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Abstract

With the exponential growth of cyber-physical systems (CPSs), new security chal-

lenges have emerged. Various vulnerabilities, threats, attacks, and controls have been

introduced for the new generation of CPS. However, there lacks a systematic review

of the CPS security literature. In particular, the heterogeneity of CPS components and

the diversity of CPS systems have made it difficult to study the problem with one gen-

eralized model. As the first component of this dissertation, existing research on CPS

security is studied and systematized under a unified framework. Smart cars, as a CPS

application, were further explored under the proposed framework and new attacks are

identified and addressed.

The Control Area Network (CAN bus) is a prevalent serial communication protocol

adopted in industrial CPS, especially in small and large vehicles, ships, planes, and

even in drones, radar systems, and submarines. Unfortunately, the CAN bus was

designed without any security considerations. We then propose and demonstrate a

stealthy targeted Denial of Service (DoS) attack against CAN. Experimentation shows

that the attack is effective and superior to attacks of the same category due to its stealth-

iness and ability to avoid detection from current countermeasures.

Two controls are proposed to defend against various spoofing and DoS attacks on

CAN. The first one aims to minimize the attack using a mechanism called ID-Hopping

so that CAN arbitration IDs are randomized so an attacker would not be able to target

them. ID-Hopping raises the bar for attackers by randomizing the expected patterns in

a CAN network. Such randomization hinders an attacker’s ability to launch targeted

DoS attacks. Based on the evaluation on the testbed, the randomization mechanism,
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ID-Hopping, holds a promising solution for targeted DoS, and reverse engineering

CAN IDs, and which CAN networks are most vulnerable. The second countermeasure

is a novel CAN firewall that aims to prevent an attacker from launching a plethora of

nontraditional attacks on CAN that existing solutions do not adequately address. The

firewall is placed between a potential attacker’s node and the rest of the CAN bus.

Traffic is controlled bi-directionally between the main bus and the attacker’s side so

that only benign traffic can pass to the main bus. This ensures that an attacker cannot

arbitrarily inject malicious traffic into the main bus. Demonstration and evaluation of

the attack and firewall were conducted by a bit-level analysis, i.e., “Bit banging”, of

CAN’s traffic. Results show that the firewall successfully prevents the stealthy targeted

DoS attack, as well as, other recent attacks. To evaluate the proposed attack and

firewall, a testbed was built that consisted of BeagleBone Black and STM32 Nucleo-

144 microcontrollers to simulate real CAN traffic.

Finally, a design of an Intrusion Detection System (IDS) was proposed to complement

the firewall. It utilized the proposed firewall to add situational awareness capabilities to

the bus’s security posture and detect and react to attacks that might bypass the firewall

based on certain rules.
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Chapter 1

Introduction

In recent years, exponential growth has been witnessed in the development and deployment of

various types of Cyber-Physical Systems (CPS). They have impacted almost all aspects of our

daily life; for instance, in electrical power, oil and natural gas distribution, transportation systems,

health-care devices, household appliances, and many more. Many of the newly proposed CPS

systems are critical for national infrastructure, life support devices, or essential to our daily life.

Therefore, they are expected to be free of vulnerabilities and immune to all types of attacks, which,

unfortunately, is practically impossible for all real-world systems.

The problem in CPS is the heterogeneity of the building components. CPS are composed

of various components. There is different hardware such as sensors, actuators, and embedded

systems. There is also a different collection of software products for control and monitoring.

The reason this heterogeneity is considered a security problem is that every component can be a

contributing factor of a CPS attack. Understanding the current CPS security vulnerabilities, attacks

and protection mechanisms will provide us with a better understanding of the security posture of

CPS. Consequently, we should be able to point out the limitations of CPS that make them subject

to different attacks and devise approaches to defend against security attacks.

In this dissertation, we introduced CPS, and how they are different from both old control sys-

tems and IT systems. Recognizing the difference is key to understanding CPS security problems.
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We surveyed four CPS applications: Industrial Control Systems (ICS), Smart Grids, implantable

and wearable medical devices, and smart cars. We then investigated the security posture in each

application and identified the causes for such problems. Then we propose a cyber-physical frame-

work that highlights the correlations among threats, vulnerabilities, attacks, and controls. In addi-

tion, we apply the framework to smart cars and show how different attacks evolved by threats that

exploited existing vulnerabilities and what countermeasures could be used to prevent them.

After surveying security in CPS, generally, and smart cars, specifically, we recognized the secu-

rity vulnerabilities in Controller Area Network (CAN), the popular serial communication protocol

used in a plethora of applications ranging from small and large vehicles, to ships and planes, and

even in artificial limbs, drones, radar systems, and submarines. CAN was developed in 1986 for

automobiles by Robert Bosch to replace the complex point-to-point wiring used in cars at the time.

CAN is flexible, efficient, robust, and cost-effective, however, security was not considered at the

time it was developed. Therefore, many security attacks have been exploited [32, 92, 38].

In this dissertation, we propose a stealthy targeted denial of service (DoS) attack against CAN.

The attack prevents CAN nodes from normal operations in a stealthy and selective manner, in

the sense that it cannot be detected with the current solutions because of its seemingly-legitimate

behavior. Targeted so that the attack only affects the intended targets while the unintended work

normally. This attack is distinguished from proposed attacks due to its stealthiness. Other attacks

result in shutting down a CAN node or inducing errors that make the attack stand out. We evaluated

the attack by simulating CAN bus traffic using BeableBone Black microcontrollers to simulate

CAN node, and a STM32 Nucleo-144 development board as the attacker. The evaluation shows

that the attack successfully achieved its goal by preventing CAN nodes selectively and stealthily

from a successful transmission. The impact of such an attack could be crucial. CAN is used in

safety-critical applications and such an attack could prevent some functions that are life-saving.

To address this attack, among many recent non-traditional attacks, we propose three simultane-

ous solutions to improve security in CAN using smart cars as a means of evaluation: ID-Hopping, a

CAN Transceiver-based firewall and a firewall-complementing Intrusion Detection System (IDS).
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For the ID-Hopping, we propose a memory-efficient and cost-effective mechanism to prevent tar-

geted DoS attacks on CAN. The idea is to alter the network’s behavior when an attacker performs a

DoS attack against a particular CAN node. The change in behavior results in thwarting the attack’s

danger.

In addition, a firewall that is based on a CAN transceiver is proposed to prevent attacks that

are not addressed by current countermeasures. Its distinguishing feature is that it monitors and is

able to prevent traffic from one or more potentially-malicious ECUs one bit at time, instead of one

frame at a time commonly used in conventional firewalls. Using the same evaluation platform, we

added another STM32 Nucleo-144 to implement the firewall’s functionality. The evaluation shows

the firewall effectiveness against our proposed attack in addition to other recent attacks.

Finally, we propose a novel IDS design that complements the proposed firewall. It aims to

detect attacks that the firewall might fall short of preventing due to their seemingly-legitimate

nature. Certain attack patterns are recognized by the IDS which then notifies the firewall to prevent

them. To the best of our knowledge, the proposed IDS is the first one that detects attacks by bit

banging, unlike traditional IDS that perform analyses at the frame level.

1.1 Motivation

We chose smart cars as a representative CPS application. Smart cars have received a tremendous

amount of attention recently in academia and the media due to their importance and relevance to

our lives and safety [33, 92, 64]. Smart cars are now connected more than ever before, and although

connectivity has increased in smart cars, they still heavily rely on legacy protocols, such as CAN,

and resource-limited embedded systems. In addition, despite increasingly added safety and com-

fort features, such as Adaptive Cruise Control (ACC), Lane Keep Assist, Collision Prevention, and

Comfort Park Assist, smart cars have become vulnerable to remote attacks that could potentially

exploit such "safety" and "comfort" features for malicious and potentially safety-critical attacks.

Numerous papers and reports have shown how vulnerable smart cars are to remote and local
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attacks that range from privacy invasion to life-threatening cyber-physical attacks [33, 92, 30, 32,

31]. Most of the proposed solutions focus on cryptographic mechanisms [176, 51, 171, 139],

Intrusion Detection Systems (IDS) [96, 127, 154], and redesigning automotive embedded systems

and networks [157]. Applying cryptography could be cost-inefficient in such resource-constrained

systems. Although proposed IDS mechanism detect attacks, they do not prevent them. Also, most

of IDS are anomaly-based that aim to detect attacks based on the frequency of messages. We

believe more parameters must be included to detect more subtle attacks. Finally, redesigning the

automotive systems, or the introduction of solutions that require redesign, is a very costly approach

for manufacturers who already face cost and competition challenges.

1.2 Thesis Statement

CPS are widely ubiquitous and their impact on human lives is increasing. Although aimed at im-

proving people’s safety and convenience, CPS could be leveraged to perform malicious activities

that would threaten safety and well-being. Taking smart cars as one application of CPS, we ex-

amine the current cars’ security from a cyber-physical perspective. This would reveal unexpected

safety-related attacks. From such revelations, we plan to draw conclusions on approaches to pre-

vent cyber-physical attacks. Therefore, the thesis statement is as follows:

Providing a unified security framework for CPS facilitates understanding security issues, and

therefore addressing them. In addition, due to the criticality of CPS applications, the detection

and prevention of denial of service (DoS) attacks can greatly improve the overall security posture

in such safety-critical applications.

1.3 Proposed Solution

One of the most likely attacks on CAN networks is DoS. An attacker could simply flood the

network with a frame that has the highest priority over all other frames. Although devastating,

such an attack is easily detected but difficult to prevent. However, a subtle DoS variant is where an
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attacker targets a specific CAN node every time it sends a frame. This is considered a targeted DoS

attack. We propose ID-Hopping mechanism to prevent such an attack by making all network’s

participating computers change their frames IDs in a way that is only understood by legitimate

parties. Therefore, an attacker is left confused because the targeted computer does not send the

same ID anymore, and thus does not trigger an attack to launch the targeted DoS attack.

Firewalls are commonly used for allowing and denying network traffic based on certain rules.

In an automotive context, firewalls do not have the luxury they have in IT systems such as IP

addresses and port numbers. Instead, they have various kinds of parameters due to the use of

different protocols. We propose an automotive firewall that allows and prevents frames based on

rules that take situational-awareness into consideration. For example, the firewall should prevent

an attacker from injecting arbitrarily when a CAN node is transmitting. No more than one CAN

node is supposed to transmit simultanously with other nodes except during the arbitration phase.

Finally, to complement the work of the firewall, we also propose an IDS that detects attacks that

could bypass the firewall. Once an attack is detected, the IDS notifies the firewall which then blocks

transmission of the attacking ECU. To evaluate the above mechanisms, we have built a hardware-

based simulation environment that consists of four BeagleBone Black (BBB) microcontrollers

to simulate regular CAN nodes and two STM32 Nucleo-144 development boards to simulate an

attacker’s behavior and implement the firewall’s functionalities.

1.4 Contributions

In this work, our contributions are as follows:

1. Survey security aspects in four common CPS application: ICS, Smart Grid, medical devices,

and smart cars.

2. Present potential threat sources to CPS and their motivations.

3. Identify the root causes of security problems in the four CPS with actual examples.
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4. Present a taxonomy that highlights the cyber-physical aspects of security in CPS applica-

tions, called "Cyber-Physical Security Framework for CPS."

5. Design and implement an ID hopping algorithm to prevent targeted DoS attacks.

6. Design and implement an automotive a CAN Transceiver-based firewall.

7. Design an Intrusion Detection System to complement the firewall.

8. Evaluate the effectiveness and performance of the proposed ID-Hopping, firewall, and IDS

by a hardware-based simulation environment.

1.5 List of Related Publications

1. Abdulmalik Humayed and Bo Luo. CAN Transceiver-Based Firewall to Defend Against

DoS on CAN. In submission.

2. Abdulmalik Humayed and Bo Luo. The Stealthy Targeted Arbitration Denial Attack on

CAN. In submission.

3. Abdulmalik Humayed, Jingqiang Lin, Fengjun Li, and Bo Luo. Cyber-Physical Systems

Security – A Survey. In IEEE Internet of Things Journal - Special Issue on Security and

Privacy in Cyber-Physical Systems, Volume: 4 Issue: 6, 2017.

4. Abdulmalik Humayed, and Bo Luo. Using ID-Hopping to Defend Against Targeted DoS

on CAN. In International Workshop on Safe Control of Connected and Autonomous Vehicles

(SCAV), in conjunction with CPS Week 2017, Pittsburgh, PA, 2017.

5. Abdulmalik Humayed, and Bo Luo. Poster Abstract: Cyber-Physical Security for Smart

Cars – Taxonomy of Vulnerabilities, Threats, and Attacks. In 6th ACM/IEEE International

Conference on Cyber-Physical Systems (ICCPS), Seattle, WA, 2015 (CPS Week Best Poster

Finalist).
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6. Abdulmalik Humayed, and Bo Luo. Cyber-Physical Security for Smart Cars – Issues,

Survey and Challenges. In 2nd International IFIP Workshop on Emerging Ideas and Trends

in Engineering of Cyber-Physical Systems (EITEC), Seattle, WA, 2015.
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Chapter 2

Background

2.1 Cyber-Physical Systems

CPS are systems used to monitor and control the physical world. They are perceived as the new

generation of embedded control systems such that CPS are networked embedded systems [1].

In addition, systems, where sensor and actuator networks are embedded, are also considered

CPS [26]. Because of the reliance on IT systems, CPS could be defined as IT systems that are

integrated into applications in the physical world [63]. This integration is a result of the advance-

ments in the information and communication technologies (ICT) to enhance interactions with phys-

ical processes. All of these definitions highlight the heavy presence of the interactions between the

cyber and the physical worlds.

2.2 CPS Applications

An increasing dependence on CPS has been growing in various applications such as energy, trans-

portation, military, health-care, and manufacturing. CPS can be called different names, depending

on the application using them. For example, a widely used application of CPS is the Supervisory

Control and Data Acquisition (SCADA) which is used in Critical Infrastructure (CI) such as the

Smart Grid and Industrial Control Systems (ICS). Other examples have emerged in medical de-
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vices such as wearable and implantable medical devices. In addition, a network of small control

systems are embedded in modern cars to improve fuel efficiency, safety, and convenience.

2.2.1 ICS

ICS refers to the control systems used to enhance the control, monitoring, and production in differ-

ent industries such as the electrical grid, nuclear plants, water and sewage systems, and irrigation

systems. Sometimes ICS is called Supervisory Control and Data Acquisition (SCADA) or Dis-

tributed Control Systems (DCS). For convenience, we will use the term ICS to refer to either of

them. In ICS, different controllers with different capabilities communicate to achieve numerous

expected goals. One of which is the Programmable Logic Controller (PLC), which is a micropro-

cessor that is designed to operate continuously in hostile environments so that human operators

find difficulty being present in [97]. This field device is connected to the physical world through

sensors and actuators. Usually, it is equipped with wireless and wired communications that satisfy

different configurations in different environments. It can also be connected to PC systems in a

control center that controls and monitors its operations.

2.2.2 Smart Grid

The Smart Grid is the next generation of power grid that has been used for decades for electricity

generation, transmission, and distribution. The smart grid provides several benefits and advanced

functionalities. At the national level, it provides enhanced emission control and energy savings.

Whereas at the local level, it provides home consumers better control over their energy use that

would be beneficial economically and environmentally [113]. The smart grid is comprised of two

major components: power application and supporting infrastructure [161]. The power application

is where the core functions of the smart grid are provided, that are electricity generation, transmis-

sion, and distribution. Whereas the supporting infrastructure is the intelligent component that is

mainly concerned with controlling and monitoring the core operations of the smart grid with a set

of software, hardware, and communication networks.
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2.2.3 Medical Devices

Medical devices have been improved by integrating cyber and physical capabilities to deliver better

health care services. We are more interested in medical devices with cyber capabilities that have

physical impact on patients. Such devices are either implanted inside the patient’s body, called

Implantable Medical Devices (IMDs), or worn by patients, called wearable devices. They are usu-

ally equipped with wireless capabilities to allow communication with other devices such as the

programmer, which is needed for updating and reconfiguring the devices. Wearable devices com-

municate with each other or with other monitoring or control devices, such as a remote physician’s

system or a smartphone [151].

2.2.4 Smart Cars

Smart cars (intelligent cars) are cars that are more environment-friendly, fuel-efficient, safe, and

have enhanced entertainment and convenience features. These advancements are made possible by

the reliance on a range of 50 to 70 computers networked together, called Electronic Control Units

(ECUs). ECUs are responsible for monitoring and controlling various functions such as engine

emission control, brake control, entertainment (radio, multimedia players) and comfort features

(cruise control and windows opening and closing).

2.3 CPS Communications

Communication technologies vary in CPS applications. Different application use different proto-

cols (open and proprietary) and technologies (wired and wireless). Here we give an overview of

the most common communication technologies and protocols in each of the four applications.
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2.3.1 ICS

Two types of communication protocols are deployed in ICS, one is used for the automation and

control such as Modbus, Distributed Network Protocol (DNP3), and the other is for interconnecting

ICS control centers, such as Inter-Control Center Protocol (ICCP) [8]. Those protocols are used in

addition to the general-purpose protocols such as TCP/IP.

2.3.2 Smart Grid

The networks are of two types: field device communications within substations using Modbus and

DNP3, and recently the more advanced protocol, IEC 61850. The other type is control center

communications, which rely on the Internet-Control Center Communication Protocol (ICCP).

In addition, smart meters and field devices use wireless communications to send measurements

and receive commands from control centers. Smart meters, for example, use short-range frequency

signals, e.g. Zigbee, for diagnostics operations by technicians or readings by digital smart readers.

2.3.3 Medical Devices

It is a necessary requirement that IMDs are updated and reconfigured wirelessly so no surgical

device extraction is no needed on the patient’s body. Therefore, wireless communication is the

most common method of communication in medical devices. Both types rely on different commu-

nication protocols and technologies. For example, IMDs use LF signals specified by FCC, called

Medical Implant Communication Service (MICS), that make it possible for IMDs and their pro-

grammers to communicate. On the other hand, wearable devices rely on another type of wireless

communications, that is Body Area Network (BAN). BAN utilizes a number of wireless commu-

nication technologies such as Bluetooth and IEEE 802.15.4 (ZigBee) [35].
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2.3.4 Smart Cars

All ECUs are connected to a bus network, and the network is divided into several bus subnetworks,

each of which consists of a number of interconnected ECUs that perform certain functionalities.

An example of such subnetworks are CAN (Controller Area Network), MOST (Media Oriented

Systems Transport), LIN (Local Interconnect Network), and FlexRay. Depending on the nature of

the tasks expected from each ECU, it is attached to the appropriate subnetwork. These different

subnetworks can intercommunicate through gateways.

2.4 CPS Perspective

Fig. 2.1 shows a high-level view of any CPS, where it mainly consists of three parts: communi-

cation, computation and control, and monitoring and manipulation. The communication is of two

types, wireless or wired, and it could connect CPS with higher-level systems, such as control cen-

ters, or with lower-level components in the physical world. The computation and control part is

where the intelligence is embedded in the CPS, control commands are sent, and sensed measures

are received. The monitoring and manipulation part connects CPS to the physical world through

sensors, to monitor physical components, and actuators, to manipulate them.

Figure 2.1: CPS abstract model

A CPS component might have the ability to communicate with control centers or other CPS

components. This same component could also contain a sensor, an actuator, or both to connect

to the physical world. Each one of these capabilities have different potential security implications

that may result from the close interactions of the component’s parts and their capabilities. For

example, a CPS component’s communicational and computational parts are not expected to affect
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the physical world, and yet might be exploited to cause unexpected attacks with physical conse-

quences. Similarly, the physical properties of this component, in addition to the physical properties

of the object of interest in the physical world that the CPS controls and monitors, can also cause

unexpected attacks that might result in non-physical attacks, such as misleading information sent

to a CPS.

This heterogeneity of CPS among components, or within a component itself, results in a lack

of understanding of new types of security threats that would exploit such heterogeneity. This urges

CPS engineers to incorporate security-aware paradigms that consider the cyber-physical nature

of potential attacks. The need to clearly distinguish between such aspects for security analysis

and engineering arises. Thus, we view any CPS from three aspects: cyber, physical, and cyber-

physical. The cyber aspect considers data computations, communications, and interactions that

do not affect the physical world, whereas the cyber-physical aspect consider them when direct

interactions with the physical world takes place. The cyber-physical aspect is where the cyber

and physical world can connect. In addition, the physical aspect includes any security-related

properties of the physical world, a CPS, or its components.

In Fig 2.2, we incorporated this CPS view in the abstract model shown in Fig 2.1. Referring to

the Fig 2.2, (1) are the aspects that we consider cyber, whereas (2) are the cyber-physical aspects.

Note the dashed line separating (1) and (2) shows how the same component can be considered

cyber and cyber-physical at the same time depending on the presence or its the absence of the

interaction with the physical world. (4) shows that the physical properties of any part of a CPS

system could play a role in security issues. Therefore, we need to include it in the physical aspect.

In the following paragraphs, we present how our abstract model can capture the CPS aspects

in the following applications: ICS, the Smart Grid, implantable and wearable medical devices,

and smart cars. In each figure, we annotate the CPS aspects: (1)cyber, (2)cyber-physical, and

(3)physical. This annotation distinguishes between the aspects in such a way that we can relate to

it in the analysis of security issues.

ICS. Fig. 2.3 depicts the CPS aspects in a PLC scenario, where it is used for controlling the

13



Figure 2.2: CPS Aspects

temperature in a chemical plant. The goal is to maintain the temperature within a certain range.

If the temperature exceeds a specified threshold, the PLC is notified via a wireless sensor attached

to the tank, which in turn, notifies the control center of the undesired temperature change. Alter-

natively, in closed-loop settings, the PLC could turn the cooling system on to reduce that tank’s

temperature within the desired range.

In this figure, the cyber aspects (1) are the interactions with the PLC such that there is no

direct interaction with physical components, such as cooling fans or the tank. This involves any

laptops that require direct access to connect directly to the PLC, communications with higher-level

environments such as the control center and other remote entities, and the PLC’s wireless interface

that could be based on long or short-range frequencies. In addition, cyber-physical aspects (2) are

those that connect cyber and physical aspects. The PLC, the actuator, and the sensor, are all cyber-

physical aspects due to their direct interactions with the physical world. The wireless capabilities

of the actuator and the sensor are also considered cyber-physical. Finally, the physical aspects

are the physical objects that need monitoring and control, i.e. the cooling fans and the tank’s

temperature.

Smart Grid. Fig. 2.4 shows a typical scenario in the smart grid, more particularly, highlight-

ing the interactions of the smart meters. A smart meter is attached to every house to provide

utility companies with more accurate electricity consumption and customers with convenient ac-
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Figure 2.3: CPS aspects in ICS

cess to their usage. A smart meter interfaces a house’s appliances and Home Energy Management

Systems (HEMS) on the one hand, and interfaces with data collectors on the other. Wireless com-

munications are the most common means to communicate with collectors, although wired commu-

nications, such as Power Line Communications (PLC), are also available. The meter is equipped

with a diagnostics port that relies on short-range wireless interface for convenient access by digital

meter readers and diagnostics tools [91]. The smart meter sends the measurements to a collector

that aggregates all meters’ data in a designated neighborhood. The collector sends the aggregated

data to the distribution control center managed by the utility company. In particular, to the AMI

headend server that stores the meters’ data and shares the stored data with the Meter data manage-

ment system (MDMS) that manages the data with other systems such as demand response systems,

historians, and billing systems. The headend can connect/disconnect services by remotely sending

commands to the meters. This feature is a double-edged sword such that it is very efficient way to

control services, yet it could be exploited to launch large-scale blackouts by remotely controlling

a large number of smart meters.

In Fig. 2.4, we highlight the CPS aspects in the involved components that have some interac-

tions with the smart meters. Cyber aspects (1) are in the control center such that it stores smart

meters’ data, shares it, analyzes it, and makes informed decisions based on that. The control cen-

ter can also have a cyber-physical aspect (2) when connect/disconnect commands are sent by the

AMI headend to smart meters. In addition, the cyber-physical aspect (2) is also apparent in the

smart meter itself due to its ability to perform cyber operations, such as sending measurements to

utility, and physical operations, such as connecting/disconnecting electricity services. Other field

devices in the generation, transmission automation, and distribution plants have a high presence
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of the cyber-physical aspect due to their close interactions with physical aspects of the smart grid.

