network must also be appropriately 

designed to accept these smaller laser signals.  

As previously mentioned, the majority of laser based detection systems currently 

in use are large, as shown in Figure 1.1. These bulky systems are primarily dependent on 

large printed circuit board (PCB) designs with discrete parts and transistors. By lowering 

the laser power, and therefore the detectable signal, the size and the power consumption 

of the receiving networks can be significantly reduced, and ideally all placed on a single 

die. This reduction will be accomplished by using a silicon (Si) based bulk CMOS 

process to design the new network.  This scaling down of transistors, reduced system 
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size, and scaled voltage supplies lead to creating an entire systems-on-a-chip (SOC). 

These SOCs can provide extremely high-resolution signal processing while still 

maintaining the desired reductions in size, power consumption, and weight. These are all 

critical factors when migrating these systems into aircraft or small satellite applications. 

 

 

 

Figure 1.1 (Left) NASA Glenn-Lear 25 aircraft. (Middle) Lidar installed on the 

aircraft with sensor head assembly and (Right) dual aircraft racks [8]. 

 

 

 

 

Aircraft or small satellites are not the only applications that could benefit from 

reducing the size and the power of current gas concentration detection systems. The oil 

and gas industry could use this technology to measure levels of combustible gases in 

pipelines or in drilling wells. The buildup of certain gases would present possible 

explosive scenarios, but with a small reliable detection system in place constantly 

monitoring these gases, catastrophic events can be avoided.  

1.2 Research Goal 

 Given that gases have specific radiation absorption patterns versus different 

wavelengths of light, it can be conceived that penetrating an air column via light source 
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with a known wavelength will produce an expected amount of that light to be absorbed 

and scattered by the gas. The transmittance pattern for different atmospheric gases is 

shown in Figure 1.2.  

 With the idea that atmospheric gases absorb certain wavelengths of light, the goal 

of this project was to design a delta-sigma modulator (ΔΣ) that will accurately measure 

the gas composition of the atmosphere via laser absorption and a photo-diode with a peak 

wavelength response of 1.55 µm. The photons entering the photo-diode will be stored as 

a charge and then converted into a low current signal over a period of time. This low-

current signal is then sent to an integrator to transform the low-current signal into a 

voltage. The resulting voltage signal is then passed on to a switched capacitor resistor 

network. The signal voltage is compared with a reference signal voltage that is also the 

input to the switched capacitor resistor. This technique is known as correlated double 

sampling (CDS). In this proof-of-concept design, the reference signal voltage is off chip, 

giving the ability to find the most optimum reference level for accurate comparing. After 

the switched capacitor resistor, a comparator will give an output of “1” or “0”. A “1” is 

when the reference voltage is larger than the signal voltage, and a “0” is the contrary 

condition. 
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Figure 1.2 Atmospheric gas transmittance versus wavelength [9]. 
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 These “1” or “0” outputs are then used in a ratio comparing the number of “1’s” 

that are output to the total possible number of “1’s” in a given period. The basic structure 

of the proposed design is shown in Figure 1.3. This period is determined by the clock 

speed. The output resolution is determined by the number of clock counts in a user 

defined time period. For example, a clock of 10 MHz, and a time period of 100 µs with 

single count of “1” in that time period, the network provides 10 bit resolution (1 count in 

1000 possible counts or 1/1024). A considerable advantage to using this type of circuit is 

that the proportional output gives a practically real time reading of the gas composition. 

A dynamic range of ~30 dB (1 nA – 31 nA) is the desired input range with a target laser 

power of ~10 -30 mW. Radiation hardening and extreme temperature performance are of 

interest for future small satellite and space applications, but were not a major focus of this 

design.  

 

 

Figure 1.3 Proposed delta sigma modulator design. 

. 
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1.3 Thesis Overview 

The remainder of this thesis is ordered as follows: Chapter 2 will discuss the 

theory and operation of ΔΣ modulators along with state of the art ΔΣ modulator designs. 

Chapter 3 will discuss the design of the individual blocks, any changes that were needed 

to those blocks during simulation, and the simulation results. Chapter 3 will also contain 

images of layout and overall size of the network. Chapter 4 will discuss the testing 

methods and the results of those lab tests. Chapter 5 will conclude the thesis and discuss 

plans for future work on this project.  
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Chapter 2  

Literature Review 

 

 

2.1 Delta-Sigma Modulation 

Delta-sigma (ΔΣ) modulators are analog-to-digital converters (ADCs) known for 

their capability of producing high-resolution digital outputs while consuming low 

amounts of power and low silicon die area. These circuits employ techniques called 

oversampling and noise shaping to achieve their high signal-to-noise ratios (SNR). While 

both oversampling and noise shaping can greatly improve SNR, oversampling will 

largely limit the delta-sigma to low and medium speed cases [11].  

The use of ΔΣ modulation is prevalently found in precision temperature 

measurement, high fidelity audio processing, CMOS imaging, and biomedical sensing 

applications [13]. The basic operation of a ΔΣ Modulator along with the techniques of 

oversampling and noise shaping will be discussed in more detail in the following 

sections. 

2.1.1 Basics of Delta-Sigma Modulation 

 In the past, the ΔΣ modulator appeared to be too complex to fully understand, and 

therefore has been avoided. The elegance of the ΔΣ modulator is that while the 

mathematical theory is complicated, the operation and building blocks are quite simple. 

This allows a general discussion on how the ΔΣ modulator operates without getting lost 

in the difficult, hard to understand numerical analysis [11]. 
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 The basic building blocks of the ΔΣ modulator are an integrator, a comparator, a 

difference amplifier, a switch, and a voltage reference. There are digital components such 

as a DSP (digital signal processor) that acts as a low pass filter [11]. These basic blocks 

are shown in Figure 2.1 below. Other terms that apply to ΔΣ modulators are quantization, 

noise shaping, and decimation which will be discussed in the following sections.  

 

 

 

Figure 2.1 Diagram of single stage delta-sigma modulator [10]. 

