124,396 research outputs found

    Stand-alone device for the electrolytic fabrication of scanning near-field optical microscopy aperture probes

    Get PDF
    Haumann C, Pelargus C, Frey HG, et al. Stand-alone device for the electrolytic fabrication of scanning near-field optical microscopy aperture probes. Review of scientific instruments. 2005;76(3): 033704.Near-field optical applications require the fast, stable, and reproducible fabrication of scanning near-field optical microscopy (SNOM) aperture probes in the submicrometer range. We have developed a stand-alone device for the electrolytic etching of nanoapertures with an integrated current and optical transmission monitoring and control. Probes with an aperture ranging from 50 to 100 nm were reproducibly fabricated with great reliability. With these probes, high resolution SNOM images of 100 nm test patterns and single dye molecules (Rhodamine 6G in poly(vinyl alcohol)) are measured and presented. Not requiring a SNOM setup, the stand-alone device is not only inexpensive and compact, but also insensitive to external disturbances

    Design and Fabrication of Fiber-Optic Nanoprobes for Optical Sensing

    Get PDF
    This paper describes the design and fabrication of fiber-optic nanoprobes developed for optical detection in single living cells. It is critical to fabricate probes with well-controlled nanoapertures for optimized spatial resolution and optical transmission. The detection sensitivity of fiber-optic nanoprobe depends mainly on the extremely small excitation volume that is determined by the aperture sizes and penetration depths. We investigate the angle dependence of the aperture in shadow evaporation of the metal coating onto the tip wall. It was found that nanoaperture diameters of approximately 50 nm can be achieved using a 25° tilt angle. On the other hand, the aperture size is sensitive to the subtle change of the metal evaporation angle and could be blocked by irregular metal grains. Through focused ion beam (FIB) milling, optical nanoprobes with well-defined aperture size as small as 200 nm can be obtained. Finally, we illustrate the use of the nanoprobes by detecting a fluorescent species, benzo[a]pyrene tetrol (BPT), in single living cells. A quantitative estimation of the numbers of BPT molecules detected using fiber-optic nanoprobes for BPT solutions shows that the limit of detection was approximately 100 molecules

    Computational localization microscopy with extended axial range

    Get PDF
    A new single-aperture 3D particle-localization and tracking technique is presented that demonstrates an increase in depth range by more than an order of magnitude without compromising optical resolution and throughput. We exploit the extended depth range and depth-dependent translation of an Airy-beam PSF for 3D localization over an extended volume in a single snapshot. The technique is applicable to all bright-field and fluorescence modalities for particle localization and tracking, ranging from super-resolution microscopy through to the tracking of fluorescent beads and endogenous particles within cells. We demonstrate and validate its application to real-time 3D velocity imaging of fluid flow in capillaries using fluorescent tracer beads. An axial localization precision of 50 nm was obtained over a depth range of 120μm using a 0.4NA, 20× microscope objective. We believe this to be the highest ratio of axial range-to-precision reported to date

    Wavelength tunable liquid crystal imaging filters for remote sensing from geosynchronous platforms

    Get PDF
    Recent advances in liquid crystal technology have enabled us to construct tunable birefringent filters with bandwidths between approximately 0.1 nm and 50 nm. The center wavelength of these filters can be selected electronically, in a few tens of milliseconds, with no moving parts. These liquid crystal tunable filters (LCTF's), together with existing CCD detectors, make possible a new generation of lightweight, rugged, high-resolution imaging spectrophotometers. Such instruments would be particularly interesting for remote sensing applications from geosynchronous platforms. Important advantages exist in the aperture, absence of image shift, power consumption, size, weight, and absence of high drive frequencies, compared to current instruments used or considered for multispectral scene analysis. In the present work, we have reviewed spectral requirements of planned NASA geosynchronous remote sensing missions and identified several applications of the liquid crystal tunable filter technology. We have modeled the LCTF performance in the visible and near-infrared, and carried out a literature study on space-hardening of the filter components, to evaluate the suitability of LCTF's for geosynchronous missions. We have also compared the power consumption, weight, size, reliability, and optical performance of an imaging spectrophotometer using a LCTF monochromator, to other instruments that have been put forward for remote sensing from geosynchronous platforms. We put forward some conceptual designs for LCTF's that seem to offer important reliability, over the mechanical filter wheels presently baselined for the HEPI and ALM experiments. The extremely wide acceptance angle achievable with LCTF's could also avoid the present need for large-aperture interference filters in the ALM (and LIS) experiments. Thermal vacuum testing and radiation damage analysis is required to investigate the space hardening of these new filters for geosynchronous flight

    Micromachined fabry-perot optical filters

    Get PDF
    The design, fabrication and measured characteristics of micromachined Fabry- Perot (F-P) optical filters for the visible spectral range are presented. Silver films of 40-50 nm thickness, evaporated on a 300 nm thick low-stress silicon nitride membrane, are used as high-quality mirrors. Two parallel mirrors, with a square aperture of up to 2x2 mm2 and initial cavity gap of 1.2 µm, form a tunable Fabry- Perot optical filter. One of the mirrors is fixed the other is under tension on a movable Si frame, which is electrostatically deflected to control the mirror spacing and parallelism. Results are compared with non-tunable F-P filters that are composed of an Ag/SiN/Ag or Ag/SiO2/Al layer stack. The FWHM of 40 nm (tunable filter) and 16 nm (non-tunable filter) have been achieved.STW - Project DEL 55.3733. Junta Nacional de Investigação Científica e Tecnológica - PRAXIS XXI-BD/5181/95
    • …
    corecore