We can consider those field devices as ICS devices due to the very similar environments to ICS ap-

plications. Smart meters are the distinguishing component that differentiate between ICS and the

Smart Grid. Home appliances that are connected with smart meters are considered cyber-physical

because of the their direct interaction with smart meters. A utility company can use smart meters to

control the amount of energy consumed by particular home appliances when needed [133], which

is a cyber-physical action (2).

Figure 2.4: CPS aspects in the Smart Grid

Medical Devices. Fig. 2.5 demonstrates two of the most popular IMDs, the insulin pump

and the implantable cardioverter defibrillator (ICD). The insulin pump is used to automatically

or manually inject insulin injections for diabetics when needed, whereas the ICS is used to detect

rapid heartbeat and response by delivering an electric shock to maintain a normal heartbeat [66].

The insulin pump usually needs another device, called the continuous glucose monitor (CGM), to

receive blood sugar measurements. Both devices, the insulin pump and the CGM, require small

syringes to be injected into a patient’s body. The insulin pump receives measurements of glucose

levels from the CGM. Based on the measurements, the pump decides whether the patient needs

an insulin dose or not. The CGM sends the measurements through wireless signals to the insulin

pump or other devices, such as a remote control or computer. In addition, some insulin pumps can

be commanded by a remote control held by a patient or physician.

In this figure, the cyber (1) aspects are embodied in the monitoring computers in the hospital
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Figure 2.5: CPS aspects in medical devices

and the communications to the Internet. The cyber-physical aspects (2), on the other hand, are

those devices that directly interact with the devices implanted in a patient. A patient is the physical

(3) aspect in the context of medical devices. An IMD connects to the hospital by sending measure-

ments through an in-home router. In order to reconfigure an ICD, a physical proximity is required

to be able to do so using a device called the programmer.

Smart Cars. Fig. 2.6 shows the typical architecture of an in-car network. Depending on the

nature of the tasks expected from each ECU, it is attached to the appropriate subnetwork. ECUs

from different subnetworks can intercommunicate through gateways. In this paper we mainly focus

on CAN bus for two reasons: 1) most security issues result from CAN network and 2) it has been

required to be deployed in all cars in the U.S. since 2008 [92], thus it is in almost every car around

us.

In Fig. 2.6, we annotated ECUs that do not have any interactions with physical components

of the cars as cyber (1). Examples of which include the Telematics Control Unit (TCU) and the

media player. The TCU has more than a wireless interface that allows advanced capabilities such

as remote software updates by car manufacturers, phones pairing, receiving and making calls free

of hands. The cyber-physical annotations are for ECUs that can legitimately interact with physical

components and affect them, such as the BCM and RKE system. The RKE, for example, receives

signals to make a physical impact on the car by locking/unlocking doors. Finally, physical compo-
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nents such as the engine or the tires are physical (3).

Figure 2.6: CPS aspects in smart cars

2.5 Security in CPS

Security is usually associated with mechanisms such as cryptography, access control, intrusion

detection, and many other IT security solutions. Those mechanisms are very important in secur-

ing our information and communication technology’s infrastructure. However, they are inadequate

when solely applied to CPS. Different reported attacks on CPS applications show the inadequacy

of the sole dependence on these mechanisms. Therefore, IT security solutions should complement

security mechanisms that take the interactions between the physical and cyber aspects into con-

sideration. In addition, prevention techniques do not address CPS resiliency when it is under an

ongoing attack [24].
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Security in ICS and Smart Grid. The lack or weakness of security in CPS could be catastrophic

depending on the application. For example, if the security of CPS used in a nuclear plant has been

compromised, a world-wide threat is the possible consequence. Furthermore, security violations

in the Smart Grid could lead to the loss of services to the consumer and financial losses to the

utility company. Because of the CPS’s pervasiveness and its wide use in the critical infrastructure

in particular, CPS security is of a critical importance. In fact, it is even suggested that ICS is not

yet ready to be connected to the Internet [58]. This is due to the insecure communication networks

and the vulnerabilities in the deployed control systems.

Security in Medical Devices. Security in medical devices is challenging for a number of reasons.

Firstly, medical devices are resource-constrained in terms of memory, computation, communica-

tion, and energy. Therefore, adding security mechanisms, that consume such limited resources,

to the current devices might be difficult. In addition, replacing devices that have been already

implanted into patients’ bodies requires surgery, which might carry potential health risks. Further-

more, security could be an obstacle in some emergency situations. For example, a patient might

be in a situation that needs immediate intervention by a different health care provider who lacks

access to the IMD. The unavailability of the IMD could be very dangerous [67].

Because of the different circumstances surrounding medical devices, the need for defining ap-

propriate security goals arises. Halperin et al. [67] initiated the discussion of the security goals in

medical devices by extending the standard security goals, confidentiality, integrity, and availabil-

ity. Security goals include the authorized entities should be able to access accurate data, identify

and configure devices, update software, and maintain the device’s availability; whereas privacy

goals include the protection of private information about a device’s existence, type, unique ID, and

patient’s identification.

Security in Cars. Car manufacturers strive to come up with a variety of innovative technologies

that would satisfy their customers by providing more functionalities and comfort. Typically cars

are safe by design, but security, however, is not usually of great concern in the design phase. Safety

ensures the car’s ability to function during non-malicious incidents. Security, on the other hand,
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has not been a design issue, but has been an add-on feature. The new features in cars require

wireless communications and components with physical impacts. These two features alone result

in most security vulnerabilities and attacks in smart cars.
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Chapter 3

Security in CPS

In this chapter, we then survey the literature on CPS privacy and security under a unified frame-

work, which consists of three orthogonal coordinates, as shown in Fig 3.1. First, from security

perspective, we follow the well-known taxonomy of threats (Section. 3.1), vulnerabilities (Sec-

tion. 3.2), attacks (Section. 3.3), and controls (Section. 3.4). Next, we discuss each main aspect

following the CPS components perspective: cyber, physical, and cyber-physical. For instance,

when we survey the attacks, we categorize them into cyber-attacks, physical-attacks, and cyber-

physical-attacks. Last, from the CPS systems perspective, we explore general CPS features as well

as representative systems, in particular, industrial control systems (ICSs), smart grids, medical

CPS, and smart cars. Finally, we summarize the key threats, vulnerabilities, attacks and controls

in each CPS aspect for each representative CPS system. Since this dissertation’s focus is on smart

cars, as a CPS exemplary application, in Chapter. 4, we will introduce smart cars’ security in a

dedicated chapter, Chapter. 4, so we can elaborate on the automotive security.

3.1 Threats

Securing CPS bears with it various challenges, one of which is understanding the potential threats [25].

We aim to tackle this challenge by identifying CPS potential threats and shedding light on them

from different angles. First we discuss the general threats that almost any CPS application could
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be vulnerable to. Then we dive into the specific threats to CPS applications.

Traditionally, in order for a system to be secure, it satisfies the three security requirements:

confidentiality, integrity and availability. Due to the different nature of CPS and their direct in-

teraction with the physical world, including human and critical environments, safety requirements

are crucially important. Here we discuss the threats to both security and safety requirements. We

follow the traditional approach in security research by providing a threat model that describes the

threats based on a number of factors. Such an approach provides a systematic description of the

threats in a way that would be useful for security procedures such as threat modeling and risk

assessment.

3.1.1 Threat Model

The knowledge of who/what we protect a CPS against is equally important to the knowledge of

the existing vulnerabilities and attack mechanisms. We first need to define what we mean by a

threat. A security threat is defined as “a set of circumstances that has the potential to cause loss or

harm" [143]. The potential aspect is key in this context, as we discuss potential threats that may

not necessarily have occurred, but might. The loss might be in safety measures, confidentiality,

integrity, or availability of resources, whereas the harm implies harming people, the environment,

or systems. Note that due to the pervasiveness of the CPS applications, people are increasingly

becoming a critical asset to protect, in addition to the other assets that are common in security

literature.

We identify five factors about every threat: source, target, motive, attack vector, and potential

consequences. Then we elaborate on each one showing the possible types that would be applicable

to each factor.

Source. The source of a threat is the initiator of an attack. Threat sources fall into three

types: (1) adversarial threats which pose malicious intentions. This type could be an individ-

ual, group (criminal groups, terrorists, and hackers), organization (industrial spies, possible com-

petitors and customers), state-level groups (hostile nations); (2) accidental threats are threats
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that have been caused accidentally or through legitimate CPS components; (3) environmental

threats which include natural disasters (floods, earthquakes, and tornadoes), human-caused dis-

asters (fires, explosions), and failures of supporting infrastructure (power outage or telecommuni-

cations loss) [134, 150, 168, 163, 87, 29, 162].

Target. Targets are CPS applications and their components or users. We will see specific

examples for each application.

Motive. CPS attackers usually have one or more reasons to launch an attack: criminal, spying,

terroristic, political, or cyberwar [156, 168].

Attack Vector. A threat might perform one type or more of four mechanisms for a successful

attack: interception, interruption, modification or fabrication [143]

Consequence. Compromising the CPS’s confidentiality, integrity, availability, privacy, or safety.

We investigate the potential threats to the four CPS applications using the proposed threat

model. Then we highlight the threats that are specific to each application, with respect to the five

factors: source, target, motive, vector, and consequence.

This paradigm of threat analysis provides insight to potential threats from different angles.

given the complexity and heterogeneity of CPS, the threats have multi-faceted properties that tra-

ditional approaches, such as listing, cannot express. Our approach only highlights the most relevant

and feasible threats.

3.1.2 ICS Threats

Criminal Attackers (motive). An attacker whose familiar with the system (source) could ex-

ploit wireless capabilities (vector) to remotely control an ICS application and possibly disrupt its

operations (consequence).

Financially-motivated customers(motive). A capable customer (source) aiming to reduce a util-

ity bill might be able to tamper with physical equipment or inject false data (vector) to misinform

the utility (target) causing it to lose financially (consequence) [166].

Politically-motivated espionage (motive). Intelligence agencies (source) might perform recon-
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naissance operations targeting a nation’s critical infrastructure (target) possibly through spreading

malware (vector) resulting in confidentiality violations of the critical data (consequence) [115,

125].

Politically-motivated cyberwar (motive). A hostile nation (source) could initiate a cyberwar

against another nation (target) by remotely attacking its critical infrastructure, e.g. nuclear and

chemical plants, and gas pipelines, by spreading malware or accessing field devices (vector) re-

sulting in a plant’s shutdown, sabotaging components, environmental pollution (consequence)

[152, 165, 21, 87, 93].

In addition, the weak physical security around remote sensors and actuators can be exploited

to affect the ICS desired operations.

Physical threats. An attacker (source) could spoof a sensor that measures the temperature

of a particular environment (target) by applying heat or cold to it (vector) resulting in sending

misleading false measurements to the control center (consequence).

3.1.3 Smart Grid Threats

Financially-motivated threats (motive). A customer (source) who wants to trick a utility com-

pany’s billing system (target) might tamper with smart meters (vector) to reduce the electricity

bill (consequence) [148, 114, 113, 121, 11]. Another example of this type of threat is when utility

companies (source) might be interested in gathering customers’ private information (target) by ana-

lyzing their electricity usage to infer habits and types of house appliances (vector) to sell such infor-

mation for advertisement purposes resulting in privacy violation (consequence) [113, 145, 42, 161].

In addition, there is a possible scenario where criminals (source) extort by demanding a ransom

(target) in exchange for not taking down a number of smart meters (vector) that might cause a

blackout (consequence) [11].

Criminally or financially-motivated attacker (motive). Thieves (source) who aim to physically

intrude into or rob a house (target) might be able to infer private information, such as a house

inhabitant’s presence, from the communication between the smart meter and the utility company
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(vector) in order to perform a successful break in (consequence) [161].

Political threats (motive). A hostile nation (source) might initiate a cyberwar against another

country’s national power system (target) by gaining remote access to the smart grid infrastructure

(vector) resulting in large scale blackouts, disturbance, or financial losses (consequence) [113].

3.1.4 Medical Devices Threats

Criminal threats (motive). A criminal hacker (source) might aim to harm a patient and affect his/her

health condition (target) by using wireless tools to inject or replay commands (vector) in order

to change the device’s state and expected operations resulting in an undesired health condition

(consequence) [67]. In addition, an attacker (source) might also be able to cause harm (target)

by jamming the wireless signals exchanged between medical devices to maintain a stable health

condition (vector) resulting in the unavailability of the device and its failure to deliver the expected

therapies (consequence) [67, 70, 151].

Spying threats (motive). A hacker (source) aiming to reveal the existence of a disease, a med-

ical device, or any other information that a patient considers private (target) by intercepting the

communications of a patient’s medial device via wireless hacking tools (vector), which results in

a violation of privacy and confidentiality(consequence) [67]. In addition, as the medical devices

communicate with the other parties, such as a hospital, a large amount of private data is stored in

various locations. This could tempt an attacker (source) with spying motivations (motive) to gain

an unauthorized access to such data (target) through penetrating the networks that connect among

the involved legitimate parties (vector) resulting in privacy invasion (consequence) [98].

Politically-motivated threats (motive). Cyberwar has a new attack surface by which a hostile

nation (source) could target political figures (target) by attacking their medical devices exploiting

the devices wireless communications (vector) resulting in a potential critical health condition or

eventual death (consequence) [169]. In fact, former U.S. Vice President Dick Cheney had the

wireless capabilities disabled in his pacemaker because he was aware of the possible realistic

assassination threats [151].
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3.2 Vulnerabilities

In this section, we highlight causes of the existing vulnerabilities in CPS that we find consistent

in the four applications: ICS, the smart grid, medical devices, and smart cars. Then we identify

application-specific vulnerabilities that vary depending on the application. For example, not all

smart grid vulnerabilities exist in medical devices and vice versa. Therefore, we need to distin-

guish between the generic and the application-specific vulnerabilities, so suitable solutions can be

designed accordingly.

In addition, using the abstract CPS model proposed in Sec.2 to classify the vulnerabilities into

into three types, according to which CPS aspect a vulnerability appears in: cyber vulnerabilities,

cyber-physical vulnerabilities, and physical vulnerabilities.

3.2.1 Causes of Vulnerabilities

Isolation assumption. The trend of “security by isolation" has been dominant in most, if not all,

CPS applications since their initial design. The focus has been on designing reliable and safe

systems, whereas the security has not been of great importance. This is because the systems were

supposed to be isolated from the outside world, and therefore, considered secure. For example, in

ICS and power grid (before it became “smart"), the security relied on the assumption that systems

are isolated from the outside world, and the monitoring and control operations were performed

locally [27, 50, 106]. Furthermore, medical devices, such as IMDs, were originally designed to

be isolated from networks and other external interactions [67]. In addition, the same isolation

assumption is also present in smart cars where the security of the ECUs’ intercommunications

relied on their isolation from adversaries [95]. Recent and ongoing advances in CPS applications

do not adhere to the isolation assumption, but rather more connectivity has been introduced. The

increased connectivity increases the number of access points to cars, thus more attack surfaces

arise.

Increased connectivity. CPS are more connected than ever before. Manufacturers have im-
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proved CPS by adding services that rely on open networks and wireless technologies. For exam-

ple, ICS and the smart grid are connected to control centers which are connected to the Internet

or some business-related networks. In fact, most ICS attacks have been internal until 2001; after

that most of the attacks originate from external sources [21]. This is clearly due to the increase

connectivity deployed in ICS. In addition, some field devices are directly connected to the Internet,

for faster incident response and more convenience [99, 158]. Medical devices have wireless ca-

pabilities for easier reconfiguration and monitoring. Different wireless technologies are deployed

for such needs such as LF Bluetooth. Smart cars have more connectivity so they are referred to

as “connected cars". This connectedness relies on wireless communications such as Bluetooth,

cellular, RFID, and satellite radio communications.

Heterogeneity. CPS consist of components that are usually heterogeneous such as COTS, third

party, and proprietary components are integrated to from a CPS application. CPS are almost always

multi-vendor systems, and each product has its own security problems. For example, a component

might have been manufactured, specified, or implemented by different entities, and eventually

integrated by the system deployers. Hence, the building components of CPS are more integrated

rather than designed [50]. This integration invites vulnerabilities that exist within each product [9].

For example, one step of the Stuxnet attack was to exploit the default password in Siemens PLC to

access a computer running a Windows OS [115]. The internal details of the integrated components

are unknown, and thus they may produce unexpected behavior to the deployer. In fact, most of

the bugs that led to successful attacks in smart cars, for example, were found at the boundaries of

components, where the incorrect assumptions interact.

Many stakeholders. The number of CPS stakeholders is relatively large. This includes manu-

facturers, implementors, operators, administrators and consumers. Their activities and privileges

differ, and hence need to be properly managed [9]. The large number of stakeholders, as well as

the heterogeneous CPS components, require change management. This is another issue that we

observe to be somewhat ignored. When changes occur in some CPS components, some coordina-

tion is required at some level by the stakeholders. Such changes are replacing hardware, updating
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or changing software, and adding new capabilities [106]. Any uncoordinated change might alter

the initial assumptions about the CPS security, and therefore violate them and potentially introduce

new vulnerabilities.

3.2.2 Cyber Vulnerabilities

ICS Vulnerabilities.

Open communication protocols. ICS reliance on open standards protocols, such as TCP/IP and

ICCP, is increasing. This invites these protocols’ vulnerabilities to ICS applications. TCP/IP’s vul-

nerabilities have been studied and investigated for many years, but the protocol still has security

issues because it was not intended to be secure by design [14, 71]. Another protocol is Remote Pro-

cedure Call (RPC), which also has a number of security vulnerabilities, one of which contributed to

the well-known Stuxnet [5]. In addition, Inter-Control Center Communications Protocol (ICCP),

which interconnects control centers, lacks basic security measures such as encryption and authen-

tication [134].

Wired communications. This includes fiber-optic and Ethernet. Ethernet is usually used for

local area networks in substations. Because the communication using Ethernet uses the same

medium, it is vulnerable to traffic analysis/interception, man-in-the-middle (MITM) attack [81].

An inside attacker, for example, could exploit the privilege of access to the local network and

perform ARP spoofing to impersonate legitimate components and possibly inject false data to the

traffic or disclose classified information [142, 173]. ICS-CERT [79] highlights ICS’s vulnerability

to ARP spoofing, and suggests some appropriate countermeasures.

Wireless communications. Wireless communications are either long-range or short-range. For

short-range, they are usually performed within the ICS plant assuming an adversary is not able to

get close enough to capture the wireless traffic due to the presence of security personnel. However,

the traffic is still vulnerable to be capture, analysis or manipulation by malicious insiders or even

a capable-enough outsider [46]. In addition, when employees connect their own, probably unsafe,

devices to the ICS wireless network, they expose it to potential threats, so that an attacker could use
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their personal computers as an attack vector [82]. In addition, long-range wireless such as cellular,

microwave, and satellite are also used in ICS. The security of this type is somewhat absent in the

literature and needs investigation. In general, wireless networks are more vulnerable to various

attacks, including passive and active eavesdropping, replay attack, unauthorized access and others

discussed thoroughly in the literature as in [175, 88].

Web-related vulnerabilities. A web-related vulnerability is SQL injection, where attackers can

access databases records without authorization [142, 185]. The database that are connected directly

or indirectly to ICS servers, such as SCADA, contain important data such as historical data and

users’ information. Furthermore, emails can also contribute to malware spreading to the network.

In[129], a number of email-based attacks are shown by experimentation. In addition, gathering

security credentials for ICS-connected computers is a very enticing target for attackers interested

in gaining access to a secured network. If the employees are not alert and cautious about suspicious

emails, they could be spoofed by phishing emails and their credentials are at risk, and the network

and the ICS as a whole. Finally, vulnerabilities in Internet-exposed devices that are connected to the

local network, such as servers in the control center, employees’ portable devices like laptops, and

smartphones might be exploited to perform malicious activities that affect the desired operations

of the control devices [28].

Smart grid vulnerabilities. The large scale of the smart grid could result in more vulnerabilities,

and make it unrealistic to ensure security everywhere in the grid. The grid’s components now

become more accessible in every household, such as smart meters, and hence provide a potential

access point to it for malicious attackers [121]. In addition, the smart grid consists of heterogeneous

components run by different entities. For example, the generation plant of the grid interacts with

the transmission plant, where the transmission, in turn, interacts with the distribution, and finally

the distribution delivers the electricity to the end users. Each type of interaction is usually run

and administered by different companies, as a result of the deregulation trend [54, 73, 121]. In

general, the smart grid has two types of vulnerabilities, one inherited from the existing power

system infrastructure; whereas, the other results from the new kind of interactions among utilities
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and customers, that is the information infrastructure. This includes monitoring and controlling

operations of the smart grid through enormous connected networks.

DoS. In the context of the smart grid, DoS attacks involve large scale blackouts, loss of billing

and customers’ information. Since, the smart grid relies heavily on communication technologies,

a DoS attack is not something far-reached for attackers using the Internet as an attack vector.

Communication vulnerabilities. The information infrastructure in the smart grid relies on a

number of standardized Internet protocols, such as TCP/IP, Telnet, and SNMP. Each of these proto-

cols has vulnerabilities that could be used to launch different attacks on communications. Different

protocols are used according to the desired requirements in a particular application and based on

its nature in terms of location and interconnections with other components. For example, TCP/IP

is used for general-purpose connectivity to the Internet. The Internet-faced networks are, some-

times directly or indirectly, connected to the smart grid’s monitoring and control networks due

to network misconfiguration [43]. The connectivity itself is considered a vulnerability, let alone

vulnerabilities in the open protocols. In addition, ICCP, which is the standardized protocol for data

exchange between control centers, has a critical buffer overflow vulnerability [185].

Software vulnerabilities. Almost the same software vulnerabilities in ICS hold in the smart grid

in addition to smart grid-specific vulnerabilities. For example, widespread smart meters that are

remotely upgradeable, invite a critical vulnerability. An attacker can make use of such features to

cause blackouts by controlling the meters, either from the control center, or the meters individually.

This vulnerability can also be exploited by a software bug [11]. Some vendors leave backdoors

in smart meters. Santamarta, in [153], was able to discover a backdoor in some smart meters

that would result in full control of the meter, including pricing modifications. The meters can be

connected to via Telenet protocol. In addition, this vulnerability can also be exploited to affect

other smart meters in the grid to launch coordinated attacks.

Customers privacy vulnerabilities. A new type of vulnerabilities has emerged as a result of

two-way communications between smart meters at customers’ locations and utility companies.

Attackers may be able to intercept the vast amount of traffic generated from smart meters and infer
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private information about customers[40]. The kind of information attackers could be interested in

is, for example, daily habits, occupation of targeted houses.

Medical devices vulnerabilities

Security through obscurity paradigm. Because of the lack of mandatory security standards for

manufacturers of medical devices, some resort to designing their own protocols, relying on their

secrecy as security measure [98]. This paradigm, a.k.a "security through obscurity" has always

failed to thwart attackers.

Wireless communications. Because most medical devices rely on wireless communications,

this suggests their vulnerability to a range of wireless-based attacks such as jamming, noise, eaves-

dropping, replay, and injection attacks. The communications between ICDs and their programmers

are vulnerable to eavesdropping due to the lack of encryption. Besides this confidentiality viola-

tion, the lack of encryption allows replay attacks [66]. In addition, patients with IMDs or wearable

devices can be vulnerable to a number of privacy invasion attacks ranging from discovering the

existence of the devices, the devices type, to some physiological measures gathered by the device.

In addition, if the devices’ unique information is inferred, a patient could be tracked because of

this tractability vulnerability [67].

Software vulnerabilities. The literature on software security in medical devices is limited, and

it is a critical arena that needs further investigation. The role of software has been growing in

medical devices, and so has the likelihood of more software vulnerabilities. As a result, recalls of

medical devices due to software-related defects has increased [70, 61]. Failure of the device due to

a software flaw could result in critical health conditions. Furthermore, Hanna et al. [70] presented

the first publicly known software security analysis for medical devices. They found that one type

of medical devices, namely Automated External Defibrillator (AED), to have four vulnerabilities:

buffer overflow resulting in arbitrary code execution, weak authentication mechanism, improper

storing of credentials, and the improper deployment of Cyclic Redundancy Check (CRC) that

could lead to illegitimate firmware update. The device has no wireless capabilities, so the attacks

would be relatively difficult. In addition, certain assumptions by device designers could lead to
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undesired consequences. For example, Li et al. [101] show how a CRC check in the code can lead

to dangerous attacks such as replaying outdated measures and sending illegitimate commands.