 

 

The basic ΔΣ modulator can be considered as a 1-bit sampling system. With several 

samples of the input signal taken due to the oversampling, these samples can be collected 

and averaged over a specified time to obtain a digital output that represents the analog 
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input signal [12]. Although it is considered a 1-bit system, the oversampling and noise 

shaping will provide high SNR similar to that of multi-bit systems.  

 With analog signals and CMOS processes getting progressively smaller, the 

networks that process these signals must have good noise characteristics. With a small 

signal, the signal-to-noise ratio is reduced, leading to possible erroneous senses due to 

noise coupling onto the small input signal. This is the reason for the increased use of the 

ΔΣ modulator in sensitive or precise applications.  

2.1.2 Oversampling 

 Oversampling, refers to a technique in which the input signal is sampled several 

times faster than the Nyquist rate of fS. When this oversampling occurs, it effectively 

expands the noise energy over a larger frequency range. An example of the FFT of an 

input sine wave (a) and then the oversampled FFT of the same sine wave (b) are shown in 

Figure 2.2. The large tone is the frequency of the sine wave which is however surrounded 

by a large amount of random quantization noise. Quantization noise is the error 

introduced when a continuous time input signal with an infinite amount of states is 

digitized and converted into a discrete time signal with a finite amount of states based on 

the resolution of the converter. This noise causes the analog-to-digital conversion to lose 

data, introducing error and distortion. Not only is the noise itself random, but the 

magnitude is also random, ranging from ±LSB [13]. Given (2.1), it could be inferred that 

increasing the number of bits (N) will increase the SNR [13].  

 𝑆𝑁𝑅 = 6.02𝑁 + 1.76𝑑𝐵 (2.1) 
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However, with a ΔΣ modulator, the distribution of the noise from oversampling causes 

the noise floor to have a lower magnitude while the magnitude of the signal is the same. 

This lowers the RMS noise, allowing better detection and processing of the desired signal 

[11]. This property will effectively increase the SNR without having to increase the 

number of bits.  

 

 

 
(a)                                                                          (b) 

Figure 2.2 (a) Typical FFT of sine wave input. (b) FFT of oversampled sine wave, 

with oversampling ratio k [10]. 

 

 

 

 

2.1.3 Noise Shaping 

 Through the use of feedback from the digital-to-analog (DAC) converter, the 

quantized output from the integrator is kept close to the comparator reference voltage. 

When the output of the comparator switches from low to high or high to low, the linear 

DAC then responds by changing the input reference voltage of the difference (delta) 

amplifier which is then applied to the integrator. The feedback forces the average output 
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to be equal to the input over the specified integration period of N clock cycles. Referring 

back to Figure 2.1, it displays the system that is described above while Figure 2.3 

illustrates the noise shaping being discussed. By “summing” the error voltage applied to 

the integrator, the signal gets low-pass filtered, while the noise is high-pass filtered, 

essentially pushing the quantization noise into much higher frequencies, thus effectively 

increasing the signal to noise ratio [10, 13]. To improve this noise shaping, multi-order 

delta-sigma modulators are created using multiple integration and summing stages [16, 

17]. 

 

 

 

Figure 2.3 Output spectrum with noise being pushed away from signal due to 

integrator [10]. 
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2.1.4 Multi-Order System 

 With one stage, the ΔΣ modulator performs extremely well. However, some 

applications need even better performance. One way is to cascade the integration and the 

summing stages together to improve the SNR [11]. Looking at Figure 2.4, it shows how 

the performance of a one stage versus a two stage ΔΣ modulator performs. As Figure 2.4 

shows, the 2nd order ΔΣ modulator pushes the quantization noise out further than the 1st 

order ΔΣ modulator. 

 

 

 

Figure 2.4 Comparison of 1st order and 2nd order ΔΣ modulator [11]. 
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This will effectively increase the SNR. With each doubling of the oversampling ratio and 

an increase in the order of the converter, the SNR will increase. This increase is shown in 

(2.2) where L is the number of stages such as 1, 2, 3, etc.  

 3(2𝐿 + 1)𝑑𝐵 (2.2) 

A 15 dB increase in SNR occurs when a 2nd order modulator is used. This increase is 

shown graphically in Figure 2.5.   

 

 

 

Figure 2.5 Increase in SNR due to doubling of oversampling ratio (k) [13]. 
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2.2 Current State of Technology 

 Delta-sigma modulators have been used in a variety of applications and 

conditions over the course of their history. However, they are traditionally used in 

applications where high resolution was needed but on low frequency signals. With the 

increase in high frequency applications in the industrial and the consumer markets, delta-

sigma modulators are now being put into moderate to high frequency applications, albeit 

with less resolution than the low frequency designs. The following sections will explore 

some of the new areas of research for delta-sigma modulator applications and their 

improvement in dynamic range and bandwidth [10].  

2.2.1 Multi-Bit Quantizers 

As discussed previously, delta-sigma modulators can have increased performance 

when the order is increased. This increase in order does create problems, such as 

increased quantization noise in the signal band and possible instability [16]. An area of 

research aimed at increasing the dynamic range without adding the complexity of multi-

order systems is the multi-bit quantizer. In the traditional delta-sigma modulator, the 

output is 1-bit that is averaged. The multi-bit quantizer outputs a multi-bit data stream 

instead of a 1-bit data stream. This increase in resolution will reduce the signal-band 

quantization noise (in the range of 6 dB) and improve the stability of the higher order 

loop filters [10, 16]. Multi-bit quantization is a substitute for the oversampling and the 

noise shaping previously found in the classic ΔΣ modulator topologies. With the smaller 

oversampling ratio, the multi-bit design can be used in wider band applications. This also 

reduces power consumption. One of the shortcomings of multi-bit quantizers is an 
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increase in non-linearity which is due to mismatches in the DAC [16, 17]. The multi-bit 

design requires the DAC to have the same order of linearity as the overall converter. To 

achieve this, a technique called dynamic element matching is used, but this technique 

requires large power and large die area to be implemented [16]. Although this may 

require higher power, some studies have shown that using a multi-bit quantizer of up to 4 

bits is more power efficient than increasing the order of the modulator since an increase 

in the order means to add another integrator into the loop [23]. 

