14 research outputs found

    A QoS Aware Approach to Service-Oriented Communication in Future Automotive Networks

    Full text link
    Service-Oriented Architecture (SOA) is about to enter automotive networks based on the SOME/IP middleware and an Ethernet high-bandwidth communication layer. It promises to meet the growing demands on connectivity and flexibility for software components in modern cars. Largely heterogeneous service requirements and time-sensitive network functions make Quality-of-Service (QoS) agreements a vital building block within future automobiles. Existing middleware solutions, however, do not allow for a dynamic selection of QoS. This paper presents a service-oriented middleware for QoS aware communication in future cars. We contribute a protocol for dynamic QoS negotiation along with a multi-protocol stack, which supports the different communication classes as derived from a thorough requirements analysis. We validate the feasibility of our approach in a case study and evaluate its performance in a simulation model of a realistic in-car network. Our findings indicate that QoS aware communication can indeed meet the requirements, while the impact of the service negotiations and setup times of the network remain acceptable provided the cross-traffic during negotiations stays below 70% of the available bandwidth

    Model-Based Engineering of Collaborative Embedded Systems

    Get PDF
    This Open Access book presents the results of the "Collaborative Embedded Systems" (CrESt) project, aimed at adapting and complementing the methodology underlying modeling techniques developed to cope with the challenges of the dynamic structures of collaborative embedded systems (CESs) based on the SPES development methodology. In order to manage the high complexity of the individual systems and the dynamically formed interaction structures at runtime, advanced and powerful development methods are required that extend the current state of the art in the development of embedded systems and cyber-physical systems. The methodological contributions of the project support the effective and efficient development of CESs in dynamic and uncertain contexts, with special emphasis on the reliability and variability of individual systems and the creation of networks of such systems at runtime. The project was funded by the German Federal Ministry of Education and Research (BMBF), and the case studies are therefore selected from areas that are highly relevant for Germany’s economy (automotive, industrial production, power generation, and robotics). It also supports the digitalization of complex and transformable industrial plants in the context of the German government's "Industry 4.0" initiative, and the project results provide a solid foundation for implementing the German government's high-tech strategy "Innovations for Germany" in the coming years

    Reconfigurable Computing Applied to Latency Reduction for the Tactile Internet

    Full text link
    Tactile internet applications allow robotic devices to be remotely controlled over a communication medium with an unnoticeable time delay. In a bilateral communication, the acceptable round trip latency is usually in the order of 1ms up to 10ms depending on the application requirements. It is estimated that 70% of the total latency is generated by the communication network, and the remaining 30% is produced by master and slave devices. Thus, this paper aims to propose a strategy to reduce 30% of the total latency that is produced by such devices. The strategy is to apply reconfigurable computation using FPGAs to minimize the execution time of device-associated algorithms. With this in mind, this work presents a hardware reference model for modules that implement nonlinear positioning and force calculations as well as a tactile system formed by two robotic manipulators. In addition to presenting the implementation details, simulations and experimental tests are performed in order to validate the proposed model. Results associated with the FPGA sampling rate, throughput, latency, and post-synthesis occupancy area are analyzed.Comment: 20 pages, 32 Figure

    A Framework for Industry 4.0

    Get PDF
    The potential of the Industry 4.0 will allow the national industry to develop all kinds of procedures, especially in terms of competitive differentiation. The prospects and motivations behind Industry 4.0 are related to the management that is essentially geared towards industrial internet, to the integrated analysis and use of data, to the digitalization of products and services, to new disruptive business models and to the cooperation within the value chain. It is through the integration of Cyber-Physical Systems (CPS), into the maintenance process that it is possible to carry out a continuous monitoring of industrial machines, as well as to apply advanced techniques for predictive and proactive maintenance. The present work is based on the MANTIS project, aiming to construct a specific platform for the proactive maintenance of industrial machines, targeting particularly the case of GreenBender ADIRA Steel Sheet. In other words, the aim is to reduce maintenance costs, increase the efficiency of the process and consequently the profit. Essentially, the MANTIS project is a multinational research project, where the CISTER Research Unit plays a key role, particularly in providing the communications infrastructure for one MANTIS Pilot. The methodology is based on a follow-up study, which is jointly carried with the client, as well as within the scope of the implementation of the ADIRA Pilot. The macro phases that are followed in the present work are: 1) detailed analysis of the business needs; 2) preparation of the architecture specification; 3) implementation/development; 4) tests and validation; 5) support; 6) stabilization; 7) corrective and evolutionary maintenance; and 8) final project analysis and corrective measures to be applied in future projects. The expected results of the development of such project are related to the integration of the industrial maintenance process, to the continuous monitoring of the machines and to the application of advanced techniques of preventive and proactive maintenance of industrial machines, particularly based on techniques and good practices of the Software Engineering area and on the integration of Cyber-Physical Systems.O potencial desenvolvido pela Indústria 4.0 dotará a indústria nacional de capacidades para desenvolver todo o tipo de procedimentos, especialmente a nível da diferenciação competitiva. As perspetivas e as motivações por detrás da Indústria 4.0 estão relacionadas com uma gestão essencialmente direcionada para a internet industrial, com uma análise integrada e utilização de dados, com a digitalização de produtos e de serviços, com novos modelos disruptivos de negócio e com uma cooperação horizontal no âmbito da cadeia de valor. É através da integração dos sistemas ciber-físicos no processo de manutenção que é possível proceder a um monitoramento contínuo das máquinas, tal como à aplicação de técnicas avançadas para a manutenção preditiva e pró-ativa das mesmas. O presente trabalho é baseado no projeto MANTIS, objetivando, portanto, a construção de uma plataforma específica para a manutenção pró-ativa das máquinas industriais, neste caso em concreto das prensas, que serão as máquinas industriais analisadas ao longo do presente trabalho. Dito de um outro modo, objetiva-se, através de uma plataforma em específico, reduzir todos os custos da sua manutenção, aumentando, portanto, os lucros industriais advindos da produção. Resumidamente, o projeto MANTIS consiste num projeto de investigação multinacional, onde a Unidade de Investigação CISTER desenvolve um papel fundamental, particularmente no fornecimento da infraestrutura de comunicação no Piloto MANTIS. A metodologia adotada é baseada num estudo de acompanhamento, realizado em conjunto com o cliente, e no âmbito da implementação do Piloto da ADIRA. As macro fases que são compreendidas por esta metodologia, e as quais serão seguidas, são: 1) análise detalhada das necessidades de negócio; 2) preparação da especificação da arquitetura; 3) implementação/desenvolvimento; 4) testes e validação; 5) suporte; 6) estabilização; 7) manutenção corretiva e evolutiva; e 8) análise final do projeto e medidas corretivas a aplicar em projetos futuros. Os resultados esperados com o desenvolvimento do projeto estão relacionados com a integração do processo de manutenção industrial, a monitorização contínua das máquinas e a aplicação de técnicas avançadas de manutenção preventiva e pós-ativa das máquinas, especialmente com base em técnicas e boas práticas da área de Engenharia de Software