3.2.3 Cyber-Physical Vulnerabilities

ICS.

Communication protocols.

ICS relies on protocols that used to be proprietary such as Modbus and DNP3. Such proto-

cols have been designed with the isolation assumption in mind. Thus they lack a considerable

amount of security. Modbus and DNP3 protocols are widely used in ICS applications to monitor

and send control commands from the control center to sensors and actuators that are directly at-

tached to physical objects, therefore we consider them cyber-physical. ModBus protocol, the de

facto standard communication protocol used in many ICS, lacks basic security measures that make

it vulnerable to a plethora of attacks. Its lack of encryption exposes the plain text traffic to eaves-

dropping attacks [20, 8]. It also lacks integrity checks making data integrity questionable [20, 129].

In addition, no authentication measures are implemented, suggesting the feasibility of manipulat-

ing the data addressing actuators to make them act undesirably, or with data coming from sensors

so the controllers can be spoofed by false data [165, 185]. Similarly, DNP3 protocol also does not

implement any kind of encryption or authentication mechanisms [49, 78]. It has, however, a sim-

ple integrity measure using CRC. Although CRC is relatively simple, it is better than no integrity

check altogether, like in Modbus. East et al. [49] analyzed the DNP3’s vulnerability to at least 23

attacks that exploit the absence of encryption, authentication, and authorization. In addition, they

also propose a taxonomy of the attacks that would improve their analysis. Their work was inspired

from [78], Huitsing et al. proposed similar taxonomy but for Modbus attacks.

Connected field devices. Direct access to remote field devices such as RTUs and PLCs used in

the smart grid is also a vulnerability that might be overlooked by the smart grid’s operators. Some

field devices might be left with default passwords [121]. Furthermore, a large number of PLCs

were found to be directly connected to the Internet [99]. In fact, Leverett identified 7,500 field
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devices that are directly connected to the Internet [100]. Those devices are also used in the smart

grid, thus the smart vulnerability is also applicable to it.

Secondary access points. Sometimes, in case of failure of the primary communications, it

is useful to have a secondary communication channels to access field devices such as PLCs and

RTUs. Dial-up is a typical example of a secondary channel. It provides a direct connection with

field devices, which in turn directly connected with the sensors and actuators [8]. This poses an

opportunity for attackers to take control over the field devices without the need to exploit other

more advanced communication links, especially in the presence of default logins and simple au-

thentication mechanisms.

RTOS vulnerabilities. The operating systems in ICS devices, such as PLCs and RTUs, are

Real-Time OS (RTOS), and they do not implement any access control measures. Therefore, all

users are given the highest privileges, i.e, root access. This is fundamentally insecure, and clearly

makes the devices vulnerable to various kinds of attacks due to the lack of separation of priv-

ileges [185]. Some attacks are realized by exploiting buffer overflow vulnerabilities in the OS

running in the control center [165, 185]. Buffer overflow vulnerabilities are the most commonly

reported vulnerabilities to ICS-CERT [79].

General-purpose OS vulnerabilities. Applications that are used for controlling and monitoring

field devices such as PLCs can become attack surfaces for various types of attacks. These ap-

plications are running on computers that use general-purpose OS such as Windows OS. They are

connected to field devices, either directly or indirectly. If the hosting computers or laptops have

vulnerabilities in the OS or running software, they posses a potential attack vector on the connected

field devices and their processes. An example of such exploitable vulnerabilities are two Windows

OS vulnerabilities that were exploited in the Stuxnet attack. The first one is a vulnerability in the

Print Spooler Service, which is vulnerable to remote code execution such that it could allow an at-

tacker to remotely execute code by sending a specially crafted print request to a vulnerable system

connected to the print spooler over remote procedure call (RPC) [2]. This particular vulnerability

allowed Stuxnet to copy itself onto the vulnerable computer [36]. The other exploited vulnera-
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bility was in Windows Server Service that also was vulnerable to remote code execution through

sending a specially crafted RPC request [5]. Using this vulnerability, Stuxnet connected to other

computers [36].

Software vulnerabilities. We consider programs running on general-purpose OS for controlling

and monitoring controllers as cyber-physical software. This is because the controllers are exposed

to physical components and controlled by cyber components. An example of such programs is

WinCC, which is a Siemens software used for controlling PLCs. In the Stuxnet attack, the first step

was to target vulnerable computers running WinCC software [36]. The computer’s vulnerability is

exploited so Stuxnet can copy itself onto the computer, it then installs a rogue driver DLL file that

is used by both WinCC software and the PLC. Once the driver DLL installed, a rogue code is sent

to the PLC. The critical vulnerability in the controller that allows such an action is the lack of the

code digital signature. The controller treats any code that is syntactically correct as legitimate [94].

This is a design flaw that must be corrected. The problem, however, with such a controller is its

limited computational capabilities, and hence cryptographic measures are computationally expen-

sive. Another class of cyber-physical software covers software products running on field devices

such as PLCs and other controllers. As we pointed out earlier, the presence of COTS products in

CPS is one of the contributing factors for the increased number of vulnerabilities. Leverett and

Wightman [99] revealed an authentication vulnerability in a very common COTS product that is

available in 200 PLC models. This vulnerability allows the attacker to bypass the authentication

and consequently take control of the PLC. What makes matters worst is how easy it is to scan the

Internet for such PLCs. The authors conducted multiple scans and discovered a surprisingly large

number of PLCs that directly connect to the Internet. In addition, some vendors leave backdoors

in some field devices. This makes it possible for attackers to gain access and full control over the

device when valid credentials are gathered [153].

Web-related vulnerabilities. Web-based vulnerabilities result from deploying web interfaces

directly on cyber-physical components. For example, it is a new feature in modern PLCs and RTUs

to have web-based access for configuration and monitoring. Sadly, some are left with their default
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passwords [166]. This feature makes these field devices vulnerable to attacks such as DoS, where

an attacker floods the devices by requests resulting in unavailability of the service for the legitimate

users. Furthermore, the web-interface is directly connected to the communication protocol stack

such as TCP/IP. If the stack is improperly implemented, it is possible to exploit that.

The Smart Grid.

Network intrusion. The smart grid’s networks are potentially vulnerable to intrusions.

The cyber-physical components could be controlled when successful network intrusion suc-

ceeds. The field devices, such as AVR and state estimators, are connected to a LAN network that

is not supposed to be connected to the Internet. However, it is possible to get into the network

by malware infection, through a USB stick for example. In addition, it is also possible to inject

the network with bogus packets that aim to flood it, resulting in DoS attack, or to inject false

information, resulting in decisions based on false information [161].

Communication protocols. The power system infrastructure in the smart grid relies on almost

the same protocols in ICS, such as Modbus and DNP3, thus the same related security issues to

the protocols still hold in the smart grid. In addition to these protocols, IEC 61850 has also been

introduced recently as an advancement of these protocols in substations’ communications. The

lack of some security properties in these protocols has a different impact in the context of the

smart grid. For example, protocols that lack encryption, make the data in transit vulnerable to

eavesdropping, which results in a number of attacks such as the inference of customers’ usage

patterns [121, 111], or even injection of false information due to the lack of authentication [173,

146]. The communications in the smart grid can be also vulnerable to false data injection attacks,

where an attacker injects false measurements to cause disruptions and financial losses [180].

Smart meters. Smart meters rely on two-way communications, which contributes to a number

of new security concerns about an attacker’s abilities to exploit such interaction [89]. For example,

a smart meter may have a backdoor that an attacker could exploit to have full control over the

device. In [153], the author analyzed the meter’s available documentation and found out that there

is a “Factory Login" account. Aside from the customers’ accounts with limited capabilities for

35



basic configurations, this factory login account gives full control to the user over the smart meter.

What’s more, the communication is transmitted through telnet which is well-known for major

security weakness, i.e, sending data in clear text without encryption. This vulnerability is clearly

discovered due to the readily available documentation of the meter that made the vulnerability

easily discovered. An important question is what can the attacker do once full control over the

smart meter is gained?

The author summarized three potential attacks: 1) power disruption, either directly by mali-

cious interactions with other devices to change their desired activities in terms of power consump-

tions and, or indirectly by the injection of false data such that the control center receives false

information and consequently makes wrong decisions, 2) using the meter as “bot" to launch dif-

ferent attacks possibly against other ICS devices or systems within the ICS network, and 3) the

meter’s collected data could be tampered with so that the bill reflects false data to reduce the cost.

Medical Devices.

Communications. The reliance on wireless communications in wearable and IMDs invites

vulnerabilities that have a physical impact on patients. Examples are jamming the communications,

replaying and forging sensors’ measurements and actuators’ commands. If medical devices fail to

transmit or receive expected packets, a patient’s health is at risk of incorrect operations performed

by the medical device, and an undesired health condition. Medical devices communicate with other

devices or with their programmers. In either case, the communication should not be eavesdropped,

and therefore should be encrypted. Unencrypted traffic makes the devices vulnerable to numerous

attacks.

DoS. The wireless nature of the communication the devices rely on invites jamming attacks,

where an attacker can block the communications to achieve undesired goals. For example, when an

insulin pump does not receive periodic updates from the associated CGM, it assumes the patient’s

condition is stable, and no need for an insulin injection. This leads to an undesirably high glucose

level [101, 147]. Furthermore, attackers can render devices unavailable for the patient. The attack

takes different forms, but eventually results in the unavailability of the device’s services. For
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example, some devices are vulnerable to battery exhausting attacks, where an adversary exhausts

the devices computational or communicational resources to withdraw the battery’s reserves [66,

151]. In addition, jamming the communications between devices could lead to DoS attacks.

Packets injection. Injection of unauthorized commands or false data by injecting a specially-

crafted packet. Halperin et al. [66] and Gollakota et al. [62] demonstrated the ICDs’ vulnerabilities

to injection attacks by exploiting wireless vulnerabilities. In addition, Li et al. [101] demonstrated

the insulin pump’s vulnerability to be remotely controlled by intercepting the device’s communi-

cations with its remote control. In addition, Radcliffe [147] uncovered a vulnerability in the insulin

pump device that would allow injection attacks. The device requires its serial number to be part

of the command packet as an authentication measure. An attacker equipped with the number can

inject unauthorized commands to the device.

Replay attacks. This type differs from packet injection attacks. Replay attacks don’t require

knowledge of the underlying protocols, instead, an attacker only needs to capture legitimate mea-

surements or command packets, and retransmits them to the component of interest. Li et. al [101]

revealed a vulnerability in an insulin pump that would allow replay attacks so that the pump re-

ceives a dishonest reading of the glucose level, and therefore the patient decides mistakenly to

inject the wrong amount of insulin such that the decision might threaten the health condition. In

addition, Radcliffe [147] revealed that a CGM device was vulnerable to replay attack. By retrans-

mitting pre-captured packets to the CGM the author was able to cause incorrect values. In addition,

besides the violation of confidentiality, lack of encryption allows replay attacks [66].

Programmer unauthorized usage and impersonation. An attacker can use a commercial pro-

grammer with no authorization as a result of the implicit trust [66]. This makes medical devices

vulnerable to safety-critical attacks without the attacker’s technical knowledge. In addition, some

attacks do not need programmers. Instead, Universal Software Radio Peripheral (USRP) is suffi-

cient to replace a programmer and send malicious packets as shown in [66].
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3.2.4 Physical Vulnerabilities

In this section we review vulnerabilities in physical components that would cause cyber impact

when exploited. Generally, physical tampering with a physical component or environment sur-

rounding them, such as reducing/increasing the water level in a canal, or applying unexpected heat

to temperature sensors in some hazardous environments. Most of the vulnerability analysis work

in the literature focuses on cyber attacks with physical impact. Very few, one the other hand, has

been done to analyze physical attacks with cyber impact such as in [108].

ICS.

The physical exposure of many ICS components, such as RTUs and PLCs, that scatter around

the ICS plants and outside it, is a vulnerability by itself. With insufficient physical security pro-

vided to these components, they become vulnerable to physical tampering or even sabotage. For

example, a water canal’s sensors rely on solar panels as a source of energy so they can communi-

cate with the control center. These panels were stolen, and therefore, the control center lost critical

data necessary for the desired operations [10].

The Smart Grid.

Field devices in ICS and Smart Grid are placed in unprotected environments. This makes

them vulnerable to different sorts of attacks that leverage this nature of unprotected exposure. An

adversary could, for example, physically sabotage the devices causing interruptions to the expected

operations and eventually DoS attack. The attack seems simple, and indeed it is.

A huge amount of physical components of the Smart Grid are highly exposed without physical

security, and thus vulnerable to direct physical destruction. For example, power lines are vulner-

able to malicious, accidental, and natural attacks. For example, overgrown trees caused a large

blackout affecting over 50 million people in Northern Ohio [165]. In addition, smart meters at-

tached to buildings, houses, and remote areas make them an easy target to various physical attacks.

Mo et al. [121] suggest the infeasibility of the physical protection of all assets in the Smart Grid.

Therefore, it is necessary to devise prevention and detection solutions.
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Medical Devices.

Medical devices, whether implantable or wearable, sometimes could be vulnerable to physical

access. That is, the attacker’s ability to physically deal with the medical device. For example, for

maintenance purposes, an attacker exploiting the absence of the device’s owner, tampers with it,

and potentially performs malicious activities such as malware installation, or modification of the

configurations such that the device delivers unadvised treatment that could threaten the patient’s

health. In addition, by physical access to the device, it is also possible to get the device’s serial

number, which is useful for some attacks [147]. In general, physical access to the device opens

up many possibilities to various attacks. Hanna et al. recommends protecting medical devices

from physical access by any potential attacker [70]. Another subtle vulnerability to consider is the

mobility of medical devices’ users. It could be a vulnerability by itself. As the device’s designers

cannot control the patients’ surroundings, the devices could be vulnerable to unpredicted physical

attacks when a patient is in an unsafe location. This is especially true for politically-motivated

attacks [169].

3.3 Attacks

We review reported cyber, cyber-physical, and physical attacks on the four CPS applications that

exploited the aforementioned vulnerabilities in Section 3.2. In general, publicly known attacks are

rare [144], and it is infeasible to find attacks that represent exploitations of all vulnerabilities in

section 3.2. Instead, we consider attacks that have been realized by experimentation or in real

life. Then we describe at the end of this section the cyber-physical attacks using the taxonomy

that Yampolskiy et al. presented in [182, 183] in tables 3.2, 3.3, and 3.4 for attacks on ICS, the

Smart Grid, and wearable and IMDs, receptively. Their proposal dissects CPS attacks into six-

dimensional description, by which we gather more insight about each attack. The description

includes the attacked object (Influenced Element), the resulting changes on the attacked object

from the attack (Influence), indirectly affected components (Affected Element), changes on the
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CPS Vulnerability Type Cause
ICS

Open communication proto-
cols

C I, O

Wired communications C I, H, S
Wireless communications C I, C
Web-based attacks C Con, H
Insecure protocols CP I, Con
Interconnected & exposed
field devices

CP I, Con

Insecure secondary access
points

CP I, Con

Insecure OS & RTOS CP I, Con, H
Software CP Con, H
Equipments’ physical sabo-
tage

P I

Smart
Grid

Blackouts CP I, Con, H
Communication protocols C I, C
Software C I, C, O, S
Customers’ privacy invasion C I, Con, H
Interconnected field devices CP I, Con, H
Insecure protocols CP I, Con
Insecure smart meters CP I, Con, H
Equipments’ physical sabo-
tage

P I

Wearable
& IMDs

Jamming & noise P Con
Replay & injection attacks C, CP I, Con
Patient’s privacy invasion C I, Con
Software C, CP I, H
DoS CP Con

Table 3.1: Summary of vulnerabilities. C: Cyber, CP: Cyber-Physical, P: Physical; I: Isolation
assumption, C: Connectivity, O: Openness, H: Heterogeneity, S: Many stakeholders
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CPS application (Impact), how the attack took place (Method), and preceding attacks needed to

make an attack successful (Precondition). We also integrate our CPS framework into this taxonomy

to add additional insight about attacks. In particular, we highlight CPS aspects in the attack tables

with C, CP, and P, for cyber, cyber-physical, or physical aspects, respectively.

In this section, we categorize the attacks based on the damages’ location. Attacks that do not

reach sensors/actuators are considered purely cyber, while attacks that directly impact physical

components are physical. Whereas attacks that indirectly impact physical components, through

cyber components, are cyber-physical.

3.3.1 Cyber Attacks

ICS

Communication protocols. A number of attacks have exploited vulnerabilities in the commu-

nication protocols. For example, spoofing attacks on Address Resolution Protocol (ARP) were

demonstrated on SCADA system [167, 82].

Espionage. DuQu and Flame are two examples of ICS attacks with spying purposes [37, 125].

Flame, for example, targeted various ICS networks in Middle East and was discovered in 2012. The

malware’s main goal was to collect corporations’ private data such as emails, keyboard strokes, and

network traffic [125]. Although the intention of the attack was not clear, such information leakage

could result in undesired consequences such as a hostile nation acquiring industrial secrets that

could be used for cyberwar or industrial competition.

In addition, in 2013, a group of hackers, known as Dragonfly, targeted energy firms in the U.S.

and Europe. The attacker’s main goal seems to have been gathering private information. To do

that, they needed to infect systems in the targeted firms with malware that grants remote access.

They started by sending phishing emails to the personnel of the targeted firms containing malicious

PDF attachments. Then the attack vector escalated to exploiting watering hole vulnerabilities in

victims’ browsers by directing victims to visit malicious websites hosted by the attackers. Both

delivery mechanisms infected targeted systems with a malware that allowed attackers to gather
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private information in the infected systems[149].

Unintentional attack. Although software updates are critical to ensuring a desired security

posture, it can be a source of service disruption. For example, in a nuclear plant, one computer

in the control center was updated and rebooted thereafter. The reboot erased critical data on the

control system, which misinterpreted the lack of it, resulting in a shutdown of the plant [27].

Web-based attacks. Night Dragon attack, in 2011, targeted sensitive information from private

networks of a number of energy and oil companies [8]. The attack combined a number of vectors

to succeed. It exploited a SQL injection vulnerability in a Windows server, social engineering, and

malware injection [8, 115].

The Smart Grid

DoS. The traffic in the smart grid is time-critical, so delays in it may result in undesired con-

sequences. Flooding the network at different layers is the probable approach to achieve DoS. The

impact of DoS on the smart grid substations was evaluated in [104]. The authors found that the

network performance only gets affected if the flooding is overwhelming. In addition, at the phys-

ical layer, the deployment of wireless communications increases and therefore, jamming attacks’

are possible as shown in [105].

False data injection. Introducing false data in smart grid traffic leads to different consequences

such as service disruption and financial losses. In [103], a simulated false data injection was

demonstrated to evaluate the impact on the state estimation in the smart grid. The authors assumed

the attacker’s pre-intrusion to the control center for a successful attack, which aimed to ultimately

inject false measurements to the meter’s to disrupt the state estimate process. Such disruption leads

to financial losses for the operating utilities [173].

Customers information. Attackers can analyze network traffic in the smart grid between smart

meters and data centers to infer private information about customers. For example, an attacker

can determine if a target is available at home at particular times and dates. In addition, it is also

possible to deduce lifestyle in terms of sleeping times and quality, preferred home appliances, and

many more as shown in [122].
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Untargeted malware. In 2003, the Slammer worm resulted in disabling the traffic between

field devices and substations. Although that malware was not intended to the affect the energy

sector, it had an effect because of the interconnectedness of the smart grid networks. The malware

consumed a significant amount of the time-critical traffic, but did not cause service outages [21].

Medical Devices

Most, if not all, of the reported attacks on medical devices have been performed in experimen-

tal environments. However, the possibility of the attacks in this section, should raise an alarm to

stimulate the efforts in improving security in medical devices. Although some attacks are spe-

cific to certain devices, such as insulin pumps, the same attack techniques could be applicable to

other IMDs and wearable devices due to the similarities in the communication links and hardware

components.

Replay attacks. By exploiting a vulnerability in the insulin pump, replaying eavesdropped

packets is possible by incorporating a previously intercepted device PIN [101]. In addition, replay

attacks could result in misinformed decisions regarding insulin injection [147]. For example, by

replaying an old CGM packet to the insulin pump, the patient receives a dishonest reading of the

glucose level, and therefore decides mistakenly to inject the wrong amount of insulin such that the

decision might threaten the health condition.

Privacy invasion. Attacks violating patients’ privacy have different goals and consequences.

For example, for the remote control attack on the insulin pump in [101], an attacker needs to

learn the device type, PIN, and legitimate commands sent from the remote control. The authors

successfully performed this attack and revealed three types of privacy-related information, namely,

the devices’ existence, its type, and finally the PIN. In addition, Halperin et al. [66] demonstrated

similar attacks on an ICD medical device such as revealing patient’s private personal and medical

information, and the device’s unique information.
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3.3.2 Cyber-Physical Attacks

ICS

Legacy communication channels. Dial-up connections that provide direct access to field de-

vices and sometimes overlooked. In 2005, billing information of a water utility was accessed by

exploiting the dial-up connection in a canal system [166]. Although this attack did not have a

physical impact, it could have due to the control capabilities provided by the dial-up connection.

Disgruntled insiders. A huge financial loss for utility companies with undesired environmental

impacts could result from attacking a water and sewage system. In 2000, an ex-employee inten-

tionally disrupted the operations of a sewage treatment system in Maroochy Water Services in

Queensland, Australia. The attacker exploited his knowledge, as a previously-legitimate insider,

to change configurations in pumping stations using a laptop and a radio transmitter. The conse-

quence of the attack caused a huge amount of raw sewage to flood into the streets and taint the

environment [158].

Modbus worm. An alarming work on the targeted malware presented in [129]. The authors

crafted malware that exploits the lack of authentication and integrity vulnerabilities in the Modbus

protocol. The worm aims to perform two attacks: DoS, by identifying sensors or actuators and

sending them DoS-inducing messages, and command injection, by sending unauthorized com-

mands to the sensors or actuators.

Malware. Some malware target specific systems to achieve goals like interception and inter-

ruption of operations. They exploit software vulnerabilities in systems hosting software to control

field devices. A well-known example of that is Stuxnet. This attack is considered one of the most

sophisticated attacks on ICS that clearly embodies cyberwar. Stuxnet exploits software vulnerabil-

ities to achieve physical consequences [182]. Because the targeted networks were off the Internet,

it is believed that the delivery mechanism was a USB stick. The attack can be generally summa-

rized into two phases: 1) spreading and determining targets, and 2) PLCs hijacking [94]. The first

step was realized by exploiting two zero-day Windows vulnerabilities, i.e, one in the shared print-

ing server and the other was in Windows Server Service. Both vulnerabilities would allow remote
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code execution using RPC. Stuxnet used the first vulnerability to install itself in the system and the

other to connect to other systems to also install itself in an iterative fashion. This process led to

about 100,000 infected systems worldwide, however, because the attack was targeted on specific

PLCs, the infection did not have an influence on systems that were not connected to the targeted

PLCs. Once Stuxnet is installed, it looks for a specific software used for monitoring and sending

commands to the PLCs, that is Seimens WinCC. It goes through a thorough analysis to ensure that

WinCC is connected to one of specific Siemens PLCs (315 and 417 PLCs) [94]. Once determined,

each type is treated slightly differently to inject the malicious code that aims to alter the PLC’s

configuration. Once that achieved, the final objective of the attack was realized, which is, most

likely, to damage the centrifuges used for uranium enrichment. For a detailed Stuxnet analysis, we

refer to [135].

Web-based attacks. A group of hackers exploit a web-based interface that is directly connected

to field devices like PLCs. They opened multiple connections and left them opened until the

authorized users could not access them, resulting in a DoS attack. In addition, they also sent a web

page to the controller/ field device that contains malicious Java script code designed to exploit a

bug in the TCP/IP stack causing resetting of the controller [166].

The Smart Grid

Cyber extortion. This type of attack is rare, at least publicly, where attackers take control over

the target smart grid and make demands as a price of not causing a large-scale blackout [130].