2.2.2 VCO-Based Quantizer 

 With CMOS technology scaling down in feature size, circuit designers are trying 

to increase the digital portions of sensing circuits. One of the newest ideas for ΔΣ 

modulators is the voltage controlled oscillator (VCO) based designs. These new designs 

are largely digital circuitry with an intrinsic noise shaping quality coupled with anti-

distortion properties [24]. While the VCO can have some non-linear behavior, this is 

reduced by placing it in the analog feedback path. The VCO also provides an additional 

order of noise shaping, similar to additional order delta-sigma modulators providing 

higher order noise shaping at the output [18]. With the VCO performing as a multi-bit 

quantizer, it is the limiting block in terms of performance of this topology. Along with a 

very linear VCO being needed, a linear DAC is also necessary for proper performance of 

this design, similar to the multi-bit quantizer [10].  
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Chapter 3  

Design and Simulation 

 

3.1 Photodiode Basics 

 A photodiode is a device that has a PN junction or a PIN structure that is in 

reverse bias. The reverse bias prevents current from flowing, except for a small dark 

current, and also increases the depletion region making it more sensitive to light input. 

These attributes are why the PIN structure was used for this application. The PIN 

structure consists of a highly doped p+ region and a highly doped n+ region with an 

intrinsic region (un-doped) between the p+ and n+ regions. When a photon with high 

enough energy to exceed the bandgap of the semiconductor material is incident on the 

photodiode, it creates an electron/hole pair. The hole goes towards the anode and the 

electron goes to the cathode.  This creates drift, which in turn creates the desired photo 

current. The ideal operation of this device is that one photon produces one electron, but 

this is not seen in real applications.  

For this design, the photodiode of choice is the Hamamatsu 6854-01. The dark 

current associated with this photodiode is typically 400 pA and having a shunt 

capacitance of 1-1.5 pf. The data sheet shows that the capacitance stays within this range, 

regardless of the reverse voltage. The responsivity, Re, is measured in A/W, or amperes 

per watt of incident radiant power. For this device, the responsivity at the desired 

wavelength (λ=1.55 µm) is .95 A/W. This stands to reason, that a 1 nW powered laser 
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will produce 1 nA of photocurrent, suitable for this proof of concept design. Figures 3.1 

and 3.2 show the basic structure of a PIN photodiode and the model used for simulation. 

 

 

 

Figure 3.1 Basic structure and operation of PIN photodiode [21]. 

 

 

 

Figure 3.2 Model used in simulation for photodiode. 
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3.2 Start-Up Circuitry 

 The first block in the proposed network is the start-up circuitry. Start-up circuitry 

is necessary in self-biased circuits. When the circuit is turned on, there are two conditions 

that can arise. One of these conditions is that the circuit will bias up correctly without any 

other considerations needed. The other condition is when the biasing does not set up 

properly, thus no current flows and the circuit fails to operate. This latter condition must 

be avoided, and therefore makes start-up circuitry necessary. The design of the start-up 

circuitry will be covered in the following section. 

3.2.1 Start-up Design 

 The first part of this system is composed of the start-up biasing along with a beta 

multiplier. Originally, minimum length devices were used, but their size was altered in 

order to avoid negative effects of channel length modulation. Channel length modulation 

arises when the device operates in the saturation region. A condition called pinch off 

occurs when the drain voltage gets larger and larger. This pinch-off shortens the inverted 

channel, and therefore causes the output resistance to consequently decrease. Along with 

decreasing output resistance, the current increases, causing mismatching in current mirror 

and amplifier design. For these reasons, minimum channel length devices were avoided 

in the sensitive blocks of the overall network. While some blocks did not used minimum 

size devices, digital blocks did use minimum size devices due to their robustness with 

respect to sizing effects.  

 The operation of this circuit begins when VDD is supplied at time t0. At t0, MSU 3 

is off, while MSU 1 and MSU 2 are on, forming a voltage divider. As the drain voltage 
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on MSU 1 increases, this increases the gate voltage of MSU 3, turning it on. This then 

allows M1 to begin turning on as the drain/gate voltage increases. Once the source 

voltage exceeds the gate voltage, MSU 2 and MSU 3 turn off. This will prevent an 

unwanted state. MSU 1 and MSU 2 were designed with large channel lengths to increase 

the resistance so that DC leakage current would be avoided. Figure 3.1 shows the startup 

circuit. In Figure 3.1, M3 and M4 are identically sized p-type devices to form a current 

mirror with a ratio of 1:1. To calculate the appropriate size for M2, start by using 

Kirchoff's Voltage Law around M2 and M1. 

 𝑉𝐺𝑆1 = 𝑉𝐺𝑆2 + (𝐼𝑟𝑒𝑓 ∙ 𝑅1) (3.1) 

Solving the drain current equation for VGS when a MOSFET is in saturation gives the 

following equation, 

 

 

 
Figure 3.1. Start-up biasing and beta multiplier circuitry. All W/L ratios are 

multiplied by a factor of 300E-9 [15]. 
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𝑉𝐺𝑆 = √
2𝐼𝐷 ∙ 𝐿

µ𝑛 ∙ 𝐶𝑜𝑥′ ∙ 𝑊
+ 𝑉𝑡ℎ (3.2) 

Substituting this into (3.1) gives, 

 

√
2𝐼𝐷 ∙ 𝐿

µ𝑛 ∙ 𝐶𝑜𝑥′ ∙ 𝑊
+ 𝑉𝑡ℎ = √

2𝐼𝐷 ∙ 𝐿

µ𝑛 ∙ 𝐶𝑜𝑥′ ∙ 𝑋𝑊
+ 𝑉𝑡ℎ + (𝐼𝑟𝑒𝑓 ∙ 𝑅1) (3.3) 

Isolating Iref gives, 

 

𝐼𝑟𝑒𝑓 = √2𝐼𝐷µ𝑛𝐶𝑜𝑥′
𝑊

𝐿
[√

2𝐼𝐷 ∙ 𝐿

µ𝑛 ∙ 𝐶𝑜𝑥′ ∙ 𝑊
− √

2𝐼𝐷 ∙ 𝐿

µ𝑛 ∙ 𝐶𝑜𝑥′ ∙ 𝑋𝑊
] (3.4) 

An assumption for X needs to be made in (3.4). The assumption is that X is a perfect 

square multiplier (4, 9, 16, etc.) of the W/L ratio to obtain proper current matching. The 

transconductance, gm is equal to 1/R1 as shown in (3.5). When setting gm = 1/R1, this is 

also called a constant-gm design. 