    Proposal of the Tactile Glove Device

    Get PDF
    This project aims to develop a tactile glove device and a virtual environment inserted in the context of tactile internet. The tactile glove allows a human operator to interact remotely with objects from a 3D environment through tactile feedback or tactile sensation. In other words, the human operator is able to feel the contour and texture from virtual objects. Applications such as remote diagnostics, games, remote analysis of materials, and others in which objects could be virtualized can be significantly improved using this kind of device. These gloves have been an essential device in all research on the internet next generation called “Tactile Internet”, in which this project is inserted. Unlike the works presented in the literature, the novelty of this work is related to architecture, and tactile devices developed. They are within the 10 ms round trip latency limits required in a tactile internet environment. Details of hardware and software designs of a tactile glove, as well as the virtual environment, are described. Results and comparative analysis about round trip latency time in the tactile internet environment is developed

    Securing CAN-Based Cyber-Physical Systems

    Get PDF
    With the exponential growth of cyber-physical systems (CPSs), new security challenges have emerged. Various vulnerabilities, threats, attacks, and controls have been introduced for the new generation of CPS. However, there lacks a systematic review of the CPS security literature. In particular, the heterogeneity of CPS components and the diversity of CPS systems have made it difficult to study the problem with one generalized model. As the first component of this dissertation, existing research on CPS security is studied and systematized under a unified framework. Smart cars, as a CPS application, were further explored under the proposed framework and new attacks are identified and addressed. The Control Area Network (CAN bus) is a prevalent serial communication protocol adopted in industrial CPS, especially in small and large vehicles, ships, planes, and even in drones, radar systems, and submarines. Unfortunately, the CAN bus was designed without any security considerations. We then propose and demonstrate a stealthy targeted Denial of Service (DoS) attack against CAN. Experimentation shows that the attack is effective and superior to attacks of the same category due to its stealthiness and ability to avoid detection from current countermeasures. Two controls are proposed to defend against various spoofing and DoS attacks on CAN. The first one aims to minimize the attack using a mechanism called ID-Hopping so that CAN arbitration IDs are randomized so an attacker would not be able to target them. ID-Hopping raises the bar for attackers by randomizing the expected patterns in a CAN network. Such randomization hinders an attacker’s ability to launch targeted DoS attacks. Based on the evaluation on the testbed, the randomization mechanism, ID-Hopping, holds a promising solution for targeted DoS, and reverse engineering CAN IDs, and which CAN networks are most vulnerable. The second countermeasure is a novel CAN firewall that aims to prevent an attacker from launching a plethora of nontraditional attacks on CAN that existing solutions do not adequately address. The firewall is placed between a potential attacker’s node and the rest of the CAN bus. Traffic is controlled bi-directionally between the main bus and the attacker’s side so that only benign traffic can pass to the main bus. This ensures that an attacker cannot arbitrarily inject malicious traffic into the main bus. Demonstration and evaluation of the attack and firewall were conducted by a bit-level analysis, i.e., “Bit banging”, of CAN’s traffic. Results show that the firewall successfully prevents the stealthy targeted DoS attack, as well as, other recent attacks. To evaluate the proposed attack and firewall, a testbed was built that consisted of BeagleBone Black and STM32 Nucleo- 144 microcontrollers to simulate real CAN traffic. Finally, a design of an Intrusion Detection System (IDS) was proposed to complement the firewall. It utilized the proposed firewall to add situational awareness capabilities to the bus’s security posture and detect and react to attacks that might bypass the firewall based on certain rules
    corecore