Blackouts. In the context of the smart grid, a blackout is considered a DoS attack. The availabil-

ity of the smart grid is probably the most important security goal to maintain, and attacks aiming

to compromise this requirement could result in a nationwide impact such as a large-scale blackout.

In 2007, Idaho National Laboratory (INL) demonstrated an experiment on how a generator could

be damaged as a result of a cyber attack [4]. The experiment proved the feasibility of such attacks.

For example, in 2003, it is believed that the two blackouts in Ohio and Florida were caused by

a Chinese politically-motived group, the People’s Liberation Army [72]. In addition, about 800

blackouts in the U.S. occurred in 2014 for unknown reasons [179]. Some speculations suggest
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that such mysterious outages may have resulted from cyber-physical attacks launched by hostile

nations [72].

Medical Devices

DoS attacks. This attack, when successful, could lead to critical health condition to patients.

In [66], Halerin et al. were able to disable the ICD therapies by replaying a previously recorded

“turn off" command sent by the programmer.

False data and unauthorized commands injection. Li et al. [101] were able to remotely control

an insulin pump’s remote control and successfully stopped and resumed the insulin injection from

a 20 meter distance.

Replay attacks. By exploiting a software vulnerability in the replay attacks countermeasure,

any packet can be retransmitted to the CGM and insulin pump [101]. In addition, Radcliffe showed

similar attacks in [147].

3.3.3 Physical Attacks

ICS

Untargeted attacks. Zotob worm, although not targeted on ICS, caused manufacturers to shut

down their plants. For example, US-based DaimlerChrysler had to shutdown 13 of their manufac-

turing plants for about an hour [165]. Such an incident stimulated efforts such as in [129], where

Fovino et al. performed a simulated study of the impact of malware, intended for tradition IT sys-

tems, on ICS networks. The malware’s effects varied from causing ICS servers to reboot, open a

potential arbitrary code execution vulnerability, infection of personal computers, and DoS.

The Smart Grid

Natural and environmental incidents. We give a few examples of power blackouts in 2014 that

resulted from natural causes to show the impact of physical exposure and unreliability of the smart

grid components. An ice storm in Philadelphia affected 750,000 people for several days with no

electricity, whereas a tornado hit the New York area affecting 500,000 people [179]. Furthermore,
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the widespread power transmission lines around various environments and conditions contributed

to unexpected attacks such as overgrown or falling trees. For example, some overgrown trees

caused a large blackout affecting over 50 million people in Northern Ohio [165]. This incident,

however, is controversial and security analysts suggest that it resulted from a cyber-physical attacks

originating from China [72]. In addition, in 2014, wild animals caused 150 blackout in the U.S. by

eating and damaging cables [179].

Theft. Copper wires and metal equipment are profitable targets for financially-motivated thieves.

For examples, theft caused a blackout with an impact on 3,000 people in West Virginia [179].

Car accidents. In 2014, 356 outages in the U.S. were caused by cars hitting transmission

towers, transformers, or power poles [179].

Vandalism. Attackers can physically damages parts of the smart grid such as cables, poles,

generators, smart meters, and transformers. An example of that is an incident in 2013 where

a sniper in California shot more than a hundred shots at a transmission substation, leaving 17

transformed damaged [132].

Terrorist attacks. In 2014, the first terrorist attack on a power grid occurred in Yemen. The at-

tackers launched rockets to destroy transmission towers and caused a nationwide blackout affecting

24 million people [83].

Medical Devices

Acquiring unique IDs. Obtaining devices’ serial numbers is an example of attacks that require

physical access to the target devices [147].

3.4 Controls

We briefly describe the research trends in CPS controls in two distinct paths. The first one is the so-

lution that targets CPS in general, regardless of the application. The second is application-specific

solutions that are specifically designed for some applications. In addition, we will highlight, when-

ever applicable, some solutions that can be cross-domain. That is, for example, some solutions
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Name IE 1 I 2 AE 3 Impact Method Precondition Ref
Maroochy Pumps Pumps work

undesirably
Correct
settings in
pumping
stations
manipulated

Raw sewage
flood in
streets,
tainted en-
vironment,
and financial
losses

Used a lap-
top and a ra-
dio transmit-
ter to manip-
ulate pumps

Insider knowl-
edge

[158]

Modbus
worm

ICS net-
work

Infected ICS
network

Connected
field devices

Servers’
rebooting,
DoS, &
unauthorized
commands
injection

Inject mal-
ware code
into ICS
network
traffic

Access to ICS
traffic

[129]

Stuxnet Centrifuges
PLCs

Exaggerated
rotation of
centrifuges

Centrifuges’
rotors

Lifetime
reduction
& physical
damage

Illegitimate
commands
from PLCs
sent to
centrifuges

Infected PLC by
Stuxnet

[182,
36,
94,
135]

Web-
based
attacks

Field
devices
(e.g.
PLCs)

Field de-
vices web
interface
feature

The physical
environments
controlled
by devices

Legitimate
personnel
unable to
connect to
field devices
remotely or
locally (DoS)

Leave de-
vices with
open con-
nection
state

Devices are
directly exposed
to the Internet

[166]

Web-
based
attacks

Field
devices
(e.g.
PLCs)

Field de-
vices web
interface
feature

The physical
environments
controlled
by devices

Devices lost
configura-
tions

Malware in-
jection

TCP/IP vulnera-
bility in a COTS
implementation

[166]

Table 3.2: ICS Cyber-Physical attacks

designed for cars could be applied to medical devices, or vice versa. CPS controls should consider

the unique properties of CPS, such as time-criticality, and cyber-physical interaction.

3.4.1 General Controls

Here we review controls that consider securing CPS, regardless of the application. Addressing the

vulnerability causes is the first step in the solution.

More connectivity controls. Therefore, new security considerations must be taken into account

to secure the access point from unauthorized access. Furthermore, the communication protocols

used for realizing such connectivity are either proprietary protocols, such as Modbus and DNP3

in deployed ICS and Smart Grid, or open protocols such as TCP/IP. The proprietary protocols are
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Name IE I AE Impact Method Precondition Ref
Cyber ex-
tortion

Power
delivery

Utilities lose
control over
their grid
system

Customers Lost of
services &
financial
losses

Exploit
Internet-
connected
smart grid
components

Inside knowl-
edge

[130]

Aurora
experi-
ment

Circuit
breakers
(P)

Change relay
behavior
(CP)

Power gen-
erators and
power-fed
substations
(CP)

Physical
damage to
generators
& inability
to deliver
electricity
(P)

Unexpected
opening
& closing
of circuit
breakers
(CP)

Access & inside
knowledge (CP)

[184]

Table 3.3: Smart Grid Cyber-Physical attacks

burdened with a lot of vulnerabilities due to the isolation assumption initially [9].

Communication controls. Security solutions at the communication level in ICS should consider

the differences with traditional IT solutions. For example, Intrusion Detection Systems (IDS)

should be time-critical, and long delays are intolerable [120]. Mitchel and Chen [116, 119] focus

on designing IDS solutions for CPS. In addition, they provide a comprehensive survey on IDS

solutions in CPS applications [120].

Device Attestation. CPS components running software need to verify the authenticity of the

code they are running. This verification helps significantly minimize malware. A number of at-

testation proposals can be used, however, with trade-offs. For example, hardware-based solutions

such as Trusted Platform Module (TPM), where security is proved verifiably because of the pre-

sumably, untampered with, TPM component. This technique assumes the physical security of the

CPS component, which is infeasible to guarantee in some CPS applications such as ICS and Smart

Grid. The problem with TPM is its associated cost to CPS limited computational and energy re-

sources. Therefore, probably a new generation of TPM could be used for CPS purposes. It should

not be resource-expensive, so it does not consume devices’ resources.
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Name IE I AE Impact Method Precondition Ref
DoS A med-

ical
device

The device
is turned off

Patients Patient does
not receive
expected
therapy
(DoS)

Retransmit
“turn off"
command

Capture “turn
off" previously
sent by the
programmer

[66]

False data
injection
(FDI)

Insulin
pump

False mea-
surements
sent to
insulin
pump

Patient’s
therapeutic
decisions

Wrong deci-
sions

Impersonate
CGM and
by send-
ing similar
packets with
false data

Interception
of CGM and
insulin pump
communica-
tions

[101]

Unauthorized
commands
injection

Insulin
pump

Unauthorized
commands
sent to
insulin
pump

Patient’s
safety

Dangerous
health
condition

Impersonate
insulin
pump re-
mote control
by send-
ing similar
packets
with unau-
thorized
commands

Interception
communica-
tions between
insulin pump
and its
remote

[101]

Table 3.4: Medical devices Cyber-Physical attacks

3.4.2 ICS Controls

New design. ICS needs security designed specifically for ICS, taking into consideration the cyber-

physical interactions, and the heterogeneity of components and protocols. Cardenas et al [25]

suggest that, most of the solutions in ICS aim to provide reliability, i.e, make ICS reliable in the

presence of non-malicious failures. Although important, malicious cyber attacks are now possible

more than ever, and must be considered when designing new solutions.

Secure communications. Security solutions at the communication level in ICS should consider

the differences from traditional IT solutions. For example, some key differences are the periodic

nature in traffic and real-timeliness. Periodic traffic results in identifiable patterns, that, in turn,

facilitates the attacker’s task. For real-timeliness property solutions, such as cryptography can

cause undesired delay. Therefore, the solutions should strike a balance between such properties

and security solutions.

Protocols with add-on security. A number of proposals that rely on modifications of currents

protocols, such as Modbus, DNP, and ICCP, that aim to integrate security. Fovino et al. [57]
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proposed the Secure Modbus framework. It provides authentication, non-repudiation, and thwart

replayed packets.[109] proposed DNPSec framework, which adds confidentiality, integrity, and

authenticity.

IDS. The complexity of designing IDS for securing ICS is relatively less than it is in tradi-

tional IT security. This is due to the predictability of the traffic and the static topology of the

network [93]. Zhu and Sastry [186] defined a set of goals that IDS in ICS are expected to moni-

tor. They must detect any access, including sending commands, to communication links between

controllers and sensors/actuators. In addition, any modifications for sensor settings, or any phys-

ical tampering with actuators through cyber components, should be detected. Another effort that

considers the physical exposure of the wireless communications within an ICS plant is WildCAT

presented in [46]. WildCAT is a prototype for securing ICS from cyber attacks that exploits wire-

less networks. The idea of WildCAT is to install it in security guards’ cars and it will collect

wireless activities in the physical perimeter of the plant. The collected data is sent to an analysis

center, which, in turn, detects any suspicious activities and direct the guards to the location caus-

ing such activities. For further analysis of the current ICS-specific IDS solutions, we refer you

to [186, 18, 120, 93, 34, 13].

Remote access to field devices. Fernandez and Fernandez [53] suggest that only authorized

personnel can remotely access field devices. In addition, the access should be strictly secured by

using a designated laptop through a VPN. In addition, Turk [166] suggests a simple control for

web-based DoS attacks that field devices with web access features are vulnerable to. The author

suggests to close idle connections. In addition, it could be a good measure to disallow multiple

connections simultaneously. Usually, no more than one legitimate employee tries to access such a

resource at the same time.

Encryption and key management. There is undoubtedly a need for encryption in ICS networks,

one of the associated problems with encryption is the delay, which is not desirable in a time-

sensitive environment. Choi et al [41] proposed a key management solution that does not cause

delay and ICS-specific. In addition, Cao et al. [23] proposed a layered approach aiming to protect
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sensitive data in the widespread ICS environments. Their technique relies on Hash Chains to

provide: 1) layered protection such that ICS is split into two zones: high and low security levels,

and 2) a lightweight key management mechanism. Thanks to the layered approach, an attacker with

full control of a device in the low security level cannot eavesdrop on data from higher security level

zones.

Software controls. Regularly patching security vulnerabilities in operating systems and vari-

ous applications running on them is a critical security practice. For example, Windows released

Stuxnet-related security patches that could have prevented it from installing the worm’s drop-

per [94]. However, vendors of ICS applications must also keep up with the patching and release

compatible versions of their applications. This ensures that ICS operators don’t resort to older

versions of vulnerable OS to be able to use the compatible ICS application [86].

Standardization. The National Institute of Standards and Technology (NIST) is one of the lead-

ing firms in the standardization realm. Following their, and other, standards should significantly

contribute to securing ICS. One example of NIST standards for ICS is in [163], where Stouffer et

al. provided a comprehensive guidelines for ICS security. They provide guidelines for technical

controls such as firewalls, IDS, and access control, and operational controls such as personnel se-

curity, and awareness and training. In fact, technical and operational controls must always go hand

in hand, and the negligence of one leads to serious attacks. For example, lack of awareness could

make employees vulnerable to social engineering attacks such as phishing. ICS-CERT reported

that most of the attacks on ICS originated from phishing emails with malware-infected attach-

ments [8]. In addition, security experts evaluated the security of an ICS corporation, and were

able, through social engineering and phishing, to gain employees’ credentials [134]. Sommestad

et al.[159] conducted a comparison, based on keywords mining, and concluded that the standards

focus either on the technical controls, or the operational controls, but not both. In addition, some

standards somewhat neglect ICS-specific properties, and focus on IT security countermeasures

alone.
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3.4.3 Smart Grid Controls

DoS controls. Attacks on communication components should be prevented or, at least, detected.

On one hand, at the network layer, prevention of attacks like DoS is achieved by rate-limiting,

filtering malicious packets, and reconfiguration of network architecture. The first two are possible,

while reconfiguring the network might be difficult due to its relatively static nature. Whereas tech-

niques at the physical layer aim at preventing attacks of the nature of wireless jamming. On the

other hand, detection techniques that aim at detection DoS attacks are categorized into 4 types:

signal-based, packet-based, proactive, and hybrid. The above discussion is summarized from

[173], which we refer you to consult for further experimental analysis of the detection and pre-

vention mechanisms in the Smart Grid.

IDS. IDS for Smart Grid is still an ongoing problem that is not that mature yet. Designing IDS

for the Smart Grid is a complex task due to the enormous size of the grid and the heterogeneity of

its components [161]. In addition, IDS built for traditional IT systems will not necessarily work

for the Smart Grid. They must be specifically designed for the Smart Grid to reduce the likelihood

of false detection rates. Examples of Smart Grid IDS are in [85, 118].

Low-level authorization and authentication. A common problem in a large system like the

smart grid is authentication and authorization of users to gain access to low-level layers such as

field devices. Commonly, all field devices share the same password that employees share. This

results in the impossibility of the non-repudiation security requirement. A malicious employee

could gain access to a field device and make undesired changes to the system, and there is no way

to trace who did it. Therefore, Vaidya et al. [170] proposed an authentication and authorization

mechanism that provides legitimate employees the ability to access field devices in the substation

automation systems in the smart grid. Their proposal relies on elliptic curve cryptography due to

its low computation and key size requirements compared with other public key mechanisms.

New designs. New security issues require that various aspects of the Smart Grid be approached

differently. The cyber-physical nature of the systems needs to be considered. Mo et al. [121] pro-

posed Cyber-Phyiscal Security, a new approach that combines systems-theoretic and cyber security
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controls. They provide two examples showing the applicability of their approach on two attacks

in the Smart Grid: replay attacks, and stealthy deception. They emphasize the need for consider-

ing those two types of components, cyber- and physical-components, when designing Smart Grid

controls. Most of the work done is extending existing protocols and systems to capture security

properties. This might work as a temporary solution, but bottom-up redesign is desired.

Security extensions. The trend of adding-on security to existing components of the Smart Grid

has been emerging. Protocols like DNP3, IEC 61850 and IEC 62351, are extended to capture

security properties. For example, Secure DNP3 protocol is DNP3 extended to have basic authenti-

cation, integrity and confidentiality services. The security features are added by inserting a security

layer in the communication stacks of these protocols [173].

Privacy-preserving controls. Lack of confidentiality in data aggregation protocols might re-

sult in privacy invasion of consumers’ private information such as billing information and usage

patterns [113], while the lack of integrity could result in disruption in state estimation and con-

sumption reports [161]. Therefore, a number of privacy-preserving techniques have emerged to

provide aggregated data with confidentiality and integrity when in transit between smart meters

and control centers. For discussions on such techniques, we refer you to [173, 52].

Standardization. A number of bodies, such as he International Electrotechnical Commission

(IEC) and NIST, have developed a set of standards for securing Smart Grid communications. For

example, IEC TC57 and IEC in IEC 62351 standards were developed by the IEC [43], whereas

NIST has developed smart grid guidelines in report 7628 [138].

Smart meters’ disabling protection. To prevent remote attackers who exploit the disabling

feature in smart meters, Anderson [11] suggests that smart meters should be programmed to

notify customers in enough time in advance, before the command takes effect and disables the

smart meter. This measure helps in the early detection of DoS attempts before they take place.

Physical security. As smart meters are physically exposed, they must be physically protected.

NIST standards [138] state that smart meters must have cryptographic modules in addition to

physical protection. Also smart meters are sealed in tamper-resistant units that should prevent
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unauthorized parties from physically tampering with them.

3.4.4 Medical Devices Controls

Authentication. Halperin et al. proposed a cryptographic-based authentication and key-exchange

mechanism to prevent unauthorized parties from accessing IMDs [66]. Both mechanisms do not

require battery consumption as a source of energy. Instead, they rely on external Radio Frequency

(RF) as a source of energy. In addition, Out-of-Band (OBB) authentication is deployed in some

wearable and implantable devices. By which, authentication is performed using additional chan-

nels, other than the channels used for communication, such as audio and visual channels [151]. In

fact, biometrics, such as electrocardiograms, physiological values (PVs), heart rate, glucose level

and blood pressure, can all be used for key generation for encrypted communication between the

body sensor network (BSN) [151].

Intrusion Detection Systems. Halperin et al. proposed a detection mechanism that alarms

patients of unauthorized communication attempts with their IMDs [66]. In addition, not only does

the Shield proposed in [62] detect malicious wireless-based attacks on IMDs, it also prevents them.

Although the Shield is not designed specifically as an IDS, it certainly serves as one. On the other

hand, Mitchell and Chen [117] aim to detect compromised sensors and actuators that pose threat

to patients’ safety through behavior rule-based IDS. Their proposal is not intended for IMDs or

wearable devices. Rather, it is mainly for stand alone medical devices, such as vital sign monitor

and cardiac device. Thus, there is a need for IDS solutions that consider implanted and wearable

devices’ special properties, e.g., communication protocols, the physical interaction with human

bodies, and limited resources.

Secure communications. IEEE 802.15.6 is the latest BAN standard that provides security ser-

vices such as authentication and encryption [6].

Location-based controls. Some solutions use the distance between medical devices and their

legitimate communicating parties such as programmers and other medical devices. For exam-

ple, Distance-Bounding protocols rely on the physical distance between communicating devices
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so that remote attackers cannot launch attacks remotely. The distance is determined by various

techniques such as ultra sound signals, received signal strength (RSS), electrocardiography (ECG)

signals, and body-coupled communication (BCC). This technique provides authentication but not

authorization, and hence other techniques must be incorporated [151].

Thwarting active and passive attacks. Li et al. [101] proposed the use of Body-Coupled Com-

munication (BCC), were they experimentally investigate the BCC’s ability to prevent passive and

active attacks against insulin delivery systems for the first time. This type of communication

thwarts most the passive and active attacks because of its dependence on the human body as its

transmission medium, as opposed to conventional wireless communication where the air is the

communication medium that is easily intercepted. When the human body becomes the transmis-

sion medium, an attacker needs very close proximity to the patient or even direct body contact,

which significantly mitigates the attacks and raises the bar for the attackers. Their work is the

first that experimentally investigates the BCC’s ability to prevent passive and active attacks against

insulin delivery systems.

Shifting security to external wearable devices. Incorporating security into the current IMDs

and wearable devices has its own risks and challenges. One of which is the health risk associ-

ated with IMDs’ surgical extraction from patients in order to update or replace with more secure

IMDs. In fact, if we assumed there are no health risks for extracting IMDs, the cryptographic

operations required for any secure system are expensive in terms of computational, memory, and

battery resources. Therefore, the intuitive solution is to add another device built specifically to add

security. Several proposals that deploy some cryptographic and anti-jamming-attack mechanisms

utilize external wearable devices to implement such mechanisms. For example, Xu et al. [181]

propose IMDGuard to defend against jamming and spoofing attacks. In addition, Gollakota et

al. [62] propose an external wearable device, the shield, to detect and prevent any unauthorized

commands sent to an IMD. They evaluated the shield on two modern IMDs, i.e., ICD and cardiac

resynchronization therapy device (CRT). This device jams any signals initiated by unauthorized

party.
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Cross-domain solutions. Li et al. [101] proposed the adoption of the rolling code encryption

mechanism used in RKE in cars. Smart cars and medical devices both share almost the same fea-

tures in terms of computation limitations, power, and data bandwidth constraints. Therefore, using

rolling code encryption should be an effective solution to prevent eavesdropping replay attacks.

Standardization and recommendations. The Food and Drug Administration (FDA) is the lead-

ing body in medical device standardization. It has issued a number of standards and guidelines

for the manufacturers of medical devices. For example, in 2005, the FDA highlighted that po-

tential vulnerabilities might result from using COTS software equipped with remote access ca-

pabilities [55]. Another recommendation was published in 2014 about cybersecurity in medical

devices [56]. However, the recommendations are not detailed enough nor mandatory, rather ”non-

binding recommendations". Therefore, manufacturers have the liberty to choose not to follow

them, which certainly would contribute to the production of less secure medical devices.

Leashing vs. unleashing remote functionalities In order to prevent attackers from penetrating

networks that make the interaction between remote physicians with patients’ devices possible,

manufacturers disable remote capabilities from being sent through the network. They only allow

remote parties to receive measures and logs, but not send commands. Although this is a good

security practice to prevent attackers from sending remote commands, it limits the full utilization

of such devices [98]. Therefore, there is a need to strike a balance between security and usability

without posing remote threats to patients.
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Figure 3.1: PS security framework with three orthogonal coordinates: security, CPS components,
and representative CPS systems

58



Chapter 4

Security in Cars

In this chapter, we follow the same methodology in reviewing security used in Chapter 3. However,

because smart cars are the focus of this research, we elaborate and explain in more details.

4.1 Types of Vehicle Communications

Communications related to smart cars can be classified into three types: 1) in-vehicle, 2) vehicle-

to-vehicle, and 3) vehicle-to-infrastructure communications. The first type is the most common

where internal ECUs can communicate with one another or with external devices. Whereas second

type is currently less common, but it embodies future cars such that road and traffic information

can be exchanged between cars. The third type is where cars can communicate with traffic lights

or road sensors to alarm about risky weathers [177]. In this work, the focus is mainly on the first

type, i.e., in-vehicle communications and more particularly on CAN.

4.2 CAN Bus Protocol

Controller Area Network (CAN) is a serial communications protocol used in various applications

such as small and large vehicles, ships, planes, and industrial automation. It is even used in some

drones, radar systems, and submarines. Its prevalence mainly comes from its low cost, robustness,
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and flexibility. CAN protocol provides two services when referring to the IOS networking model:

1) at the physical layer, it allows the transmission of frames as voltages that do not get influenced

by interfering magnetic fields and 2) at the data link layer where each frame is formatted in a

well-defined format as shown in Fig4.1. At the physical layer, two types of signals are used, low-

speed, specified in ISO11519-2, and high-speed, specified in ISO11898. Whereas at the data link

layer, the most common specifications on how the protocol should work are Bosch’s CAN2.0A

and CAN2.0B [15]. After that, a higher level protocol is needed to handle the data contained in the

frames and deal with the semantics. Examples of such protocols are CANOpen and Device Net.

The latter is common in industrial networks [131].

Figure 4.1: CAN Format from [92]

4.2.1 CAN Subnetworks

Typically, CAN networks are divided into three subnetworks: 1) powertrain, 2) comfort, and 3)

infotainment. The powertrain subnetwork consists of ECUs that monitors and control operations

related to the engine, brakes, and other critical operations. Whereas the comfort subnetwork con-

sists ECUs that open/close windows, control HVAC, and seats’ adjustments, to name a few.

The traffic in CAN bus is divided into two bandwidths: high-speed and low-speed bandwidth.