 

𝑔𝑚 =
1

𝑅1
= √2𝐼𝐷µ𝑛𝐶𝑜𝑥′

𝑊

𝐿
 (3.5) 

Solving (3.4) leads to the following equation, and given that Iref is chosen to be 3µA, the 

value of the multiplying factor, X, can then be found. 

 
𝐼𝐷 =

2𝐼𝐷

1
−

2𝐼𝐷

𝑋
 (3.6) 

In order to comply with (3.6), X must be 4. This implies that the W/L ratio for the M2 

transistor must be 4 times larger than the M1 transistor’s W/L ratio in order to supply the 

required 3 µA. The increase in the width of the M2 transistor also ensures that VGS1 > 

VGS2. This has the effect of using less gate to source voltage to conduct Iref, therefore 

satisfying the condition VGS1 > VGS2. This design is called the β multiplier, where, 
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𝛽 =

µ𝑛𝐶𝑜𝑥′

2

𝑊

𝐿
 (3.7) 

 The resistor value R1 needs to be found using (3.8) whereas before Iref is 3 µA, W/L is 9, 

µnCox’/2 is a given process parameter of 57.8 µA/V2, and X is the multiplying factor of 4.  

 
𝐼𝑟𝑒𝑓 =

2

𝑅1
2 ∙

µ𝑛𝐶𝑜𝑥′
2

𝑊
𝐿

(1 −
1

√𝑋
)

2

 (3.8) 

The value of the tail resistor R1 is found to be approximately roughly 18 kΩ. A resistance 

of 5 kΩ was used for ease of scalability, then put in series to be approximately 20 kΩ. 

3.2.2 Start-Up Simulation 

 In order to verify that the bias current was being generated in the start-up 

circuitry, a simulation was performed and the DC operating points of the network was 

observed. Figure 3.2 shows the bias current in the branch with the 20 kΩ resistance. This 

simulation confirms that the start-up circuitry is performing as expected. 

 

 

 

Figure 3.2 Current in the bias network. The network was designed for 3 µA, and 

simulation suggested it produced ~2.83 µA in the β multiplier. 
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3.3 Integrator 

 The next block in the system was the integrator. This integrator will be the 

interface between the photodiode input and the delta-sigma modulator. The integrator 

will take an input charge and output a voltage based on a set integration time. With a 

photodiode responsivity of ~1, and the target laser signal of 1 nW, the minimum signal 

current would therefore be ~1 nA. Since the minimum signal is small, the amplifier 

design will need to have sufficient gain in order to properly process the signal in the next 

stages. The proposed circuit in the following section will provide sufficient gain, as well 

as plenty of bandwidth and stable operation.  

3.3.1 Integrator Design 

 The proposed design is the dual cascode with an active load topology. This design 

will provide the necessary high gain due to increasing the load resistance with the 

cascoded MOS devices. Along with increasing the load resistance for gain, the cascoding 

scheme will reduce the Miller capacitance effect which will further increase the 

bandwidth of the amplifier. The schematic of the dual cascode design is shown in Figure 

3.3. In order to find the gain of the amplifier, the output impedance needs to be calculated 

first. This is most easily done when drawing the small signal model, as shown in Figure 

3.4. The resistance looking into the drain of M2 is shown in (3.9) 

 𝑟𝑖𝑛2 = 𝑔𝑚2𝑟𝑑𝑠2𝑟𝑑𝑠1 (3.9) 

Similarly, solving for the resistance looking into M3, one can find, 

 𝑟𝑖𝑛3 = 𝑔𝑚3𝑟𝑑𝑠3𝑟𝑑𝑠4 (3.10) 
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Figure 3.3 Cascode amplifier with active load. 

 

  

 

Figure 3.4 Small signal model of the cascode active load amplifier. 

 

 

In order to solve (3.9) and (3.10), the expressions for gm must be defined.  
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𝑔𝑚𝑛 = √2𝐼𝐷

µ𝑛𝐶𝑜𝑥′

2
(𝑊

𝐿⁄ )
𝑛

 (3.11) 

 

𝑔𝑚𝑝 = √2𝐼𝐷

µ𝑝𝐶𝑜𝑥′

2
(𝑊

𝐿⁄ )
𝑝
 (3.12) 

Given that µnCox’ is approximately ~3 times that of µpCox’, the (W/L)p must also be ~3 

times the (W/L)n in order to maintain proper transconductance matching. Once the 

devices are properly sized and gm is calculated, the resistance of the channel, rds, needs to 

be obtained. For simple approximations, (3.13) is used to calculate rds. As discussed in 

the previous section, channel length modulation effects the channel resistance, and is 

represented in (3.13) as λ. From the process parameters, λ is ~.35 and ID is 3 µA.  

 
𝑟𝑑𝑠 =

1

𝜆𝐼𝐷
=

1

(.35)(3 µ𝐴)
= 952 𝑘Ω (3.13) 

Solving (3.11) and (3.12) with a (W/L)n of 3 and a (W/L)p of 9, the transcoductances are 

32.25 µA/V and 31.95 µA/V respectively. The output resistance can now be solved by 

the following equation, 

 𝑟𝑜𝑢𝑡 ≅ 𝑟𝑖𝑛2||𝑟𝑖𝑛3 = 14.36 𝑀Ω (3.14) 

Since the gain is defined as the negative transconductance of the common source 

amplifying stage times the output resistance, the voltage gain is therefore, 

 𝐴𝑣 = −𝑔𝑚1𝑟𝑜𝑢𝑡 = −926  (3.15) 

where gm1 is 64.5 µS due to a (W/L) ratio of 12. This result matches with the expression 

(3.16) for the predicted maximum gain.  