When ECUs from different bandwidth need to intercommunicate, they need to do so through a

gateway that transmits the exchanged messages from different traffic. This is realized by BCM

(Body Control Module) which acts as a gateway between the two bandwidth speeds in addition to
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OSI Layer CAN Bus CAN Standard/Specification
Physical High tolerance to noise and bidirectional communica-

tions
ISO11519-2 & ISO11898

Data Link Error detection & correction, multiple bus masters,
priority levels of messages

CAN2.0A & CAN2.0B

Application Determining the type of services each ECU provides
and how ECUs interpret IDs

CANOpen & SAE J1939

Table 4.1: OSI Model VS. CAN bus

other functions such as controlling external lights and providing information to passengers.

In addition to the in-car bus network, smart cars have a number of wireless interfaces that are

of two kinds: short-range (Bluetooth, Remote Keyless Entry, Tire Pressure Monitoring System,

and RIFD keys) and long-range (cellular channels) [33].

4.2.2 CAN VS. OSI

If we look at CAN bus from an OSI 7-layers’ perspective, we find that CAN bus provides services

at the physical and data link layers. In addition, it can be controlled and monitored by application-

level applications such as CANOpen and SAE J1939.

In order to implement CAN bus communications, we need three components [174]:

1. Physical layer transceiver: to translate CAN frames signals to/from wires or cables.

2. CAN controller: data-link layer implementation that adheres to standards such as ISO 11898.

3. Application level software: to translate the software application data to/from CAN frames.

Table.4.1 shows CAN bus’s functionalities provided at the physical and data link layers [174].

4.2.3 Types of ECUs

Classifying ECUs is useful for security evaluation of the network. For example, safety-critical

ECUs could be classified as critical group, whereas other ECUs as non-critical group. Regardless

of the classification approach, it is useful to distinguish between ECUs in terms of security impact.
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ECUs can be classified as sensors, actuators, and monitoring and control ECUs [139].

In [65], the authors introduce trusted communication groups, where each group of ECUs that

exchange data can do so in a way that data is confidential and ECUs are authenticated. What is

important in this section is that the authors classified every group of ECUs that need to exchange

data as a group.

ECUs that belong to certain groups can have an ID that can be identified during communi-

cations. If an ECU that only accepts frames coming from an ECU in the same group, the ID is

checked to decide [171].

Another approach to classify ECUs is based on their potential direct exposure to external con-

nections [172]. For example, the telematics unit and OBD-II port are considered low-trust group,

whereas all other ECUs are high-trust. ECUs in the high-trust group share a symmetric key used

for generating MACs of sent messages and verifying received messages. Therefore, ECUs resid-

ing in the low-trust group cannot send nor receive message containing key-generated messages.

HAving only one key for all ECUs in the entire group facilitates key management and storage.

However, I think it is too many ECUs to include in the high trust group. It could have been better

to only include the cyber-physical ECUs in the high-trust group and have a medium-trust group

that could have less security restrictions.

4.2.4 ECUs and CAN

When ECUs send frames at the same time, there is no master node or arbitrator. Instead, each

ECU is responsible to check that the bus is available to transmit a frame. A frame has a unique

arbitration ID that is not used throughout the network by other ECUS. When two ECUs send a

frame at the same time, the frame with the lowest arbitration ID wins and get transmitted. Based

on the arbitration ID, the corresponding ECUs distinguishes the frame and accepts it. In addition,

all ECUs must transmit at the same data rate, otherwise communications issues will arise.
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4.3 Security in Cars

Car manufacturers strive to introduce different sorts of innovative technologies that provide more

functionalities and convenience in smart cars. Typically, cars are safe by design, but security,

however, is not usually of a great concern. Manufacturers neglect security, which results in its

inadequacy at the cost of adding new features. In addition, most of the new features utilize wireless

communications and components with physical impact. These two features alone result in most

security vulnerabilities and attacks.

4.3.1 Automotive VS. IT Security

Using popular solutions in the IT applications such as encryption, IDS, firewall, Access Control

mechanisms is not possible in the automotive space. This is due to a number of fundamental

differences between the two spaces. First of all, systems and networks in IT applications are

dynamic and in constantly changing environments. On the other hand, automotive systems and

networks are almost static during their lifetimes [155].

In addition, automotive systems are time-critical, in contrast to IT systems [178]. Therefore,

applying the same time-consuming encryption solutions would not be the best option. Instead,

automotive-specific solutions are needed that considers such fundamental difference.

4.3.2 When is a car considered secure?

Wolf [177] has been an automotive security advocate since 2004. He considers car communications

to be secure if the following criteria are satisfied:

1. Integrity: altered messages must be detected

2. Authenticity: source message must be legitimate in a verifiable fashion

3. Privacy: the privacy of the car’s owner must be preserved. The privacy might be violated by

tracking the car though the GPS system. Other privacy concerns are discussed in??.
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In addition to the aforementioned properties, resilience is another critical property that need to

be considered.

4.3.3 ECUs modifications for security

One may suggest that we can just modify ECUs in a way that makes them more secure, vulnerability-

free, and attack-resistant. However, this suggestion would be very costly and time-consuming,

since it requires countless recalls, major changes in the deployed hardware and software, and al-

terations in the protocols such that they accommodate the new changes [140].

On the flip side, CAN bus is also difficult to modify. Its format cannot be changed, cannot

contain extra information such as authentication codes and any other extra data. Such modification

requires introducing changes in the CAN transceiver that are attached to every ECU [154].

4.4 Security Threats

Securing smart cars bears with it various challenges; one of which is understanding the poten-

tial threats surrounding them. In addition, given the CPS nature, this understanding becomes of a

greater importance [25]. In this section, we aim to tackle this challenge by presenting six examples

of potential threats and shed light on them from five angles: source, target, motive, attack vector,

and potential consequences [168].

Criminal hacking. A hacker (source) may target internal ECUs (target) through the car’s com-

munication interfaces (vector), and cause a collision or inability to control (consequences) [33].

Cyberwar. A hostile nation or terrorists (source) may target national transportation infrastruc-

ture and their commuters (target), through fully compromised cars (vector), to cause large-scale

collisions and potential critical injuries (consequences) [33].

Espionage. Intelligence agencies (source) may target individuals (target), through exploiting

vulnerabilities in traceable GPS components (vector), to obtain the targets’ private location infor-

mation (consequences) [19, 84, 33].
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Driver profiling. Companies (source) may seek to obtain drivers‚Äô driving habits (target)

through analyzing stored information in ECUs (vector), which is a privacy and confidentiality vio-

lation (consequences) [77].

Thieves. Thieves (source) whose motive is stealing (motive) a car, or its exterior or interior

parts (target).

Vandals. Vandals (source) aim to damage (motive) a car or its parts, such as anti-theft sys-

tem(target). Both threats, thieves and vandals, exploit a car’s physical exposure (vector) resulting

in financial losses (consequence) [19].

4.5 Security Vulnerabilities

In this section, we categorize, review the vulnerabilities, and present in Table 4.2 a summary

that shows the relationships between them and their causes.

4.5.1 Causes of Vulnerabilities

4.5.1.1 More connectivity vs. assumed isolation

The wide use of cyber channels, in addition to the car’s unreadiness to connecting to the outside

world, opened up a new attack vector that manufacturers may not have anticipated. This unreadi-

ness resulted from the previously-correct isolation assumption that ECUs are secure from cyber

attacks due to the lack of cyber channels [137]. However, despite the unreadiness, manufacturers

have equipped smart cars with new features that improve maintainability, e.g., remote diagnostics,

and convenience, e.g., Remote Keyless Entry (RKE) system. Most of such features rely on wire-

less communication channels. This increased connectivity has opened up new attack vectors as

never before, and increased the likelihood of new vulnerabilities. In addition, attacks exploiting

cyber vulnerabilities could compromise the safety of the passengers due to the physical impact that

some ECUs have [31].
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4.5.1.2 Heterogeneity

The heterogeneity of the cars’ components along with the integration of COTS components con-

tribute to most of the identified vulnerabilities. In addition, manufacturers integrate many compo-

nents implemented by third-parties, which makes smart cars even more heterogeneous [45]. The

internal details of the integrated components are unknown, and thus they may produce unexpected

behavior to the manufacturer. In fact, most of the bugs that led to successful attacks were found at

the boundaries of components, where the incorrect assumptions interact.

4.5.1.3 CAN Vulnerabilities

• DoS attacks: CAN is extremely prone to DoS attacks due to the arbitration ID nature. There-

fore, an attacker could easily flood the network with messages that have the lowest ID in the

network. Such messages will always occupy the network denying other ECUs from receiving

expected frames. When ECUs can no longer receive frames, the kind of attack is considered

a starvation attack [69].

• Messages modification [102]

• Spoofing/injecting new frames/messages

4.5.2 Categorization of Vulnerabilities

. We systematically categorize smart cars’ vulnerabilities by the type of CPS aspects a threat may

exploit. For example, a vulnerability in the Bluetooth protocol is considered cyber, whereas a

vulnerability that exists in the Tire Pressure Monitoring System (TPMS) is cyber-physical due to

its interaction with the physical world, i.e., with tires through sensors. Finally, any vulnerability

that results from the physical properties of any component is physical such as the exposure of

sensors or actuators to different threats.
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4.5.2.1 Cyber Vulnerabilities

.

General wireless vulnerabilities. Wireless communication, e.g., Bluetooth, WiFi, cellular,

RKE, and TPMS, implies the broadcasting nature of the communication. This makes any wireless

communication potentially vulnerable to eavesdropping, spoofing, and Denial-of-Service (DoS)

attacks.

Bluetooth vulnerabilities. The Bluetooth is one of the most vulnerable attack vectors in smart

cars [31]. When a passenger wants to pair a phone with the car, the only authentication measure is a

Personal Identification Number (PIN), prompted by the car’s Telematics Control Unit (TCU). This

measure is insufficient, and attackers can brute-force the PIN, intercept it, or even inject a false

PIN by spoofing the Bluetooth’s software. In addition, the Bluetooth connections could expose the

car to traceability attacks if an attacker successfully extracts the Bluetooth’s Media Access Control

(MAC) address, which is unique and potentially traceable [33].

Vulnerabilities in the media player. The media player has the ability to directly connect to the

CAN bus. This implies that any vulnerability in the player can affect other ECUs because of this

connection. Checkoway et al. [33] identified two vulnerabilities: 1) a malicious specially-crafted

CD could affect the media player’s ECU and “reflash" it with malicious data, and 2) the media

player is vulnerable to an arbitrary code execution, thanks to its ability to parse different media

files.

Vulnerabilities in cellular communications. TCUs provide cars with cellular communication

channels, among others, including the Bluetooth, and WiFi. Privacy concerns have emerged from

using the cellular interface as a tracking tool where both Global Positioning System (GPS) and the

microphone are parts of the TCU. This connection reveals the target’s whereabouts, or can become

a spying tool via eavesdropping on the in-car conversations by exploiting the microphone [33, 31].

Software vulnerabilities. Software is at the heart of every ECU, and smart cars reliance on it

has significantly increased. This, in turn, increases the likelihood of software bugs and security

vulnerabilities [74]. If a software is vulnerable to, say a malicious code injection, it would expose
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the car to various attacks depending on the injected software.

4.5.2.2 Cyber-Physical Vulnerabilities

. Communication protocols. Smart cars are vulnerable to numerous kinds of malicious attacks

since security was not taken into consideration when manufacturers designed the cars [95]. In-

vehicle communication protocols, such as CAN and FIN, suffer from lack of encryption, authenti-

cation and authorization. Here we review the vulnerabilities in the most common protocol, that is

the CAN bus. Because the CAN bus links cyber with physical components, it is a cyber-physical

communication protocol. The CAN bus protocol has a number of vulnerabilities that contribute

to most of the attacks on smart cars. Many vulnerabilities in the CAN bus can cause a signif-

icant number of attacks. For example, CAN bus protocol lacks critical security properties such

as encryption, authentication, and has weak authorization and network separation. In addition, the

protocol’s broadcast nature increases the likelihood of DoS attacks [92]. Another security property,

common in computer security literature, is non-repudiation, where there is no way to identify the

sender of a particular message [77]. Clearly, these vulnerabilities, especially the lack of encryption

and authentication, result from the isolation assumption discussed earlier.

Comfort ECUs. More advanced features are continuously added to ECUs to improve safety

and comfort. For example, ECUs like Adaptive Cruise Control (ACC), Lane Keep Assist, Collision

Prevention provide safety, where Comfort Park Assist, RKE are examples of ECUs that provide

comfort. Although these components have a great impact on improving the driving experience in

terms of safety and comfort, they pose a new type of attacks, that is cyber-physical attacks. These

components are part of the CAN bus, and there is a threat of attacking them and compromising

their expected functions by exploiting directly their vulnerabilities, or vulnerabilities in other ECUs

residing in the same network [31]. We take one example of these ECUs and investigate the possible

vulnerabilities that could cause cyber-physical attacks. ACC is the next generation of cruise control

which used to be, and is still in many cars, manual and quite primitive. That is the driver presses the

“set" button to maintain a particular speed the car has already reached, and increases or decreases
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the speed by pressing plus or minus buttons. This kind of cruise control is completely manual and

the driver’s intervention is required at all times. On the other hand, ACC is the new generation of

cruise control, and it has new features to give drivers more safety and comfort with minimal manual

intervention. The ACC has the ability to detect the speed of the cars ahead and "adaptively" reduce

the current speed to maintain a safe distance between cars. The detection is accomplished using

laser or radar sensors. A well-equipped attacker might be able to interrupt those sensors’ operations

by either introducing noise so they cause the ACC to reduce or increase the speed unexpectedly,

or spoofing the sensors such that the ACC reduce/increase the speed in a way that could cause

collisions. The threat here is the ability to tamper with the sensors externally, or with the ACC

ECU itself internally, possibly through other ECUs that are potentially vulnerable to remote attacks

such as TPMS or RKE.

TPMS tracking, spoofing and eavesdropping. TPMS is vulnerable to eavesdropping and spoof-

ing due to the lack of encryption [84]. In addition, tracing a car is possible by exploiting the unique

ID in the TPMS communications.

TPMS replay attack. As a consequence of the eavesdropping vulnerability, attackers can launch

replay attacks so that they record legitimate TPMS signals containing a safe air pressure in a

particular tire. Then the attackers would physically reduce the air pressure to potentially cause an

accident without the driver noticing the unsafe tire’s measures.

Replay attacks. The lack of encryption and/or authentication results in replay attack vulnera-

bilities. Sometimes encryption solutions are in place, but are weakly implemented. This type of

attack relies on recording messages intercepted from the network, and retransmitting them at later

times to cause the same effect in the legitimate scenarios. For example, when a driver presses the

unlock button in the key fob, an attacker might be able to record the communications between the

key fob and the receiving component in the car. Then the same message is played back to unlock

the car. This attack is applicable RKE to achieve unauthorized access to the car, and also to the

TPMS to send old tire pressure data, for example.

X-by-wire. An emerging trend in smart cars is the “X-by-wire", that aims to gradually re-
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place the mechanically-controlled components in the car, such as the steering wheel and the brake

pedal, by electronic or electro-mechanical components that would make drivers control the rele-

vant functionality by the press of a button. Steer-, Drive-, Brake-, Shift-, and Throttle-by-wire are

all examples of this trend [7]. This implies new opportunities for attackers to launch cyber-physical

attacks exploiting such new functionalities. However, this technology relies on FlexRay commu-

nication protocol, which is more advanced than CAN bus in terms of speed and safety features.

However, it is more costly and less likely to widespread in the near future [7]. Once the x-by-wire

technology is widely deployed, we should expect cyber-physical attacks.

4.5.2.3 Physical vulnerabilities

Smart cars, if not physically protected, can be vulnerable to numerous attacks that do not necessar-

ily require cyber-capabilities. For example, TPMS external parts could be destroyed resulting in a

DoS attack such that the TPMS sensors cannot send the tires’ air pressure to the designated ECU.

In addition, exposing the car to any kind of physical access is another vulnerability that could cause

critical attacks. For example, a mechanic can get physical access to car’s internal parts through the

OBD-II port without the need for sophisticated attacks [3]. Furthermore, some external parts, such

as the exterior mirrors, can be used to access critical components in the car’s CAN bus [77].
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Vulnerability Description Aspect 1 Cause 2 Ref

C CP P Con H

TPMS intercep-
tion

Easy interception on
TPMS’s communications

CP C [84]

Tracking A traceability vulnerabil-
ity might be exploited for
tracking

C Con [84]

Bluetooth Authentication flaw result-
ing in spoofing and pack-
ets injection

CP Con [84]

Replay Attacks Retransmission of
recorded command-
s/messages captured
wirelessly or by physical
access

CP Con H [30, 77, 92]

Software-based
packet injection

Software vulnerabilities in
communication technolo-
gies, e.g., WiFi and cellu-
lar, lead to packet injection

C Con [33]

Insecure CAN
bus

CAN bus lacks basic secu-
rity measures: encryption,
authentication, and access
control

CP Con [3, 92, 137]

Exploitation of
Media Player

Specially-crafted code on
a CD could cause inject
malicious code

CP H [77]

Physical Tamper-
ing

Physically unprotected
components facilitates
compromising ECUs

P Con [77]

Table 4.2: Summary of Vulnerabilities
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4.6 Security Attacks

We reviewed about two dozen papers that discuss the security of smart cars. Most of the work

done is abstract, theoretical, or simulation-based. Only a few present results of actual experiments

on real cars [77, 92, 33, 30].

In order for a successful attack on a car, an attacker needs to gain access to the internal net-

work physically, through the OBD-II port, media player, or USB ports, or wirelessly, through the

Bluetooth or cellular interfaces. Once an attacker gets into the car’s internal network, a plethora of

attacks opportunities are open.

4.6.1 Cyber Attacks

4.6.1.1 DoS

DoS attacks can take on different forms whose impacts vary in safety-criticality. Koscher et al. [92]

disabled CAN communication from and to the Body Control Module (BCM) which resulted in a

sudden drop from 40 to 0 MPH on the speedometer. In addition, this attack also resulted in freezing

the whole Instrument Panel Cluster (IPC) in its current state. For example, if the speedometer was

at 60 MPH before the attack, and the driver increases the speed, there will be no change in the

speedometer.

4.6.1.2 False Data Injection (FDI)

An example of this attack is displaying a false speed on the speedometer. An attacker would first

intercept the actual speed update packet sent by the BCM, and then transmit a modified packet that

had the false speed [92]. In addition, an attacker can forge the real status of the airbag system to

appear healthy, even if the airbag had malfunctioned or was removed [77].
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4.6.1.3 Privacy invasion

Checkoway et al. were able to exploit the cellular interface in the TCU and eavesdropped on in-car

conversations [33]. In addition, a report published by a U.S. senator reveals that car manufacturers

store a large amount of private information such as driving history and cars’ performance [110].

4.6.2 Cyber-Physical Attacks

.

DoS. Hoppe et al. [77] demonstrated other forms of DoS attacks. One where the attack prevents

passengers from closing opened windows. Another is to disable the warning lights. The authors

also performed another DoS attack on the theft alarming system, such that it will not go off during

a burglary [77].

4.6.2.1 Malware injection via Bluetooth

Checkoway et al. [33], conducted an attack that exploits compromised devices connected to the

car through Bluetooth. The authors assume the attacker’s ability to first compromise a con-

nected(paired) device with the car via Bluetooth, and then launch the attack exploiting the con-

nectivity to the other ECUs. This was realized by implementing a Trojan Horse that captures the

Bluetooth connections and then sends a malicious payload to the TCU. Then once the TCU is com-

promised, that attacker can communicate with safety-critical ECUs, such as the Electronic Brake

Control Module (EBCM) that controls brakes.

4.6.2.2 Malware injection via cellular network

The cellular channel in the TCU is exploitable and vulnerable to malware injection attacks. The

attack was realized by calling the target car and injecting the payload by playing an MP3 file [33].
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4.6.2.3 Malware injection via OBD-II

Attackers need physical access to the OBD-II port to launch other attacks that rely on malware

injection. Examples are a DoS attack on the ECUs of the window buttons or the warning lights, and

the spoofing of the car’s owner by not showing the nonexistent airbags that thieves have stolen [77].

4.6.2.4 Bypassing the gateway via OBD-II

Hoppe et al. [76] presented an exemplary attack on an in-vehicle gateway. The attack shows how

it is possible to expose some potentially private data from isolated subnetworks and extract them

via a USB-to-OBD cable plugged in the OBD-II port during a diagnostic session. The OBD-II

port is connected directly to the gateway by which other subnetworks are isolated for functionality

purposes rather than security, arguably [33].

4.6.2.5 Packet injection

This attack requires previous access to the CAN bus. Once an attacker gets into the network,

physically or wirelessly, a large number of attacks are possible. For example, through the OBD-II

port, it is possible to increase the engine’s Revolutions Per Minute (RPM), disturb the engine’s

timing, disable the engine’s cylinders, and disable the engine itself. In addition, attacks on brakes

are also possible by injecting random packets to the EBCM such that it locks and releases the

brakes resulting in unsafe driving experiences [92]. All of these attacks are possible by exploiting

the trusted diagnostic service and bypassing the weak access control mechanism.

4.6.2.6 Replay attacks

This attack requires two steps: 1) intercepting the CAN bus traffic when certain functions are ac-

tivated, and 2) retransmitting the observed packet to reactivate the same function. In [92], the au-

thors successfully were able to disable the car’s interior and exterior lights by sending previously-

eavesdropped packets.
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Name IE I AE Impact Method Precondition Ref
DoS 1 BCM Sudden drop

in speedome-
ter

IPC Frozen IPC
and failure in
turning car
on/off

Disabling
communica-
tion to/from
BCM

Physical access
to CAN bus

[92]

DoS 2 Windows Window
closing
failure

Windows
control
buttons

Discomfort
and frustra-
tion

Reverse
engineering
and fuzzing

Physical access [92,
77]

Malware
injection
1

Bluetooth
ECU

Ability to
connect to
other ECUs

Safety-
critical ECU
with cyber-
phyiscal
capabilities

Loss of con-
trol and po-
tentially col-
lision

Malware
injection
to other
ECUs via
Bluetooth’s
ECU

Vulnerability in
Bluetooth pair-
ing mechanism

[33]

Malware
injection
2

Telematics
unit cel-
lular
interface

Malware in-
jection

Loss of
control over
other ECUs

Remote
control
and cyber-
physical
attacks

Call car
and inject
malware
payload

Knowledge of
car’s specifics

[33]

Malware
injection
3

An ECU ECU be-
comes an
attack vector
to inject
undesired
packets

CAN bus
traffic be-
comes
vulnerable
to malicious
packets

Other ECU
behaves
undesirably
affecting
cyber-
physical
components

Transmit
malware in
CAN packets

Physical access
or vulnera-
ble wireless
interfaces

[92,
77]

Packets
injection

Varies,
depend-
ing on
target
ECU

Varies Other ECUs
and physical
components

False data
injection,
loss of con-
trol, DoS,
and safety-
critical con-
sequences

Compromised
ECUs inject
packets

Malware injec-
tion

[92,
77]

Replay
Attack

Lights
ECUs

Lights turned
off

Driver, pas-
sengers, and
surrounding
cars

Safety-
critical
situation

Eavesdrop
and re-
transmit
legitimate
commands

Access to CAN
bus network

[92]

Car’s
spying

TCU Gain control
of car

All other
ECUs can
be remotely
controlled

Stealthily
turn on car’s
microphone

Call the car Buffer overflow
vulnerability and
flaw in authenti-
cation protocol

[33]

Relay at-
tack

RKE sys-
tem

Open, and
start a car
without
owner’s
knowledge

Target car Theft and
unauthorized
access

Capture and
relay LF
beacon sig-
nals from car
to key fob,
and relay
resulting
UHF signal
from key fob
to car

Attacker needs
relaying tools
e.g., antennas
and amplifiers
among other
devices

[59]

Table 4.3: Smart Cars Cyber-Physical attacks
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4.6.3 Physical Attacks

Relay attacks. This kind of attacks targets the RKE, where an attacker relays the communications

between the car and its key fob. The attack exploits the periodical Low Frequency (LF) beacon

signal the car sends to detect if the key fob is in close range. The attacker captures and relays

it, using an antenna, to the relatively far key fob, which is most likely in the car’s owner pocket.

The key fob gets activated by the relayed signal and sends an “open" Ultra High Frequency (UHF)

signal to open the car. Once the car gets opened, the same attack is repeated from inside the car to

start it. The attack was implemented successfully on ten different cars from eight manufacturers.

In addition, it evades cryptographic measures because it targets communications at the physical

layer [59].

4.7 Security Controls

Generally speaking, security solutions for cars can be classified into 2 types: 1)internal and 2)ex-

ternal [7]. On the one hand, the first type focus on security attacks that may result from in-car

communications over different bus protocols, such as CAN, LIN, and Flexray. On the other hand,

external security solutions focus on approaches that aim to prevent attacks originating from outside

of the car. For example, attacks that exploit wireless vulnerabilities in Bluetooth and cellular com-

munications need this types of protection to be prevented. Internal security include cryptographic

solutions used for authentication, confidentiality, and integrity. Also, IDS for detecting certain

behaviors or anomalies in the system, and firewalls to prevent them from escalating. Whereas ex-

ternal protection techniques should aim at protecting all channels that expose the car to the outside

world.

Koscher et al. [92] state the importance of only trusting the trustworthy ECUs, and revoking

the trust from those ECUs that should not be blindly trusted.
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4.7.1 Defending external threats

Han et al. [68] propose an authentication mechanism to authenticate untrusted mobile devices

that need to connect to a car. They assume a secure in-vehicle communication, and the need for

security is between the network’s gateway and external devices. The gateway is the only means

of communication to the car. The gateway could be wired, e.g., USB, or wireless, e.g., WiFi or

Bluetooth. Not only does the gateway authenticates any external devices, it also authenticates its

data requests thereafter.

Bouard et al. [17] propose an IP-based approach that deploy a proxy to prevent attacks launched

from mobile devices. The approach is more suitable for next-generation cars equipped with IP-

based capabilities.

Woo et al. [178] propose an encryption mechanism that aims to secure the communications

between external devices and the in-vehicle network. In particular, they propose a key management

techniques to realize the secure communications with external devices.

4.7.2 Unimplemented promising controls

A number of security controls have been proposed to secure the in-car network, most of which

have not been implemented. For example, Wolf et al. [3] proposed three controls that would se-

cure the bus network: authentication gateway, encryption, and firewalls. In addition, Larson and

Nilsson [95] call for redesigning security in cars, and propose embracing of the defense-in-depth

security paradigm, i.e, prevention, detection, deflection, countermeasures, and recovery.

4.7.3 Software security

It is critical to update ECUs’ software securely. Compromised software can lead to countless

attacks. In addition, a new trend that would open up a new attack vector that is remote updating

for software. Therefore, different efforts have been proposed to ensure software security.
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The hardware modules such as HSM and SHE can be used as a trust root that validates the code

in ECUs [7].

Isolating less-trusted code from affecting the bus can prevent many remote attacks. This idea

would have prevented a remote attack that exploited a vulnerability in the wireless communication

protocol such as in [32]. In [22], Cankaya et al. proposed how the idea of isolation can realized by

utilizing a hypervisor, such as XtrantuM, to create different virtual machines.

4.7.4 Heterogeneity of components

It is difficult to suggest that all components produced by different OEMs should be replaced by

components produced only by cars’ manufacturers. This might be an impractical solution given

the complexity and highly skilled specialty involved in designing different components that are

integrated with cars. Instead, both parties must be in accord in terms of security requirements,

assessment and testing.

4.7.5 Cryptography

The use of cryptography provides a number of security properties such as confidentiality, integrity,

and authentication. However, cryptography mechanisms are relatively computationally-expensive

in the computationally-limited environment. Thus, the deployment of efficient solutions is vi-

tal. Wolf and Gendrullis [176] and Escherich et al. [51] propose hardware-based solutions that

are designed specifically for cars’ security. Wolf and Gendrullis [176] designed and implemented

the Hardware Security Module (HSM). They show its applicability to secure communications of

ECUs withing a car, or even in Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) com-

munications. Escherich et al. [51] presented the Secure Hardware Extension (SHE), a standard for

adding security properties, such as secret keys’ protection and secure boot, to ECUs.

The use of cryptography would be the ultimate solution for all security problems in cars. ECUs

and massages can be authenticated and communications get encrypted. The problem though with

cryptography is that it is computationally-expensive especially in the automotive environments.
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ECUs have limited processing power. Therefore, traditional cryptographic solutions are not possi-

ble.

Various cryptography-based approaches have been proposed to achieve authentication and con-

fidentiality.

Herrewege et al. [171] proposed CANAuth, an authentication protocol that provides message

authentication, replay attack resistance, group keys, and backward compatibility. The group key

is the ability for a group of ECU to share a key for authentication operations. The protocol relies

on sending authentication data through an out-of-band channel. This ensures that the normal CAN

network is not interrupted by any overwhelming authentication frames, i.e, backward compatible

protocol. Such mechanism is possible by the use of CAN+ protocol presented in [187]. One

possible drawback of the CANAuth is that it is readily compatible with current CAN networks

without having CAN+ capability in the CAN controllers.

Another proposal in [172] where the authors proposed an authentication mechanism that relies

on symmetric keys to encrypt and decrypt messages in the same group or subnetwork. A shared

symmetric key is stored in every ECU of a group. For ECUs to be identified, a byte-sized ID is

assigned to each one, which is written to ECUs’ flash memory during a diagnostic session along

with the group’s symmetric key. This can accommodate up to 256 ECUs. If a new ECU is added

to the a group, no more keys are needed, since all ECUs share the same key. As the symmetric

key provides message authentication service for ECUs, another technique aims at thwarting replay

attacks. Usually replay attacks are prevented by time stamping packets. However, since ECUs

do not have clocks, "session numbers" are introduced. To uniquely identify a CAN message, a

session number and message counter are used. When ECUs communicate, an ECU broadcast/send

2 messages: data message and authentication message. The data message is the normal message

that ECUs usually send, where the authentication message is where the node ID, message counter,

and the message authentication code (MAC) are included. This proposal needs to be implemented

between ECU’s CAN interfaces and the application layer such as CANOpen.

Regardless of cryptography adopted to encrypt and authenticate frames in a CAN network, the
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network will be vulnerable to DoS attacks as long as frame’s IDs are sent in clear text and an

attacker can see them. By seeing them, the attacker could simply flood the network with high-

priority IDs that prevent legitimate frames from being sent. Therefore, Han et al. [69] propose

a new protocol, Anonymization for CAN (IA-CAN), that aims to hide frames’ IDs through an

anonymization mechanism. This will prevent any unauthorized parties from eavesdropping on the

traffic and learn the IDs. The IA-CAN anonymizes IDs in the sense that they have no meaning for

an eavesdropper. With some reverse engineering skills and patience, an attacker can infer CAN

IDs and then launch various attacks. IA-CAN prevents the inference because the IDs are changed

randomly, from the attacker’s view, so that only legitimate ECUs can send and receive frames with

certain IDs.

Ansari et. al. [12], propose an approach to detect malicious frames sent by malicious ECUs.

Their proposal does not need any modification on the currently widely used CAN protocol. Instead,

they extend the CRC mechanism to include detection of malicious frames in addition to its main

function, i.e., error detection.

The authors use stream cipher (RC4) to encrypt either the data and CRC fields, or only the data

field. With every transmission across the CAN bus, all legitimate ECUs will update their secret

keys. Upon a frame’s arrival to an ECU, the ECU decrypts the encrypted field (data and CRC or

data only). If the decryption results in correct data and CRC, the frame is accepted, otherwise, it

gets rejected.

In the proposal, every frame with the expected ID will be received, decrypted, and then veri-

fied. This poses a DoS attack to ECUs. For example, an attacker could simply flood the network

with frames that have certain IDs where an ECU or more expect. Then each one will receive the

malicious frame and eventually drops it. However, flooding the network with a large number of

malicious frames could result in DoS attacks and rendering ECUs unavailable.
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4.7.5.1 Hardware-Based Cryptography

The most efficient way to implement cryptographic mechanisms in in-vehicles’ networks is through

hardware. Efficiency is key in these networks given the real-time nature and the limited power ca-

pabilities.

There have been a number of proposals that aim to introduce hardware-based cryptography

in in-vehicle networks. For example, Wolf and Gendrullis [176] designed and implemented the

Hardware Security Module (HSM). The module is designed to provide cryptographic primitives.

Depending on the desired security services, the HSM comes into three variants: 1)full, for V2V

communications, 2)medium, for in-vehicle communications and 3)light, for ECUs and sensors/ac-

tuators communications.

Escherich et al. proposed another hardware-based solution, called Secure Hardware Extension

(SHE). It is a mainly built for protecting cryptographic key from software attacks [51]. It does not

provide as many security features as the HSM.

Although HSM and SHE seem very promising and reliable, they require a costly re-design of

the existing common architectures that OEMs use. That is, an ECU that is needed to be protected

has to be extended to realize such solutions. In addition, the aim of such solutions is to replace the

existing ECUs, which is very costly and time consuming. Our proposal aims to maintain existing

ECUs and implement security in a firewall/gateway.

One might suggest using TPM for car. However, TPM is expensive for cars’ microcontrollers

and most likely will introduce latency. Cars cannot always connect with the TPMs’ remote servers

for attestation [139]. However, Oguma et al. [139] propose an TPM-like alternative for cars. They

assume the availability of high-resourced ECUs, called masters. A masters verifies the authenticity

of other ECUs using Key Predistribution System (KPS) and then the ECUs communicate securely

by encrypting their frames using the predistributed keys.
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4.7.5.2 Key distribution techniques

In the cryptography-based approaches, keys are essential for any security service. Therefore, dis-

tributing keys in a secure way is imperative. Here we review different techniques applied for key

distribution in CAN networks.

One of the probably first proposals of applying cryptography to automotive networks was in [3].

Wolf et al. show an example of using symmetric and asymmetric keys. A central gateway intercon-

nects different subnetworks. Each ECU has a symmetric subnetwork key, its own public and secret

key, and the gateway’s public key. The gateway holds the symmetric keys of every subnetwork,

and hence provide an efficient encrypted communications between ECUs and the gateway. How-

ever, the authors do not explain how such approach can be implemented in an automotive network,

given the limited capabilities and computational power.

Oguma [139] proposed a technique called "key predistribution system" that the author claims

has a advantage over public key system in automotive applications. Because the number of ECUs

is limited, the number of keys is also limited to the maximum number of possible ECUs. This

provides the efficiency of symmetric key encryption.

4.7.6 Redefining trust

Koscher et al. [92] suggested two trust-related controls that would have prevented most, if not all,

of their attacks. One in revoking trust from arbitrary ECUs so they cannot be able to perform diag-

nostic and reflashing operations. The other is that ECUs with diagnostic and reflashing capabilities

must be authorized and authenticated before performing these tasks.

4.7.7 Restricted critical commands

A physical access is required to the car before any “dangerous" commands can be issued [92].

Although this could be an effective control, the term dangerous is relative, and its interpretation
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varies from manufacturer to another, such that seemingly-benign commands could result in serious

attacks. If manufacturers decide to restrict the amount of commands that require physical access,

the flexibility and convenience will be affected. Therefore, we need solutions that consider all pos-

sible attacks resulting from critical or benign commands, while maintaining the existing flexibility.

4.7.8 Bluetooth

Bluetooth connections between devices and cars can be exploited to launch different attacks such

as compromising the TCU and consequently other ECUs [33]. Cars need an additional security

layer to defend against Bluetooth-dependent attacks. Dardanelli et al. [47] show the applicability

of their proposed security layer to protect against smartphone-initiated Bluetooth attacks, with little

impact on performance. Although their proposal was tested on a two-wheeled vehicle, it should

also be applicable to cars.

4.7.9 Firewalls

In the IT security applications, firewalls rely on blocking certain port numbers or IP addresses. This

is possible because of the IP addressing paradigm. However, specifying addresses is not possible

in the automotive context because of the lack of addressing scheme in CAN. It is possible to block

frames based on their IDs or other parameters such as data field length and data contents.

Wolf et al. [3] suggest implementing firewalls to complement the work of gateways. If a gate-

way is equipped with cryptographic services such as MACs and certificates, some rules can be

implemented in a firewall to allow or deny certain ECUs to and from doing something. This will

ensure that only legitimate ECUs can do certain actions. The firewall should also prevent diagnos-

tic messages from being sent from any ECU during normal operation of the car.

A firewall is needed to monitor traffic and inspect frames. For traffic monitoring, the firewall

monitors the traffic patterns and directions and prevents frames from reaching ECUs that they are
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not supposed to. For frames’ inspection, as frames’ IDs are the main parameter that determines

whether an ID should be forwarded to networks and be accepted by ECUs, the firewall should

inspects more than IDs. Data field should be inspected and and validated against malicious con-

tents. In addition, situational properties, such as the car’s status (drive, reverse, or park), need to

be inspected [164].

The topology of the network is critical for an effective firewall. Star topology that separates

critical from non-critical ECUs is ideal. However, it could introduce a single point of failure.

4.7.10 Intrusion Detection Systems (IDS)

Generally speaking, IDS are usually classified as network-based and host-based. In the network-

based IDS, the network traffic is analyzed and upon which, attacks are detected. Whereas in the

host-based IDS, the host analyzes logs that are gathered from the running applications and the op-

erating system. Usually host-based IDS detect insiders abusing privileges, whereas network-based

IDS detects outsiders who aim at exploiting vulnerabilities in the system [48]. The detection mech-

anism varies, and could be performed either in a signature-based or anomaly-based fashion. For

the signature-based, the traffic or activities are compared with a predefined patterns that represent

attacks, or undesired activities. For the anomaly-based detection, traffic or activities are compared

with normal or desired patterns, and deviations are detected.

4.7.10.1 Automotive VS. IT IDS

Patterns of anomalies and signatures are usually updated in the IT IDS. In automotive, the updating

process is not a practical solution especially for the low-cost cars. This requires a regular connec-

tions to a database at the OEM location. Apart from the expected cost, this connection introduces

a new attack vector [154].
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4.7.10.2 Centralized VS. Distributed IDS

On the one hand, central IDS ensures a global view of a given network. On the other hand, ECUs’

internal details are missing. Whereas a distributed IDS could be able to analyze internal details

of ECUs as an IDS is installed in every ECU. This however requires a substantially high cost to

have an IDS in each ECU. Therefore, striking a balance between the two types would be an ideal

solution [77]. For example, instead of having one IDS for every single ECU, each subnetwork can

have an IDS that, in turn, is connected to a central IDS.

4.7.10.3 Automotive IDS

There have been a number of IDS proposals in the automotive space. They range from signature-

and anomaly-based detection to intrusion prevention systems. Here we review briefly each type

and show what differs from our work.

Signature-Based Detection:

Larson et al. [96] proposed a host-based IDS such that a detector is embedded in every ECU.

The authors chose this approach because a central IDS will not be able to distinguish sources and

destinations of frames due to the lack of addressing in CAN. In addition, the detection relies on

detecting deviations from the the protocol’s specifications. In particular, two parameters are de-

rive from the CANOpen specifications: 1)security specifications from the protocol stack to detect

network activities and 2)ECU expected behavior from the object directory to detected attacks at

the ECU-level. The behavior of ECUs is derived from CANOpen specifications, and any activities

that differ from the specifications are considered attacks, and therefore detected.

One drawback in the proposed detection mechanism is the reliance on protocol’s specifications

assuming that they are carefully followed and implemented by manufacturers. Koscher et al. stated

that deviations from the standards are common [92]. Therefore, such assumption limits the adop-

tion of the proposal because of the proprietorial preference by manufacturers when it comes to use

standards. Another assumption that might limit the effectiveness of their detection mechanism is

that an attacker can control the gateway or other ECUs except the source and destination ECUs. If
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an attcker is able to control all these ECUs, why not control the source or destination ECUs?

Muter et al. [128] designed another signature-based IDS that deploys eight sensors for collect-

ing data for various purposes. Each sensor reports suspicious patterns that match defined ones in

the IDS’s database. Once a frame, or a sequence of frames, is detected, an alarm is raised. Each

sensor checks for formality, location, range, frequency, correlation, protocol, plausibility, and con-

sistency, respectively.

Schweppe and Roudier [154] propose an approach that is designed to prevent operating sys-

tems’ attacks such as buffer overflows, and unauthorized access to other ECUs’ functionalities or

in-vehicle data. The authors use a binary tainting tool for detecting malicious instructions originat-

ing from unauthorized parties. For example, the approach prevents attacks that leverage the TPMS

connection to access to the network and send malicious commands to other ECUs. The solution

is not designed for current cars, but rather for next generation cars as needs periodic updates and

high computation resources.

Miller and Valasek [31] demonstrated a proof-of-concept low-cost attack detection system

that detects anomalies in the CAN network, and the great opportunities for implementing such

a system at low cost and no manufacturing overhead. However, regardless of the low-cost and

ease of application of their approach, when their detection mechanism detects an attack, it shuts

down the whole network. We believe that shutting down the network is an overreaction and some

safety-critical consequences could result.

Ling and Feng proposed an IDS that detects attacks that exploits two known vulnerabilities

in CAN: 1) DoS and 2) error flags spoofing [102]. For the DoS attack, an attacker would flood

the network with a frame whose ID has the highest priority, resulting in preventing frames with

lower priority IDs from being transmitted. Whereas the error flag spoofing occurs when an attack

crafts frames that looks like CAN’s error flags which results in interruption of the normal sequence

of CAN frames. Their detection mechanism keeps track of two types of frames’ ID, known and

unknown. For each kind, a counter and a flag are defined in addition to a threshold of the normal

frequency of such type. When an ID exceeds its threshold, an alarm is created signifying the
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detection of either a DoS or error flag spoofing attack. It is not clear how and why the authors

choose certain IDs and on what basis a threshold is determined. Although the approach seems

promising, it needs further explanation and justifications.

Anomaly-Based Detection:

Hoppe et al. proposed an anomaly-based IDS [77], which is network-based IDS monitoring the

network and detecting any deviations from the normal traffic. The authors proposed three patterns

that each of which signifies an attack. The patterns are: 1) increased message frequency such

that when an attacker injects messages to the network, the number of usual message is observed

as an indicator of an attack, 2) obvious misuse of message IDs, and 3) low-level communication

characteristics.

Otsuka et al. [140] proposed a novel approach, "delayed-deciosn cycle detection", that needs

no modifications on the current ECUs. Their anomaly-based approach relies on analyzing normal

frequency of periodic messages that appear in cycles in a CAN network. If a message arrives at the

gateway in a higher frequency than what is considered normal, the message is either dropped, if it

is unauthorized, or forwarded later, if it is authorized. The approach is implemented in a gateway,

and all other ECUs are intact. Comparing with similar approaches, this proposal has the lowest

false positives and negatives. Although this approach is especially useful for detecting attacks that

resemble periodical messages, it is effective with other attacks.

Seifert and Obermaisser [155] proposed a behavior-based approach, implemented in a security

gateway, that focuses on ECUs’ communications, rather than the specific protocols. They proposed

a generic approach that derives rules from the relations between ECUs and timing properties of the

exchanged messages. The approach is abstract enough to be applicable to any protocol, including

CAN and Flexray.

Matsumoto et al. [112] propose an authorized frames’ detection and prevention mechanism.

The precondition is that no two ECUs can use the same ID at any given time. In other words, IDs

are uniquely used by ECUs. Also, each ECU monitors the traffic consistently looking for frames

that have the same ID of its own. If a detection occurs, the ECU transmits an error frame that
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will have a higher priority and will override the unauthorized frame. Therefore, not only does the

mechanism detects, it also prevents authorized frames from completing their transmission.

Müter and Asaj [127] propose a novel entropy-based IDS. An entropy is a measurement of

the level of coincidence a dataset contains. The higher the entropy is, the more coincidences

in the dataset, and vice versa. In the context of automotive networks, traffic behavior is mostly

predictable and static, unlike traditional IT networks’ traffic. Therefore, the authors propose an

IDS that detects when the networks’ entropy increases, which is a signal of deviation from the

dataset representing normal traffic, indicating an attack.

Hybrid IDS:

Some IDS can be signature-based, anomaly-based, or both. Schweppe [154] propose a distributed

IDS framework that attach distributed sensors to ECUs that might be used as an attack vector

such as ECUs with USB ports or bluetooth connections. These sensors report to a “master node”

to evaluate their data. This approach can be signature-based or anomaly-based depending on the

designers’ choice. The evaluator can also be stateless or stateful. Once an intrusion is detected, the

evaluator creates an event which, in turn, triggers an action. The actions include modifications of

the network’s configurations and alerting the driver of an ongoing attack.

Intrusion Reaction: When an intrusion is detected, an alert could be sent to the driver. Hoppe et

al. [75] proposed a three-levels alerting system that increases the reaction according to the attack’s

severity.

Intrusion Prevention: According to [90], there has not been an intrusion prevention system pro-

posed. One reason for that is arguably safety-critical requirements prevent such active response

that has physical consequences [75].
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Chapter 5

Preliminaries

5.1 Introduction

CAN protocol has a special approach to handle addresses of senders/recipients of messages. There

is not an IP-like addressing. Instead, the protocol uses an 11-bit field, and could be extended to 29

bits, that is called arbitration ID. Each CAN frame starts with an ID that determines the frame’s

purpose and priority. The purpose is what the frame means to ECUs, whereas the priority deter-

mines the frame’s ability to win arbitration over using the network when another frame collides

with it in the bus. The frame with the lower value ID will get higher priority and therefore domi-

nate the network. All frames must have unique IDs in order to avoid errors caused by two frames

transmitting simultaneously as a result of dominating the bus because of their identical IDs. Fig.??

shows a simplified CAN frame that has an 11-bit arbitration ID.

A frame gets the right to access the bus if the ID has the lowest value. When a frame occupies

the bus, all ECUs receive it and only the interested ones accept it. An ECU only accepts frames that

it is configured to accept by recognizing their IDs. The choice of arbitration IDs is propriety and

differs from an Original Equipment Manufacturer (OEM) to another. In addition, an arbitration ID

is not the sender or the recipient’s address. Rather, it is only an indicator of a message’s contents

and purpose.
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5.2 CAN Node

Each ECU is composed of three components: 1) a microcontroller (MCU), 2) a CAN controller,

and 3) a CAN transceiver. The microcontroller is responsible for high-level functions such as cal-

culating the speed, sending an airbag command, warning the driver about the oil pressure. Whereas

the CAN controller is responsible for encoding/decoding outgoing/incoming CAN frames to/from

the CAN bus. The CAN transceiver converts the frames to/from physical-level bits. A common as-

sumption in CAN communications is that all nodes adhere to CAN standards as shown in Fig. 5.1.

This assumption is going to fall short in Chapter 6.

Figure 5.1: Components in Typical CAN Nodes

There are various CAN transceiver chips that implement CAN specifications. We use Mi-

crochip’s MCP2551 and Fig. 5.2 shows how we connect it. Pins 6 and 7 are connected to the CAN

bus whereas pins 1 and 2 are connected to a CAN controller or a microcontroller. When pin 1 (TX)

receives a bit (0 or 1), it output the corresponding voltages from pins 6 and 7 so the corresponding

value appears on the bus and receiving ECUs decode it correctly. On the other hand, when there is

a frame being transmitted on the bus, the transceiver decodes the differential voltage level between

CANH (pin 6) and CANL (pin 7) and then pin 4 (RX) sends 0 or 1.