 𝑔𝑚1

𝑔𝑜𝑢𝑡
=

64.5 ∙ 10−6

69.64 ∙ 10−9
= 926 (3.16) 
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After finding that this design will provide sufficient gain, the feedback capacitor needs to 

be sized correctly so that the integration of the input signal does not saturate before the 

integration time is reset. To find the capacitor value that is needed, the voltage change on 

the output needs to be established. The lowest voltage that is to be used on the output is 

800 mV. This is very close to the threshold voltage of ~700 mV. Any lower than the 800 

mV limit and the performance of the delta-sigma modulator will be affected due to 

transistors operating close to cut off (cut off is Vgs-Vth = 0). For easy design 

considerations, the maximum voltage that is wanted is 3 V on the output. Equation (3.17) 

shows how the capacitor was sized, 

 
𝐶 = 𝑑𝑡

𝐼

𝑑𝑉
 (3.17) 

The integration time, dt, is 12.8 µsec corresponding to a 7 bit resolution. The change in 

voltage is found from the difference between the maximum output and the minimum 

output voltages. With a goal of 30 dB for the input dynamic range and the smallest signal 

being 1 nA, the upper limit current is therefore 31 nA, or I in (3.17). The capacitance is 

needed to meet these specifications is ~180 fF. A capacitance of 200 fF was implemented 

due to ease of design and layout. A reset switch is placed in parallel with the feedback 

capacitor in order to reset the integration time for another sample to be taken. The final 

schematic is shown in Figure 3.5. 
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Figure 3.5 Full integrator schematic with RESET and HOLD. 

 

 

3.3.2 Integrator Simulation 

 This section will discuss pre- and post-layout simulations along with any 

problems that were discovered and addressed.  

 Once the design had been settled on for the integrator and the start-up/biasing 

network, the schematic was then constructed and simulated. The first initial simulation 

showed that the desired dynamic range of 30 dB on the input can be achieved. In fact, a 

dynamic range of 31.16 dB (1 nA- 31 nA) seems to be realizable. However, this design 

exhibited what appeared to be charge injection problems with the sample-and-hold 
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transistor. This is shown in Figure 3.6. With charge injection, some of the charge is 

dumped out of the transistor and causing the output voltage to jump, in some cases 

significantly. The ΔVi  (change in signal voltage from integrator) was measured at the 

edge of the hold signal going high. The difference was the largest when the input signal 

was 31 nA and the smallest at 1 nA, corresponding to a ΔVi of 40 mV and 16 mV, 

respectively. This difference was too large, as the DSM would be able to sense this 

difference, and would lead to improper correlation with the output when using an off chip 

reference voltage. In order to rectify this problem, a dummy switch was added in series 

with the output of the sample and hold device. The use of the dummy switch is a 

commonly used technique in sample and hold circuits, especially when poor switches are 

used. The concept is to use a switch in series with the drain and the source connected 

together, and a perfectly overlapping complementary signal to the signal of the original 

switch. When the original switch turns off, half of the channel charge is injected to the 

dummy switch. Since only half of the charge from the hold transistor is sent to the 

dummy switch, the dummy needs to only be ½ the size of the hold switch. The charge 

injected by the hold transistor is the same as the charge induced by the dummy switch. 

When the dummy transistor switches off, it injects half of its charge in both directions 

[15]. Starting with half the size of the original switch, simulations can be done to 

determine the most effective sizing combination. Once the dummy switch had been 

implemented, the problem of driving the sample and hold switch and the dummy switch 

arose. For proper operation of the dummy switch, an overlapping square wave 



 
30 

complimentary signal needs to be generated. In an effort to avoid putting multiple signals 

off chip, a pseudodifferential CMOS differential switch driver was implemented [20]. 

 

 

 

Figure 3.6 Charge injection on hold transistor output. 

 

 

This switch driver schematic is shown in Figure 3.7. Using the hold signal as the 

input to this pseudodifferential switch, this will create the desired hold signal as well as a 

complimented signal to switch the dummy switch correctly. The output of this switch 

driver is shown in Figure 3.8. After implementing the dummy switch and differential 

switch driver, a pre-layout simulation was performed, and is shown in Figure 3.9. As the 

figure shows, the charge injection has almost been completely eliminated for all 

simulated inputs while maintaining the same input dynamic range. 
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Figure 3.7 Schematic of pseudodifferential CMOS switch driver [20]. 

 

 

 

Figure 3.8 Simulation of Pseudodifferential CMOS Switch Driver with HOLD signal 

as input. 
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Figure 3.9 Pre-layout integrator simulation with dummy switch.  

 

 

After completing the simulations for pre-layout, layout of this topology was done. 

The layout along with dimensions are shown in Figure 3.10. The switches were 

surrounded by guard rings in the layout to provide insulation against noise coupling and 

for better switch performance. The current mirroring part of the circuit was laid out using 

the common centroid technique. This improves matching between devices, so that current 

is the same in both branches. Each PMOS and NMOS network were also put into guard 

rings to improve performance due to the drawbacks of the single-well process being used 

and the sensitivity of the inputs. This technique of using the guard rings also protects 

against possible noise coupling and interference. A post-layout simulation was done to 

assess the effects of trace length resistance and capacitance. This is shown in Figure 3.11. 
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Figure 3.10 Layout of integrator. Dimensions are 200 µm x 100 µm. 

 

 

 

Figure 3.11 Post-layout integrator simulation. 
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3.4 Delta-Sigma Modulator 

This part of the network is where the differencing (delta, Δ) and the summing 

(sigma, Σ) takes place, which was previously shown in Figure 2.1. The circuit takes the 

output from the integrator and compares it to the off chip reference voltage. It converts 

the input voltages into a current, via a linear voltage-to-current circuit. The circuit then 

makes a comparison between the signal input and the reference input, and gives a count 

when the signal input is greater than the reference. 