90



Figure 5.2: Wiring Diagram for MCP2551 CAN Transceiver

5.3 Dominant VS. Recessive Bits

CAN nodes can either send a 0 or 1. The 0 is called a "dominant" bit while the 1 is called "re-

cessive". When 0 is sent, CAN transceivers are designed to output 3.5V on the CAN-High and

1.5V on the CAN-Low. The resulting differential voltage is 2V which corresponds to a 0 bit. On

the other hand, when 1 is sent, the transceiver outputs 2.5V on both CANH and CANL resulting

in a 0V. The receiving ECUs decode bits based on the voltage level on the bus using the CAN

transceiver as shown in the previous section. When two ECUs try to send simultanously, if one of

then is a dominant bit (0), then it will always appear on the bus. Fig 5.3.
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Figure 5.3: Dominant VS. Recessive Bits

5.4 CAN Arbitration ID

Arbitration ID determines which frame wins the arbitration phase and thus, transmit the rest of

the frame that just won the arbitration. We mentioned that a CAN ID with the lowest value will

have the highest priority during arbitration. We explain this further because its relevance to the

upcoming chapters. Fig. 5.4 demonstrates how five ECUs try to transmit simultanously. They all

start the transmission by sending the Start of Frame (SOF) dominant bit and then try to send the

rest of the CAN ID. The important thing to note here is that they all send at precisely the same

time. They send one bit at a time. We see that ECU1 lost the arbitration phase early when it sent

a recessive bit. This is because of the presence of the dominant bit in the bus that has a higher

priority over recessive bits. ECU2 loses the arbitration too when its recessive bit is faced by a

dominant one on the bus. Every time an ECU loses, it switches to a receiving mode and stops

transmission until the next chance. Eventually, ECU5 wins the arbitration because it is sending the

lowest possible value a CAN ID could ever have, i.e., 0x0. Once it wins the arbitration, it transmits

the rest of its winning frame while the remaining ECUs only receive.
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Figure 5.4: Arbitration Process

5.5 Error Handling

One of the main features in CAN is its ability to handle communication errors and resolve them

in a semi-autonomous manner without the intervention of a third party. Each ECU is responsible

for detecting two types of errors: transmission and receiving errors. Transmission errors occur

when an ECU detects a problem while it is transmitting a frame that won arbitration. On the other

hand, non-transmitting ECUs can detect errors that result from various reasons such as detecting

an incomplete frame that has no delimiter.

5.5.1 Error Types

According CAN Specefication V2 [16], there are five types of errors that a CAN node should

handle:

1. Bit Error: when a sender sees discrepancies with transmitted bit(s).

2. ACK Error: when a sender does not get at least an ACK bit.
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3. Stuff Error: when a receiver detects 6 or more of the same consecutive bits (dominant or

recessive).

4. Form Error: when a receiver detects violation of fixed fields.

5. CRC Error: when a receiver detects a discrepancy in the expected and received CRC.

5.5.1.1 Bit Error

When an ECU transmits to the bus it monitors it to verify that the transmitted bit is what is seen

on the bus. When there is a discrepancy between the transmitted and observed bits, a bit error is

detected, current frame’s transmission stops, and an error flag is transmitted.

5.5.1.2 ACK Error

One critical bit in CAN frames is the acknowledgment bit (ACK bit) that a transmitting ECU can

rest assured that its frame has been received by at least one other ECU. The ACK bit is sent by

other ECUs at a precise time so it fits in the expected position in the CAN frame being transmitted.

If an ACK is not detected by the transmitter, it aborts the transmission, an ACK error is detected,

an error flag is transmitted, and then it reattempts sending the frame until an ACK bit is detected.

5.5.1.3 Stuff Error

Because CAN is an asynchronous protocol, no more than five consecutive bits are allowed to have

the same value for synchronization purposes. After every five consecutive zeros (dominant bits) or

ones (recessive bits), one bit of the opposite value is injected. Fig. 5.3 shows how this rule works.

When this rule is violated, errors occur and a retransmission of the violating ECU is needed.

5.5.1.4 Form Error

A CAN frame has a few fields with fixed values that are always expected. When a fixed-valued bit

field is detected by one of the receiving ECUs to be different than the expected value, a Form Error

94



is detected and an error flag is transmitted.

5.5.1.5 CRC Error

The CRC sequence field the is observed on the bus contains the result of the CRC value by calcu-

lated the transmitter. The receiving ECUs calculate the CRC sequence as well and a CRC Error is

detected when the calculated CRC sequence is different than the one observed on the bus.

5.5.2 Error States

Each ECU keeps track of two important counters used for error handling, Transmit Error Counter

(TEC) and Receive Error Counter (REC). Depending on the role of the ECU when an error is

detected, one of the counters increases. When things go well in terms of successful transmission

and reception, the counter decreases. Depending on the counter and its value, the ECU determines

its error state according to the following rules:

• Error-Active: When TEC < 128 or REC < 128

• Error-Passive: When TEC > 127 or REC > 127

• Bus-Off: When TEC > 255

The counters increase and decrease according to certain rules. In addition, each state entails

some properties that the possessing ECU will have.

5.6 Summary

In this chapter, we introduced in details the most relevant CAN concepts to our upcoming chapters.

Arbitration and error handling in CAN are considered corner stones for its robustness and fault-

tolerance. However, these very same features could be a double-edged sword. We will show how

they could be exploited and misused to result in devastating attacks.
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Chapter 6

The Stealthy Targeted Arbitration Denial

Attack

6.1 Introduction

CAN bus security has been an important aspect in automotive security recently. Typically, each

CAN node is composed of three components: a microcontroller, CAN controller, and CAN transceiver.

The microcontroller is responsible for the high-level functions such as calculating the speed, send-

ing an airbag command, warning the driver about the oil pressure. Whereas the CAN controller

is responsible for decoding/encoding outgoing/incoming CAN frames to/from the CAN bus. The

CAN transceiver converts the frames to/from physical-level bits.

The presence of CAN controllers ensures the adherence to CAN standards. For example, once

an ECU wins the arbitration phases, no other ECU can send until End of Frame (EOF) delimiter

is seen on the bus. However, a new class of CAN attacks has emerged where an attacker relies on

skipping CAN controllers in a way that directly connects microcontrollers to the bus through CAN

transceivers, rendering CAN controllers useless or absence. This type of attacks allows attackers

to communicate with CAN bus, and hence ECUs, without CAN controllers, giving them the full

capability to manipulate the bus and ECUs without being tight to CAN controllers restrictions.
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In this chapter, we review recent attacks where CAN controllers are not present in the attacking

CAN node or certain features in the controllers are misused. Then we present a stealthy targeted

DoS attack that also relies on similar techniques. However, based on the evaluation and experi-

mentation, the proposed attack is superior to the surveyed ones due to its ability to achieve its goals

without being noticeable.

6.2 Related Work

We have surveyed recent CAN attacks that belong to a new class of attacks that exploit CAN’s

design in terms of arbitration and error-handling. We classify these attacks into four categories

based on the target: bus, ECU, arbitration, and frame.

6.2.1 Bus Denial

Preventing ECUs from transmitting can be done by ensuring that the bus is always occupied. There

are two attack variants to do that: 1) transmit a stream of dominant bits or 2) transmit a high priority

IDs at a high frequency. Fig 6.1 shows how each one of these attacks works. In the top attack, the

attacker injects a continuous stream dominant bits to keep the bus busy. In the bottom attack, the

attacker transmits an ID with the highest priority, i.e., 0x0. ECUs always lose the arbitration phase

to this ID and the attacker’s ECUs dominates the bus as long as its keeps transmitting the 0x0 ID

at high frequency so that other ECUs can not transmit another ID when there is an idle time on an

unoccupied bus.
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Figure 6.1: Bus Denial Attacks

6.2.1.1 Dominant Bits Stream (Bus Denial 1)

The physical bus connecting CAN-based ECUs can be rendered useless with one simple attack,

i.e., the injection of a continuous stream of dominant bits. This will make ECUs retract every time

they try to transmit a frame due to the bus’s occupation from the point of view of ECUs. However,

an attacker with access to a conventional ECU cannot launch the attack without violating CAN

standards. As we mentioned in Sec. 4.2, CAN controllers ensure that the standards are followed

among ECUs participating in a CAN bus. However, there are ways to overcome that. For example,

Fröschle and Stühring [60] exploited a feature available in some CAN controllers called “Test
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Mode" where it, when enabled, triggers the controller to flood the bus with dominant bits upon

receiving at least one dominant bit and it would not stop until the mode is disabled. In addition,

Murvay and Groza [126] built a malicious ECU that consists of an MCU and a CAN transceiver,

missing a critical part of any ECU, i.e., CAN controller. This allowed the authors to launch the

dominant bits stream attack without the restrictions of CAN controllers.

6.2.1.2 Flooding with 0x0 IDs (Bus Denial 2)

An attacker can flood the bus with a series of frames that have the highest possible priority IDs

to prevent all other frames. This ID is 0x0 and it will always win arbitration against any other ID

values. This attack can be thought of as a blind one in the sense that it prevents all non-0x0 ID

frames [60]. Based on experiments, this attack must be done at a high rate to succeed.

Table. 6.1 summarizes the bus denial attacks and highlights the used tool, exploited vulnerabil-

ity, and action taken to launch the attack.

Table 6.1: Bus Denial Attacks

Attack Tool Vulnerability Action Ref

Bus Denial 1 ECU CAN controller’s feature Activate the Test Mode fea-

ture

[60]

Bus Denial 1 MCU

& CAN

transceiver

CAN design Inject a continuous stream of

dominant bits

[126]

Bus Denial 2 ECU CAN design Inject a 0x0 ID at high fre-

quency

[60]

6.2.2 ECU Denial

Forcing a target ECU to a bus-off state is another category of the denial attacks. In this category, an

attacker’s goal is to prevent a target ECU from sending or receiving frames. As a result, all of the
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functionalities managed by the target ECU will be lost. There are various approaches to achieve

this attack as we will discuss here but they all share the final goal, i.e., driving an ECU to the bus-

off state. By revisiting the Error Counting Rules in Sec. 5.5, we see that an ECU’s error state will

transition to the bus-off state only when its TEC counter reaches more than 255. In other words,

only a transmitting ECU could transition to bus-off. On the other hand, the receiving ECUs never

transition to the bus-off state because their worst-case scenario is the transition to the error-passive

state whereby REC is more than 127. The following attacks rely on exploiting the error-handling

mechanism in CAN where they carefully disrupt the target transmitting ECU in ways that force it

to increment its TEC until it reaches more than 255.

6.2.2.1 CAN Controller’s Misuse (Bus-Off Attack 1)

Fröschle and Stühring [60] exploited two features in some CAN controllers to achieve the attack:

1) ID Ready Interrupt and 2) “Test Mode". The first feature provides fast detection of the target ID,

whereas the latter injects dominant bits to disrupt the frame with the detected ID. This results in an

error flag triggered by a bit error that is sent by the target ECU as it detects the error as a result of the

discrepancies between what it sends and what it sees on the bus. Then the stream of the dominant

bits will trigger other errors for violating bit stuffing rules, no more than 5 consecutive bits can

be transmitted and preventing error flags from being sent successfully. These errors gradually

increase the transmitter’s TEC to more than 255 and thus, the ECU’s error state becomes bus-off.

The activation of the “Test Mode" should not last for long to avoid affecting other non-targeted

frames. Fig. 6.2 shows how this attack works for the case of Attacker 1.

6.2.2.2 Maliciously-Crafted Frames (Bus-Off Attack 2)

Another variant of this attack is to send a frame with identical contents except on recessive bit

replaced by a dominant one. The premise of the success of this attack relies on the precise timing

of the transmission of this malicious frame. It has to be done analogously to the target frame. This

will result in a bit error by the transmitting ECU. This attack was shown in [38, 60] and depicted
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in Fig. 6.3. The attack proposed by Cho et al. [38] only work on periodic frames.

6.2.2.3 CAN Transceiver-based Denial (Bus-Off Attack 3)

This attack avoids CAN controller’s restrictions by connecting an MCU to a CAN transceiver that

is connected to the bus. Similar to the previous attacks, this one aims to drive the target ECU to

the bus-off error state by inducing bit errors. Palanca et al. [141] and Murvay and Groza [126]

implemented an attack that detects certain target IDs and then overwrites a recessive bit by a

dominant one to cause a bit error until the transmitting ECU goes to bus-off state. Iehira et al. [80]

proposed a similar attack based on an FPGA board connected to a CAN transceiver. In addition,

an active error flag can be sent once the target ID is detected to cause a bit error to the target ECU

and a stuff error to the non-transmitting ECUs [80]. Fig. 6.2 shows how this attack works for the

case of Attacker 2.
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Figure 6.2: ECU Bus-Off Attacks 1 & 3
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Figure 6.3: ECU Bus-Off Attack 2

Table. 6.2 summarize the ECU denial attacks and highlights how they are achieved.

6.2.3 Frame Denial

Targeting an ECU may not be the goal of some attacks. An attacker’s goal could be prevention,

modification, or masquerading of certain frames. An attacker with such goals would need to detect

frames based on their IDs, then perform the attack based on the desired goals. Based on the

surveyed attacks, we classify frame denial attacks to prevention, interruption, and impersonation

attacks.

6.2.3.1 Prevention

Flooding with High Priority IDs. An attacker could transmit IDs with higher priority than the

IDs used by the target frames. This could have a collateral damage in the sense that non-targeted

frames could be affected [60]. For example, if the attacker’s goal is to prevent frames with 0x123
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Table 6.2: Bus-Off Attacks

Attack Tool Vulnerability Action Ref
Bus-Off 1 ID

Ready
&
ECU

Controller’s feature &
error handling

Detect ID with ID
Ready then transmit a
frame with a dominant
bit to cause a collision

[60]

Bus-Off 1 ID
Ready
&
Test
Mode

Misuse of Controller’s
features 1. Detect target ID

with ID Ready

2. Enable Test
Mode

[60]

Bus-Off 2 ECU

1. Real and fake
frame’s pre-
dictability

2. Error Handling:
inducing bit error

1. Detect preceded
IDs

2. Send crafted
frames that cause
bit error

3. If preceded IDs
are lacking, then
inject fake pre-
ceded IDs

[38]

Bus-Off 3 MCU
&
CAN
transceiver

Error Handling: induc-
ing bit error 1. Detect target ID

by bit-level anal-
ysis

2. Send an identical
frame to with a
dominant bit dif-
ference to cause
a collision, and
hence, bit error

[141,
126]

Bus-Off 3 FPGA
&
CAN
transceiver

Error Handling: induc-
ing stuff error 1. Detect target ID

by bit-level anal-
ysis

2. Send an active er-
ror flag to trigger
a stuff error

[80]
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IDs, she would flood the bus with 0x122 IDs. Although this should prevent 0x123 IDs from a

successful transmission, any ID with a value greater than 0x122 could be affected too.

6.2.3.2 Interruption

Bit Errors. An attacker could prevent target frames from successful transmissions by triggering a

bit error during the transmission of the frame [141, 126, 60, 80, 38].

Active Error Flags. When frames with certain IDs are detected, an attacker can inject an active

error flag, 6 dominant bits, during transmission using the “Test Mode" feature [60] or an FPGA

board connected to the bus by a CAN transceiver [80]. This forces the target frame to retract and

potentially go to a bus-off state as mentioned in Sec. 6.2.2.

6.2.3.3 Impersonation

It is possible to impersonate an ECU by transmitting its own frames to achieve various goals such

as sending false data.

Interrupt and Inject. Assuming the automatic retransmission is disabled, an attacker could inter-

rupt a target frame and then transmit the fake frame with false data [60].

Drive to Bus-Off and Inject. An attacker could perform one of the bus-off attacks in Sec 6.2.2

and then send fake frames to impersonate the silenced ECU [60].

Tables. 6.3 and 6.4 summarize the frames’ attacks and show their intersection with the ECU

denial attacks.
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Table 6.3: Frames Denial Attacks

Tool Vulnerability Action Ref

A combination of the

following tools:

• ID detection:

-ID Ready

-Periodicity

-Preceded

IDs

• Test Mode fea-

ture for bits injec-

tion

CAN design Assumption: Auto-

matic retransmission

is disabled

1. Detect target

ID

2. Enable Test

Mode to inject

6 dominant

bits

[60]

ECU CAN design Send an ID with a

high priority at a fast

rate to block all IDs

with lower priorities

[60]
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Table 6.4: Impersonation Attacks

Tool Vulnerability Action Ref

ECU Controller’s features

• Perform a bus-off at-

tack against the ECU

owning the target IDs

• Inject fake frames

[60]

ECU Controller’s features Assumption: Automatic re-

transmission is disabled

• Suppress a frame with

attack x

• Inject fake frames

[60]

6.2.4 Arbitration Denial

This attack aims to prevent frames with target IDs from winning arbitration. Murvay and Groza [126]

proposed an instance of this attack where the bus is monitored with an MCU connected to the bus

by a CAN transceiver to detect the target ID and then inject a dominant bit that replaces a recessive

bit in the ID field. As this attack relies on the injection of a single bit in the arbitration phase, the

target ID loses arbitration but a form error is detected due to an incomplete frame. When the attack

persists and the target ECU continues to lose arbitration, an error flag is generated. Fig 6.4 shows

that the attack is monitoring the bus waiting for the least significant recessive bit of the target ID

and then injects a dominant bit to replace it. This forces ECU4 to stop transmission due to the lost

arbitration but results in a form error due to an incomplete frame observed on the bus.
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Figure 6.4: Arbitration Denial Attack

6.3 Stealthy Arbitration Denial Attack

We present a variant of the arbitration denial attack that is different and stealthier than the one

discussed in Sec. 6.2.4. The attack shown in [126] triggers an error every time it is launched.

The attack has two drawbacks: 1) it leads to a bus-off state even if the goal is not to shut off

an ECU and 2) the abnormal behavior of injecting a single dominant bit could be detected by an

IDS. On the other hand, our attack avoids these drawbacks and goes undetected because it does

not violate the expected behavior of the ID arbitration process. Our attack passively monitors the

bus in order to detect an ID of interest and then injects a dominant bit overwriting a recessive

one. To avoid triggering an error flag as in [126], we complete the existing frame with a valid

frame that completes the interrupted frame containing the target ID. Fig. 6.5 shows how ECU4

loses arbitration of ID 0x123 to what seems to be 0x122 ID. However, the attacker waits for the bit

preceding the last recessive bit and overwrites it with a dominant one. The attacker then completes

the rest of the fake 0x122 frame to avoid triggering error flags. The figure shows that when ECU4

is transmitting a frame with a 0x123 ID, the attacker is monitoring the bus waiting for the bit at

the position 2, which precedes the last recessive bit. The attacker sees that the ID that is about to

successfully win ID arbitration and transmit is most likely 0x123. Therefore, once bit 2 is detected,

the attacker injects a dominant bit to force the sending ECU of the 0x123 ID to lose arbitration.
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ECU4 stops transmitting and goes to receiving mode. If the retransmission is enabled, ECU1

will attempt to retransmit 0x123 frame when the bus is idle. If the retransmission is disabled,

then ECU4 has lost the disturbed 0x123 frame. What differentiates this attack from similar DoS

proposals is its compliance with CAN specification such that it does not cause error frames that

might lead ECU4 to go bus-off. Fig 6.6 illustrates how the attack occurred on the scope.

Figure 6.5: Stealthy Arbitration Denial

Figure 6.6: Arbitration Denial on The Scope

Table. 6.5 summarizes the attacks that aim to prevent frames with certain IDs from winning the

arbitration phase. In both attacks, the frames with the target IDs lose arbitration. The difference

is the consequences. In the attack proposed by Murvay et al. [126], an error frame is generated

because the transmitting ECU could not complete the frame’s transmission and hence, a error was

generated. This could eventually drive the target ECU to bus-off state. On the other hand, our

attack injects a crafted set of bits that would complete the interrupted frame so that no error are

generated and the attack goes unnoticed.
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Table 6.5: Arbitration Denial Attacks

Tool Vulnerability Action Ref
MCU
&
CAN
transceiver

CAN arbitration design

1. Detect target ID
(partially)

2. Overwrite a re-
cessive bit with a
dominant bit

3. Target ID loses
arbitration

4. Due to the in-
complete frame,
a form error is
generated

[126]

MCU
&
CAN
transceiver

CAN arbitration design

1. Detect target ID
(partially)

2. Overwrite a re-
cessive bit with a
dominant bit

3. Inject fake bits
to complete the
started frame by
the target ECU

4. Target ID loses
arbitration

5. No errors are
generated

Our
work
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6.3.1 Threat Model

The attacker we consider is assumed to be able to monitor the bus, injects CAN frames, and

individual bits such that CAN standards are violated. We assume that an attacker could launch the

discussed attacks by gaining physical access to the car or remotely. The physical access provides

one of two attack surfaces: 1) the OBD-II port and 2) an ECU of the attacker’s choice to be

compromised [92]. or misused [60]. On the other hand, remote access has been shown in various

works such as in [32] and [136]. The level of difficulty varies in the attack’s surfaces, but the

goals are the same. Table 6.6 compares between the attacker’s means of attack and their difficulty.

Attack Surface Difficulty Ref

OBD-II Port Easy [92]

Compromised ECU Medium [92, 60]

Remote Exploitation Difficult [32, 136]

Table 6.6: Threat Model Comparison

6.3.2 Algorithm

The algorithm used for this attack consists of three steps:

1. Calculation of target ID’s bit position to attack (replace by a dominant bit)

2. Detection of the target ID on the bus

3. Attacking the target ID’s bit position

6.3.2.1 Bit Position

To determine the bit position, we simply calculate the position of the least recessive significant

bit in the target ID in advance as shown in Algorithm 1. The algorithm finds the position using

a simple bitmask and shift operations as shown in Fig 6.7. The given examples show that the bit

position in 0x123 ID is 1 and 4 when 0x554 is the target ID.
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Figure 6.7: Bit Position Algorithm

Algorithm 1 Target Bit Position Calculation

The bitPosition function returns the target bit position in the target CAN ID
Input: targetID: This is the value of the target ID

1: position = 1
2: while (targetIDposition 6= 1) do
3: position ++
4: end while
5: bitPosition = position . position of the least significant recessive bit

6.3.2.2 Target ID’s Detection and Attacking

Then we monitor the traffic waiting for an ID that matches the target ID up one bit prior to the

target bit. After that, we inject a dominate bit to override the target bit that we determined its

position in the previous step. It is, most likely, the recessive bit that would complete the target bit

if not overridden. Algorithm. 2 shows the steps to detect and attack the target ID and Fig. 6.8 gives

an example with 0x243 as the target ID.
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Algorithm 2 Arbitration ID Detection and Injection

The attackID function performs a selective DoS on a particular ID
Input: bitPosition: This is the value of the target ID’s target bit position

1: bitsToTargetBit = 11 − bitPosition
2: while matched ≤ bitsToTargetBit do
3: if currentBit == targetID[(11−bitsToTargetBit)+bitsToTargetBit] then
4: matched++
5: if matched == bitsToTargetBit then
6: Transmit a dominant bit
7: Transmit a fake frame’s remainder
8: end if
9: else

10: matched = 0 . End loop and wait for the next ID
11: end if
12: end while

Figure 6.8: Attack Algorithm Demonstration

6.4 Evaluation

In order to evaluate the attack’s effectiveness, our analysis needs to be rigorous. We need to analyze

data that shows the attack’s impact on the target ECU. Therefore, we analyze CAN error statistics

in the target ECU. We need to learn from the CAN error statistics important measures such as

Transmit Error Count (TEC), Receive Error Count (REC), and error state. These measures reflect
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the magnitude of the attack. The less they are affected, the more successful the attack is in terms of

stealthiness. When an attack triggers a large number of error frames, TEC and REC will increase

until their ECUs become Error-Passive and potentially bus-off depending on their role when errors

take place. TEC increases when an error occurs during a frame’s transmission in the transmitter’s

ECU and REC in all receiving ECUs.

We evaluated the proposed attack and compared it with the other denial attacks discussed in

Sec. 6.2. The evaluation shows that our attack is the stealthiest compared with the others. It

achieves the arbitration denial without causing a single error, unlike the rest of the attacks.

The evaluation consists of two parts: 1) choice of hardware and 2) effectiveness metrics.

6.4.1 Choice of Hardware

Most of the current research on attacks that require precise timing such as the discussion above

use automotive-grade microcontrollers or high-end tools that raises the entry level for researchers.

Using such devices presents some challenges such as: 1) A certain set of skills is required, 2) there

is a steep learning curve, and 3) these devices are costly. However, we implemented our attack,

along with the other attacks, with an off-the-shelf microcontroller that is accessible in terms of cost

and usability. We decided to use an intuitive, custumizable, and interactive tool designed specifi-

cally for CAN security testing when CAN controllers are not followed. This tool is called CANT,

and it is an open source tool built for STM32 Nucleo-144 development boards. CANT is devel-

oped by GRIMM CO’s automotive security team [44]. The tool is built to provide CAN security

researchers a unique feature that is not easily achievable with low-cost devices, i.e., CAN testing

without CAN controllers. In other words, we can do things that we cannot do with conventional

CAN tools due to the fact that they were not built for security testing. The tool provided us with

the flexibility to implement all of the attacks and countermeasures we wanted to evaluate.