3.4.1 Delta-Sigma Design 

 In order to begin sensing the input from the integrator, a circuit that will convert 

the integrator output signal voltage and the reference voltage to a usable current is 

necessary. In order to compare the reference and the output signal from the integrator, the 

difference of their converted currents will have to be taken. The current mirror used to 

detect the difference in these currents is shown in Figure 3.12. The difference in the 

currents ISIG and IREF is summed in the output capacitor (CBucket), referencing the sigma 

portion of the circuit. This difference is then averaged out over time to converge to a 

constant value when the feedback of the comparator is added. The circuit converges at 

the point shown in (3.18) [13]. 

 
𝐼𝑅𝐸𝐹 = 𝐼𝑆𝐼𝐺 =

𝑉𝑅𝐸𝐹,𝑠ℎ𝑖𝑓𝑡

𝑅𝑅𝐸𝐹
=

𝑉𝑆𝐼𝐺,𝑠ℎ𝑖𝑓𝑡

𝑅𝑆𝐼𝐺
 (3.18) 

Where VREF,shift and VSIG,shift are 

 𝑉𝑅𝐸𝐹,𝑠ℎ𝑖𝑓𝑡 = 𝑉𝐷𝐷 − 𝑉𝑇𝐻𝑃 − 𝑉𝑅𝐸𝐹 (3.19) 

 𝑉𝑆𝐼𝐺,𝑠ℎ𝑖𝑓𝑡 = 𝑉𝐷𝐷 − 𝑉𝑇𝐻𝑃 − 𝑉𝑆𝐼𝐺  (3.20) 
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Figure 3.12 Linear voltage-to-current, current subtracting circuit. Vi is the signal 

voltage input and Vr is the reference voltage [15]. 

 

 

Using 3.18, it can be determined that the ratio of resistances, RSIG/ RREF, gives the 

necessary information in order to determine the light intensity on the photodiode. In order 

to implement the resistors, a switched-capacitor resistor topology is used. This technique 

will not only save valuable die space, but also will provide more accurate sensing [15]. 

This switched capacitor resistor is shown in Figure 3.13. This circuit is built to be as 

symmetrical as possible. If it is built symmetrical, ideally any power supply noise, ground 

noise, or any coupling effects each branch in the same way, negating these effects. Sizing 

of the capacitors is not a critical design step, but it is also not trivial. The only rule that 

needs to be followed is that the CCup capacitor must be a third to a half the bucket 

capacitor size. This ensures that the bucket capacitor will never be overcharged, since the 

charge from the cup capacitor can only be discharged into the bucket capacitor once 

every clock cycle [15]. 
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Figure 3.13 Switched capacitor resistor implementation [15]. 

 

 

The two upper PMOS transistors are controlled from an on chip non-overlapping clock. 

This allows the charge to be stored in CCup, and then subsequently that charge is directed 

into CBucket.  

 In the topology of Figure 3.13, the number of output counts is not linearly related 

to the input signal voltage. The feedback signal needs to be a function of the reference 

voltage, otherwise the counts will be non-linear and this sensing network is unreliable. A 

suitable topology is shown in Figure 3.14. Once again, the two bucket capacitors appear 

across both inputs to the comparator. This is done in order to ensure that any noise that 
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effects one input will have the same or similar effects to the other input, therefore 

canceling those effects. 

 

 

 

Figure 3.14 NMOS switched capacitor [15]. 

 

 

One thing to note is that if this bucket capacitor is too large, instability will occur due to 

the large capacitance in the feedback path [15]. 

3.5 Comparator 

 The comparator for this delta-sigma modulator needs to be able to quickly decide 

whether the signal input is larger than the reference signal and give the corresponding 

output. It needs to be able to sense small voltage changes and compare them. Kickback 

noise is reduced due to the design isolating the input devices from latching.  
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3.5.1 Comparator Design 

The topology in Figure 3.15 shows a scheme that can accomplish the above 

mentioned goals. When Φ2 is driven high, the outputs of the comparator are shorted to 

ground and are zero. On the falling edge of Φ2, the comparator will then choose which of 

the bucket capacitors has the higher voltage. If the reference voltage capacitor is higher, 

then the count output will be a 1, and vice versa if the signal voltage is higher. This is 

shown in Figure 3.16. There is an SR latch on the output of the comparator. While it is 

not necessary, it helps prevent errors in the  output of the comparator [15]. The latch also 

allows the output to swing faster. As the figure shows, when the signal is higher than the 

reference, Qnot goes high while Q goes low on the falling edge of Φ2. Qnot is then fed back 

to the switched capacitor resistors in order to allow the bucket capacitor to be filled back 

up. Once the simulations were completed, the delta-sigma modulator was then put into 

layout. Once again, all devices were surrounded by guard rings to help prevent coupling 

of different signals or noise. The layout is shown in Figure 3.17. The majority of this 

layout was done using the common centroid technique in order to minimize mismatch. 
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Figure 3.15 Comparator design to reduce noise effects while providing quick sensing 

[15]. 

 

 

 

Figure 3.16 Simulation of comparator displaying the selection behavior between the 

reference and signal voltage. 
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Figure 3.17 Delta-sigma modulator layout. Dimensions are 215 µm x 180 µm. 

 

 

3.6 Delta-Sigma Modulator Simulation 

 Post-layout simulations were then run to ensure that the circuit was still 

operating according to the pre-layout simulations. The results are shown in Figure 3.18 

and Figure 3.19 shows the linearity using the integrator and on chip oscillator. These 

simulations show that the circuit has suitable linearity, however the simulation using the 

the on chip integrator performed worse. One of the reasons for the lower linearity is that 

the lower range of signals, ~.8 V, is close to the threshold voltage of the devices, thus 

causing possible non-linearities with the devices operating near the cut-off region.   
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Figure 3.18 Linearity of delta-sigma modulator post layout with an ideal off chip 

clock. Rise and fall times were set to 100 fs. 

 

 

 

 

 

 

Figure 3.19 Linearity of delta-sigma modulator post layout with on chip oscillator at 

10 MHz.  
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Chapter 4  

Testing and Results 

 

 

4.1 Testing Procedures 

 The first part of testing was done in order to check chip functionality. If the chip 

does not function as designed, then a redesign would have been necessary, along with a 

subsequent tape out. The first check that was made was to look at a micrograph of the 

chip and verify by eye that the chip did not have any obvious defects. A micrograph of 

the final chip is shown in Figure 4.1. Once the chip was confirmed to be free of any 

visual defects, a test board was designed.  

A printed circuit board (PCB) was then designed in order test the desired chip 

functionality. A picture of the test board is shown in Figure 4.2. The inverters were used 

to sharpen the off chip clock, reset, and hold signals. They were also placed on the output 

of the delta-sigma modulator in order to sharpen the output pulses, so that RC constant 

effects are reduced when probed with the oscilloscope. To create a 2.6 V reference signal, 

a potentiometer was used. Using this divider, the potentiometer was then fine tuned to 

reach exactly 206 V. To simulate the signal input voltage, the same technique as setting 

the reference was used. The signal voltage potentiometer was then incremented in 200 

mV steps from .8 V to 2.6 V to match the simulation.  An off chip clock of 10 MHz was 

generated using an Agilent 33220 signal generator. At each 200 mV interval the number 

of output pulses was counted then tabulated in Excel to observe the output linearity. 
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While using the same off chip clock, the SNR, SFDR, and ENOB were then tested. The 

2.6 V  

 

Figure 4.1 Micrograph of Hyperion chip.  

 

 

reference was maintained, but the signal potentiometer was removed and a sine wave was 

then implemented. Since the application will be low frequency, a 500 Hz sine wave was 
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used. An offset of 1.7 V was applied with an amplitude of 900 mV. This allows a full 

swing from 1.7 V to 2.6 V and from 1.7 V down to 800 mV, simulating the range of the  

 

Figure 4.2 PCB test board. 

 

 

signal input voltages. The output sine wave was observed along with analyzing the FFT 

of the output signal.   

Initial tests showed that the ΔΣ modulator output counts performed as expected 

when compared with post-layout simulations. The SNR SFDR, and ENOB however 
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performed worse when compared with the simulation results. These lower figures could 

be due to higher frequency input signal than designed for or input sine wave distortion.  

In order to test the integrator, the necessary hold and reset signals needed to be 

created using LabView 2013 software by National Instruments. Using a clock of 10 MHz 

and a resolution of 7 bits, the necessary integration time is 12.8 μs.  

4.2 Results 

This section will discuss and display the test results of the chip that were presented in the 

previous sections. Initial tests show that the chip is working favorably. The delta-sigma 

modulator was tested with signal input voltages ranging from .8 V to 2.6 V. These results 

are comparable to the post layout results in Figure 3.18, where the R2 value was .995. The 

following figures show the output counts of the ΔΣ modulator at certain signal voltages, 

as well as graphing the counts to observe linearity. After testing the output count 

linearity, the chip was tested in order to find the SNR, SFDR, and ENOB figures. As 

discussed before, the sine wave had a frequency of 500 Hz with an offset of 1.7 V and an 

amplitude of 900 mV. The results are shown in Figure 4.8.  

The integrator was the next block that needed to be tested on the bench. 

Simulating photodiode currents ranging from 1 nA to 31 nA was performed using a 

Kiethley 2636A current source. The results are shown in Figures 4.9 and 4.10. 
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Figure 4.3 Output counts with signal of 800 mV. Cursers are measuring 12.8 μs. 

 

 

 

Figure 4.4 Output counts with signal of 1.4 V. Cursers are measuring 12.8 μs. 
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Figure 4.5 Output counts with a signal voltage of 2 V. 

 

 

 

Figure 4.6 Output counts with a signal voltage of 2.6 V. 
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Figure 4.7 Testing linearity in delta-sigma modulator with off chip clock.  

 

 

 

Figure 4.8 Measurement of SNR, SFDR, THD, and ENOB. 
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Figure 4.9 Integrator simulation with no photodiode input. 

 

 

As Figure 4.9 shows, the integrator is integrating and then resetting as the simulation 

suggested it should. The issue is that there should be no charge available to charge the 

gate-source (Cgs) capacitance. Leakage current from the RESET switch could explain this 

charging of the Cgs capacitance. However, there is no pin available on chip in order to test 

the RESET switch for this possible leakage.  

 After observing the results in Figure 4.9, a 25 nA current was then used in order 

to see if the operation of the integrator changed. The operation of the integrator changed 

when the 25 nA current was applied. This is shown in Figure 4.10. When the current is 

applied, the integrator rises to the DC level that is being set by the Kiethley current 

source. With the current source setting the DC voltage on the input to the integrator 
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Figure 4.10 Input of 25 nA applied to the integrator. 

 

 

at approximately 0.66 V, the integrator then only resets to this voltage level as shown in 

Figure 4.10.  

 While physical size, laser power reduction, and circuit power reduction were the 

main goals of this project, no certain specification for power consumption was set. 

However, when reducing the circuit from discrete parts to an SOC, the reduction in 

power usually follows. Table 1 shows the power consumption estimate for the entire 

system. 
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Table 4.1 Power consumption estimation. 

 

ΔΣ Modulator and 

Comparator 

Integrator 

Current 4.25 mA 226 μA 

VDD 3.3 V 3.3 V 

Power 14.025 mW 754.8 μW 
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Chapter 5  

Conclusions and Future Work 

 

 

5.2 Conclusions 

This thesis presents a system-on-a-chip design that can accurately measure the gas 

composition of the atmosphere. The desired input dynamic range from the photodiode is 

30 dB and the achieved dynamic range in simulation is 31.13 dB. However, the integrator 

did not work as simulation suggested it should on the laboratory bench and different 

methods were used to try and discover why it did not perform correctly. No reason was 

found and with no probe points on any of the nodes of the integrator, it is difficult to find 

the answer.   

High output count linearity of .993 (.9949 truncated value) was achieved in order 

to correlate this count to the input light intensity versus the reference signal. While 

providing high output linearity, die area and power consumption were greatly reduced 

when compared with current atmospheric gas composition sensing systems. Future work 

on this system could further improve performance for greater accuracy, resolution, and 

also extreme temperature and radiation environments.  

5.3 Future Work 

Future development on this network is needed. This POC design shows that this 

circuit can be put onto a chip with success according to pre- and post-layout simulation 

results as well as the laboratory bench testing results. The following are suggestions for 

future development and improvements to the core network design. 
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5.3.1 Faster Clock and Clock Edges 

 One area that can be further developed without much effort is to increase the 

frequency of the main clock signal so that the network switches faster allowing more 

counts, which in turn allows increased resolution on the output from the network. 

Increased resolution on the output will give a greater confidence to the end user knowing 

that the circuit has taken the appropriate amount of counts so that the output directly 

corresponds to the correct input voltage. A faster clock will also allow the reduction of 

capacitor values, which in turn results in reduced CMOS ship area. This translates to 

greater area being available to put more onto one chip, or multiple ΔΣ modulators being 

placed on one chip.  

5.3.2 Multi-Well Process 

As was discussed in the problems section, one major hurdle that took some time 

to solve was the switching problem on the Switched Capacitor Network. This slow 

switching, was translating into a very non-linear mapping between the signal input and 

output count. This can be at least partially mitigated by using a multi-well process that 

would allow for better isolation of the switches. Another contributing factor, is the larger 

channel CMOS process used is moderately large in comparison to more modern 

processes which contributes to larger device capacitances and slower operating speeds. A 

smaller process could provide significantly sharper clock edges, which would increase 

the accuracy of the switched capacitor network. 
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5.3.3 On-Chip Reference 

The reference voltage was moved off chip so that this value could be dialed in 

precisely to achieve the most linear response. Once this value is determined, putting this 

on-chip frees up a pin that can be used for other signals. This was not critical for this 

stage, but needs to be considered for developing a self-contained system-on-a-chip. 

5.3.4 Rad-Hard and Temperature Sensitivity 

While this POC design did not need to be RAD-hard or perform in extreme 

temperatures, these environments need to be considered in future designs. In silicon, as 

the temperature increases, the threshold voltage decreases and the thermal voltage 

increases. This can cause the transistor to then turn on when it should be off if the 

threshold has dropped significantly. Not only does thermal and threshold voltage change 

with a rise in temperature, but the electron and the hole mobilities decrease which can 

lower the drain current well below the designed levels. However, if temperature has 

increased enough to lower the threshold voltage significantly while VGS is low, the 

threshold voltage change will dominate, and cause drain current to increase. Once this 

point is reached, drain current will continue to rise along with rising temperature. 

Another problem, the phenomena of hot carrier injection (HCI) can also result from 

increases in ambient temperature conditions, which could be encountered in space 

applications or other extreme locations on Earth. A radiation hardened design was not 

considered in this phase of the design, but the resistance to radiation could be evaluated 

and tested for improvement and reliability in this area.   
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In order to understand a ΔΣ ADC in more depth an example is usually helpful. A 

block diagram showing the basic structure of a typical ΔΣ ADC is shown in Figure A.1 

below. The difference between the input X and the feedback signal W is the first part of 

the circuit. This is the delta operation. This delta value B then goes into the integration 

block. This integration block then passes this summed value C to the comparator where 

the output of the comparator D goes through a digital filter and through a 1 bit DAC 

(digital to analog converter) that is in a feedback loop to the difference node at the input. 

The feedback loop forces the average of the output signal W to be equal to the input 

signal X. 

 

 

 

Figure A.1 Block Diagram of Typical ΔΣ Modulator [25]. 
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The table below will go through a numerical example and demonstrate the power that this 

averaging scheme has. The input, X, has a DC value of 3/8. This table will show the 

resultant values at each stage of the modulator. 

 

 

Table A.1 Conversion example of a typical ΔΣ modulator. 

Sample (n) X (INPUT) B (A-Wn-1) C (B+Cn-1) D (0 or 1) W (-1 or +1) 

0 3/8 0 0 0 0 

1 3/8 3/8 3/8 1 +1 

2 3/8 -5/8 -2/8 0 -1 

3 3/8 11/8 9/8 1 +1 

4 3/8 -5/8 4/8 1 +1 

5 3/8 -5/8 -1/8 0 -1 

6 3/8 11/8 10/8 1 +1 

7 3/8 -5/8 5/8 1 +1 

8 3/8 -5/8 0/8 0 -1 

9 3/8 11/8 11/8 1 +1 

10 3/8 -5/8 6/8 1 +1 

11 3/8 -5/8 1/8 1 +1 

12 3/8 -5/8 -4/8 0 -1 

13 3/8 11/8 7/8 1 +1 

14 3/8 -5/8 2/8 1 +1 

15 3/8 -5/8 -3/8 0 -1 

16 3/8 11/8 8/8 1 +1 

17 3/8 -5/8 3/8 1 +1 

18 3/8 -5/8 -2/8 0 -1 

 

 

 

 

As the table shows, at sample 0, the input is 3/8 while all other nodes are at 0. Since the 

value at C is greater than ground, the output is a +1. This continues from sample 1 

through 16 (sample 0 is discarded since it is a start-up condition). When adding the 

values from the W column and dividing by the number of samples, in this case 16, the 
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answer is 6/16 = 3/8. This pattern will then repeat over the next 16 samples and again, the 

output will once again converge 3/8. This is obviously an ideal case where no 

quantization noise has corrupted the input signal. The digital filter on the output of the 

comparator is there to filter this quantization noise so that the SNR is much higher than 

without filtering.   
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