CANT allows for bit-by-bit analysis for CAN frames. This allows us to inject bits at any time

we decide to. CANT facilitates the synchronization with the bus and sampling of CAN frames as

shown in Fig. 6.9. The figure illustrates how sampling works in CANT. CANT sets up an interrupt
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waiting for a falling edge after a idle period, which is going to be an SOF. Once the interrupt is

triggered, it gets disabled then sampling the incoming frame starts and upon the EOF bits, the

sampling finishes and the interrupt is enabled back waiting for the next frame. From an attacker’s

viewpoint, injection could be done at any time during the sampling when certain conditions are

met.

Figure 6.9: Sampling Frames with CANT

Before using CANT, we have explored others option to evaluate the aforementioned attacks.

We started our evaluation with a BBB microcontroller and managed to implement a few of them.

BBB has two real-time cores called, Programmable Real-Time Units (PRUs). However, due to the

counter-intuitive nature of PRUs and the need to implement the functionalities of CAN controllers,

we decided to use CANT. Although we use CANT, we still provide an overview of our experience

of PRUs in Sec. B.

6.4.1.1 Evaluation Platform

Fig 6.10 shows the evaluation platform that we built. It consists of four BBBs to simulate normal

ECUs and the attacker is represented by the STM32 Nucleo-144 development board in the left side

of the figure. Each of the five microcontollers is connected to the CAN bus through an MCP2551

CAN transceiver. We build these boards to reduce clutter and loose wires.
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Figure 6.10: Evaluation Platform

6.4.2 Effectiveness Metrics

All of the discussed attacks, except the bus denial, exploit CAN’s error-handling mechanism to

achieve their goals. Therefore, it is reasonable to monitor error states of the targeted ECUs during

an attack. To do this, we assign a BBB as a target ECU and capture its error states for further anal-

ysis. We are interested in the two error counters, REC and TEC. The following discussions show

error states during each attack and based on them we learn about the attacks’ levels of stealthiness.

6.4.3 Evaluated Attacks

Table. 6.7 summarizes the evaluated attacks.
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No. Attack Name Description Ref.

1 Bus Denial

(Sec. 6.2.1.1)

Continuously forces the bus to be in

a dominant state

[60, 126]

2 Bus Denial

(Sec. 6.2.1.2)

Continuously transmits frames with

0x0 ID at a fast rate

[60]

3 ECU Denial

(Sec. 6.2.2.3)

Drives an ECU transmitting the tar-

get ID to switch to Bus-Off state

[38, 60]

4 Frame Interruption

(Sec. 6.2.3.2)

Triggers bit errors when the tar-

get frame is being transmitted un-

til transmitting ECU switches to a

Bus-Off state (same as attack 3)

[141, 126, 60, 80, 38]

5 Arbitration Denial

(Sec. 6.4)

Override the least significant reces-

sive bit in the arbitration ID with a

dominant one

[126]

6 Stealthy Arbitration

Denial

In addition to attack 4, a fake re-

mainder of the frame is injected to

avoid triggering form errors

Our work

Table 6.7: Summary of the Evaluated Attacks

6.4.4 0x0 Arbitration ID

This attack exploits the very feature of CAN, that is its physical-layer arbitration between dominant

and recessive bits. Because of that, there are no errors detected as shown in Fig. 6.11.
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Figure 6.11: Errors During 0x0 ID Flooding Attack

6.4.5 Bus-Off Attack Evaluation

The attack proposed in [141, 38, 60, 126] aims to turn off an ECU’s communications by forcing

it to switch to Bus-Off error state. Fig. 6.12 shows how TEC increased sharply when the attack

started at time 120 ms. After a few milliseconds, the error state switched to Error-Passive and then

eventually to Bus-Off.
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Figure 6.12: Errors During Bus-Off Attack

6.4.6 Arbitration DoS Evaluation

The arbitration denial attack proposed by Murvay and Groza [126] aims to prevent a frame with

a target arbitration ID from a successful transmission by injecting a dominant bit that replaces a

recessive one in the arbitration field. We implemented the attack with CANT and analyzed the

impact on the transmitting ECU. Fig. 6.13 shows that the attack had no impact on TEC, but REC

increases when the attack starts until it reaches 127, changing the error state to Error-Passive.

The attack did not cause the ECU to shut down by switching to Bus-Off state like the attack

discussed in Sec 6.2.2. However, it still caused errors that resulted in an Error-Passive state. The

first observation is that TEC was not affected because the transmitting ECU switched to receiving

mode once it lost arbitration, which means that whenever an error is detected, REC is going to

increase, not TEC. This also means that the ECU cannot be shut down with this attack. We still
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need to further investigate the type of error that caused REC’s increase. Since the attack occurred

during the arbitration phase, the error is not a bit error because it is expected to have multiple

ECUs sending simultaneously. It has to be a form error because when the transmitting ECU lost

arbitration due to the dominant bit replacing a recessive one, the frame was not complete. From

receiving ECUs’ perspective, this is a form error. Every time the attack occurs, a form error is

triggered on one or more of the receiving ECUs, including the target transmitting ECU, which had

switched to a receiving mode once it lost the arbitration phase.

Figure 6.13: Errors During Arbitration DoS Attack

Fig. 6.14 shows the attack on the scope. We see at the top a partial 0x777 ID that is interrupted

by a dominant bit that replaces the transmitted recessive bit and stops the completion of the frame.

We show the intended frame with the location of injection in Fig. 6.15.
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Figure 6.14: Arbitration DoS Attack on The Scope

Figure 6.15: Target Frame and Dominant Bit Injection

6.4.7 Selective Arbitration DoS Evaluation

Here we compare the impact of the attack on the ECU sending the target ID. We show the following

information that has been captured during the attack. We show the attack’s impact on three IDs that

represent 1) lowest possible ID to attack (0x1), 2) average ID (0x123), and 3) highest possible ID

(0x7FF). Before we start capturing data on each ECU (sender and receiver), we start CAN interface

with the error reporting option enabled to get the most amount of error-related information.

$ canconfig can0 bitrate 500000 ctrlmode berr-reporting on

$ canconfig can0 start

We also wrote a script that extracts error handling information: TEC and REC before, during,

and after that attack and then plot the data to see whether or not the attack disrupted the bus and

triggered errors. The complete script is provided in Sec. A.2.5.2. Fig 6.16 shows that the attack

did not have any obvious impact on the transmitting ECU of the target ID apart from preventing it

from transmitting frames with the target ID. We see that when the attack starts at time ≈ 15 ms,

REC and TEC counters did not increase at all. This validates the effectiveness and stealthiness of

our attack and shows that it is stealthier and more dangerous than the other attacks.
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Figure 6.16: Errors During Selective DoS Attack

6.5 Summary

In this chapter, we surveyed recent attacks on CAN that use nontraditional approaches to realize

their goals. These attacks either exploit CAN features such as its error-handling mechanism, or

misuse CAN controllers to perform malicious actions. We implemented the attacks and compared

them with a new attack that we proposed in this chapter, called stealthy target arbitration denial

attack. The evaluation and comparisons show that show that our attack is superior in terms of

stealthiness compared to the other attacks. The more errors an attack generates, the less stealthy it

is considered. Our attack did not trigger any errors and thus we consider it the stealthiest.
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Chapter 7

Using ID-Hopping to Defend Against

Targeted DoS on CAN

7.1 Introduction

Nowadays, smart cars are more intelligent than ever before. Manufacturers embed numerous

microcomputers to enhance the cars’ safety, comfort, and entertainment features. Examples are

collision avoidance systems, and active trace control (safety features); remote start and parking

assistance systems (comfort features); and on-board Internet and satellite radio (entertainment fea-

tures).

The recent advancements in smart cars, however, also introduced new security issues that cars’

manufacturers have not anticipated. Numerous reports and research papers have shown the inad-

equacy of security in smart cars [92, 33, 30]. These security issues result from the unexpected

behaviors that result from the interactions between the many heterogeneous components every

smart car consists of [45]. This includes Commercial-Off-The-Shelf (COTS) products and com-

ponents implemented by third parties. In addition, the increased wireless channels exposed the

two-decades-old unconnected cars to numerous security problems.

With the complex cyber-physical interactions, as well as the increased communication chan-
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nels, security attacks become imminent. Therefore, security solutions have been proposed to add

security layers to smart cars. For example, cryptography-based solutions have been proposed to

provide authentication, confidentiality, and integrity measures. Intrusion Detection Systems (IDS)

have been proposed to detect internal attacks and firewalls to prevent external attacks.

Although these solutions improve security in smart cars, there is a very little attention given to

DoS attacks. Automotive networks typically deploy a network protocol called Controller Area Net-

work (CAN). This protocol has inherently security weaknesses such as the lack of authentication

and confidentiality, weakness of integrity checking, and lack of nodes’ identification. Network’s

nodes, called Electronic Control Units (ECUs), cannot identify each other. Instead, each frame has

a unique ID, called arbitration ID, that signifies what the frame means and what priority it has.

Due to the lack of security measures, an attacker can easily flood the network with a high priority

ID to constantly dominate the network and prevent legitimate ECU from using it. This is consid-

ered as a DoS attack because ECUs cannot use the network. In addition, an attacker can easily use

any ID and spoof other ECUs with illegitimate frames carrying an ID belonging to a legitimate

ECU.

In this chapter, we consider a special type of DoS attacks where an attacker targets a certain

ECU, or a set of ECUs, to prevent it from sending particular frames. For example, when the Anti-

Brake Systems (ABS) sends a sensing data frame that is needed to mitigate a potential accident,

an attacker would send a frame, or a set of frames, to ensure that the ABS’s frame cannot use the

network, and therefore the ABS fails. This scenario is safety-critical and proper solutions must be

proposed.

We propose the ID-Hopping algorithm where we design a mechanism that hinders an attacker’s

ability to send malicious frames that would make targeted DoS attacks possible. Even if an attack

succeeds, our mechanism detects such an attack and reacts immediately. The mechanism generates

a set of alternative IDs that each ECU should use when an attack is detected. Our proposal is

similar to Identity-Anonymized CAN (IA-CAN) proposed by Han et. al. [69], where they propose

a mechanism that requires all communicating ECUs to calculate anonymous IDs before an ID is
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sent or received. Our proposal is different such that we only require communicating ECUs to share

a carefully calculated value (offset) such that it can be used when an attack occurs so the IDs are

changed based on that value.

We evaluated the ID-Hopping mechanism by simulating the process of generating alternative

IDs from the offset. Two critical conditions our proposal ensures when alternative IDs are gener-

ated: 1) alternative IDs are unique to the original ones and 2) IDs priorities are not compromised.

We believe that the ID-Hopping mechanism holds a promising solution to a variety of DoS

attacks. In addition, if we deploy the mechanism to work natively in the network, we believe it

should prevent reverse engineering attacks on IDs.

7.2 Background

All ECUs are connected to a bus-topology network that has a several subnetworks. Each sub-

network consists of a number of interconnected ECUs that perform certain functions. The most

common protocol is Controller Area Network (CAN), which is a typical bus network through

which ECUs can intercommunicate, monitor sensors, and control actuators.

7.2.1 CAN Protocol

CAN is the most common protocol because it has been mandated to be deployed in all cars in the

US since 2008 [92]. CAN protocol mainly provides two services: 1) at the physical layer, it allows

the transmission of frames as voltages that do not get influenced by interfering magnetic fields, and

2) at the data link layer, each frame is formatted in a well-defined format so ECUs can exchange

messages in a meaningful manner. After that, a higher level protocol is needed to handle the data

contained in the frames and deal with the semantics. These layers are specified by ISO 11898-1

through 11898-5.
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7.2.2 Arbitration IDs and ECUs

As mentioned, a CAN frame with the lower value ID will get the highest priority and therefore

dominate the network. All frames must have unique IDs in order to avoid errors caused by two

frames transmitting simultaneously as a result of dominating the bus because of their identical

IDs. If the two frames are not completely identical, errors will occur resulting in both frames’

interruption. When a frame occupies the bus, all ECUs receive it and only the interested ones

accept it. An ECU only accepts frames that it is configured to accept by recognizing their IDs. The

choice of arbitration IDs is propriety and differs from an Original Equipment Manufacturer (OEM)

to another. In addition, an arbitration ID is not the sender or the recipient’s address. Rather, it is

only an indicator of a message’s contents and purpose.

Typically, each ECU is configured to use a certain set of IDs for its outgoing frames that would

make sense for certain ECUs, and another set for incoming frames from other ECUs. For example,

in Table.7.1, ECU1 broadcasts a frame with an ID 0x002. ECU2 is configured to accept frames

with the ID 0x002.

ECU1 ECU2
Send Receive Send Receive

0x002 0x005 0x005 0x002
0x003 0x006 0x006 0x009
0x004 0x007 0x007 0x011

Table 7.1: IDs in ECUs 1 and 2

7.3 Related Work

Solutions that rely on cryptography have been proposed to provide authentication, confidentiality,

and integrity measures [176, 171? , 172, 139]. In addition, IDS also have been proposed such as

in [96, 127, 128, 154, 102, 140]. Furthermore, controls preventing attacks initiated from external

devices have been introduced in [68, 17, 178, 47].

Most of the proposed solutions require ECUs to verify each arriving frame before deciding
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Figure 7.1: Overview of a Modern In-Vehicle Network
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whether to accept it, for further processing, or drop it. This in itself poses ECUs to DoS attacks

when an attacker floods the network with frames that has certain IDs but incorrect data. When

this happens, a receiving ECU would check the ID first and then verify other measures such as the

authenticity and integrity of the frame. This adds an unnecessary overhead in terms of the number

of operations needed at the receiving side.

The most relevant work to ID-Hopping mechanism is the Identity-Anonymized CAN (IA-

CAN) that Han et. al. have proposed [69]. They introduce a solution that provides authentication

with minimal overhead as opposed to other CAN-based authentication approaches, e.g., [171?

, 172], that require relatively more overhead.

Therefore, Han et. al. [69] propose an ID-anonymization approach that lets ECUs only accept

legitimate frames based on their anonymous IDs. The IA-CAN anonymizes IDs in the sense that

they have no meaning for an eavesdropper. With some reverse engineering skills and patience, an

attacker could infer CAN IDs and then launch various attacks such as sending false information and

safety-critical command injection. IA-CAN prevents such inference because the IDs are changed

randomly, from the attacker’s viewpoint, so that only legitimate ECUs can send and receive frames

using IDs that they only can know.

IA-CAN works in three stages: 1) an ID is randomly generated for each frame before it is sent,

2) each receiving ECU has already pre-computed the ID, 3) when a frame with the expected ID

arrives, the receiving ECU simply filters it in using an XOR operation. Each ID is used only once,

which prevents replay attacks. The authors have four assumptions in order for their mechanism to

work: 1) they assume there is only one CAN network where an attacker exists, 2) ECUs share a

secret key before the communication takes place, 3) keys are securely pre-stored in a tamper-proof

hardware, 4) there is a time ECU for synchronizing time.

In addition, an important feature in IA-CAN is IDs priority preservation. The authors maintain

the priority bits intact in the arbitration field, and anonymize/randomize the remaining bits. The

arbitration bits vary depending on the deployed standard. For example, SAE J1939 uses the first 3

bits of the 29-bit ID. In our proposal, we maintain the priority by considering all bits in the ID field.
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In other words, we treat the whole ID as priority bits. Therefore, regardless of the used variant of

CAN protocol, ID-Hopping should be applicable.

Using the same IDs across a large number of cars that use the same platform exposes them to

a large-scale attacks that might affect a significant number of cars. As a matter of fact, Miller and

Valasek [32] had the capability of attacking any car in the US that belongs to a certain fleet of

cars that uses the same platform. They were able to uncover a vulnerability in a car that allowed

them to take remote control over it by exploiting its cellular communication channel. Once they

get in the car’s internal network, they could inject CAN frames with IDs that they have already

reverse engineered and known what their purposes are. Because all cars of this fleet use the same

set of IDs in their CAN network, the attack was possible to be launched on more than a million

cars across the US.

Therefore, another work along the lines of IDs randomization is proposed by Lukasiewycz

et. al. [107]. They introduce an approach, called Security-aware Obfuscated Priority Assignment,

that would prevent large-scale attacks on a fleet of cars that use the same platform and hence the

same CAN IDs. Unlike our proposal and IA-CAN, this mechanism is aimed at a fleet of cars

instead of an individual one. In addition, the IDs’ priority assignment is going to be fixed in

each car since the time it is manufactured. This might protect against a large-scale attacks, but

not a targeted attack on one car. They use Quadratically Constrained Quadratic Program (QCQP)

solving to generate obfuscated CAN IDs across different cars using the same platform. Unlike

Lukasiewycz’s et. al. [107] proposal, our ID-Hopping mechanism does not need to be integrated

during the design phase. Instead, we claim that it should be applicable to existing CAN networks

with no modification needed. The exception is the assumption of a shared secret key between

ECUs and the central gateway in order to authenticate whenever IDs need to be changed.

129



7.4 DoS attacks

Due to the way ID arbitration works in CAN networks, DoS is very feasible. There are a number

of DoS reported attacks. For example, Koscher et al. [92] disabled CAN communication from and

to the Body Control Module (BCM) which resulted in a sudden drop from 40 to 0 MPH on the

speedometer. In addition, this attack also resulted in freezing the whole Instrument Panel Cluster

(IPC) in its current state. For example, if the speedometer was at 60 MPH before the attack,

and the driver increases the speed, there will be no change in the speedometer. Hoppe et al. [77]

demonstrated other forms of DoS attacks. One of which is where the attack prevents passengers

from closing any opened window. Another is to disable the warning lights. The authors also

performed another DoS attack on the theft alarming system, such that it will not go off during a

burglary. DoS attacks can take on different forms whose impacts vary in safety-criticality such as

traditional DoS, random DoS, and targeted DoS.

7.4.1 Types of DoS

7.4.1.1 Traditional DoS

An attacker could simply flood the network with frames that have the lowest IDs, i.e., 0x000, such

that their dominance of the network is guaranteed. Solving this kind of DoS is not possible at the

data-link layer and above. Rather, a physical design modification is needed such that extra checks

could be introduced before a high priority frame continuously dominates the network. In addition,

the detection of this traditional DoS is not difficult as it will become obvious to the driver that the

car is not responsive. Our proposal is designed towards a selective class of attacks that is subtle

and less obvious than the traditional DoS.

7.4.1.2 Random DoS

The attacker in this type of DoS does not target a specific ECU, rather he would randomly send

frames with randomly selected IDs aiming to disturb ECUs’ normal operations. Although fuzzing
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the network with random IDs might result in unintentional DoS, the attack is not targeted against

a particular ECU.

7.4.1.3 Targeted DoS

An attacker could be interested in sabotaging certain ECUs for different reasons. For example,

an attacker could target the airbag system to fail when a collision occurs. This could cause a

life-threating consequences to the driver and passengers. Targeted DoS is a subtle attack and

challenging to detect, let alone prevent. Therefore, targeted DoS is the focus of this paper.

7.4.2 Attacker Model

In this chapter, we consider a variant of DoS attacks where an attacker targets a certain ECU and

aims to prevent its frames from using the network and eventually from arriving to the desired

destinations. For example, in Fig.7.2, the engine’s ECU (ECU2) sends its periodic CAN frame

containing some information to be displayed to the driver, such as speed and temperature. The

frame has an arbitration ID with a value of 0x006. At the time ECU2 is sending this frame, it has

the highest priority in CAN network 1 and therefore should successfully occupy the network and

reach the gateway so it can forward the information to the instrument cluster’s ECU in another

CAN network.

However, an attacker is assumed to have compromised ECU3 and configured its controllers to

be monitoring the network. ECU3 gets triggered and floods the network with a frame whose ID has

a lower value such as 0x005 whenever a frame with the ID 0x006 is observed in the network. This

attack scenario could miss the first frame with the ID 0x006, but the remaining frames are going

to be affected. This will force ECU2 to retract from sending 0x006 frame due to the network’s

occupancy with a higher priority ID, i.e., 0x005. The latter frame has higher priority as it has the

lowest value, and thus can dominate the bus. This attack ensures that ECU2 cannot use the bus

resulting in an unfair usage of resources by other ECUs, more particularly, the attacker’s. This

attack is often called fairness/starvation attack.
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Figure 7.2: Scenario of a targeted DoS attack
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7.5 ID-Hopping Mechanism

7.5.1 Requirements

The mechanism should satisfy the following requirements:

1. No modifications needed for current CAN protocol.

2. The mechanism must preserve the same level of priority for current IDs configured by OEMs.

3. Minimum to no performance overhead on the network.

7.5.2 Overview

When an ECU becomes a target of a DoS attack, it should detect that it is under attack and then

switch its frames’ ID to the proposed ID-Hopping mechanism. We propose configuring ECUs with

two kinds of IDs: 1) IDs used during normal operations and 2) IDs used when an ECU or more is

under a targeted DoS attack. The first type is currently deployed in all cars, whereas the latter is

our proposal towards thwarting targeted DoS attacks against certain ECUs.

For the sake of simplicity, let’s say that ECU1 is sending a frame with ID 0x002. An attacker

immediately floods the network with a frame that has 0x001 ID in order to win the arbitration

and cause the 0x002 frame to retract. After a few attempts of sending the 0x002 frame, ECU1

notices that the frame loses the arbitration repeatedly due to the existence of a higher ID. Also,

a host-based or a gateway-based mechanism should be implemented to recognize that the frame

with 0x001 ID only gets triggered whenever ECU1 sends 0x002 ID. These two patterns indicate

that ECU1 is under a targeted DoS attack.

To overcome such an attack, ECU1 should switch to ID-hopping mode where it uses an alter-

native set of IDs in order to confuse the attacker. Now, ECU1 sends a frame with 0x009 ID which

carries the same data as the previous frame, except that it uses a different ID as shown in Table 7.2.

This should thwart the attacker from targeting the ECUs until she learns the alternative set of IDs.
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The attacker needs close monitoring and reverse engineering in order to uncover the alternative

IDs. When this happens, a new set of alternative IDs is generated.

ECU1
ID Alternative ID Receive
0x002 0x009 0x005
0x003 0x00A 0x006
0x004 0x00B 0x007

Table 7.2: ECU1 IDs

ECUs that receive frames from ECU1 need to be aware of the alternative IDs in order for the

car to function normally. We achieve that by having the alternative IDs in every ECUs’ lookup

table as long as the ECU is configured to receive the original ID before an attack takes place. For

example, Table 7.3 shows that ECU2 has the alternative ID 0x00C as well as the original ID 0x005.

Finally, when ECUs switch to the ID-hopping mode, the alternative IDs must not compromise

the original priorities of the original IDs. ID-hopping mode must preserve the overall priority

across all IDs. In other words, each original ID will have an equivalent alternative ID in terms of

priority. So if two original IDs 0x100 and 0x101 are used in the alternative mode, they will be

0x111 and 0x112. Hence, the priority is still preserved even though different IDs are used. This

can be achieved when all ECUs, including the gateway, use the alternative IDs when an ECU or

more is under attack.

ECU2
ID Alternative ID Receive
0x005 0x00C 0x002
0x006 0x00D 0x003
0x007 0x00E 0x04

Table 7.3: ECU2 IDs

7.5.3 The Algorithm

In the gateway, ID-Hopping algorithm takes a list of used IDs as input to generate the alternative

IDs. Each resulting ID is unique and not used by any ECU in the network. This generation is a
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Figure 7.3: Overview of the network before and after the ID-Hopping takes place
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result of adding a carefully selected offset to the current used IDs resulting in a new list of IDs

that preserves the same level of priority as their original counterparts. Then each ECU receives

the offset, in a secure way, and then adds it to every original ID it has resulting in an alternative

ID corresponding to each original ID. Finally, when an ECU detects a targeted DoS attack, ID-

Hopping is activated and all ECUs switch to the alternative IDs. We assume that ECUs share a

secret key with the gateway in order for the gateway to broadcast the offset securely.

7.5.3.1 Phase One: IDs Generation

When an attack is detected, either by the gateway or an ECU, the ID-Hopping mode is activated by

the ECU under attack. The gateway assigns a new and randomly generated ID for each used ID.

The assigned IDs will not compromise the existing priorities configured by the car’s manufacture.

In the deployed algorithm, the basic idea is to shift the values of current IDs by a random offset.

The offset itself must satisfy two conditions: 1) offset ≥ 0x001 and 2) offset + maximum≤ 0x7FF.

These two conditions ensure that no alternative ID results in an out-of-bound value, i.e., more

than 0x7FF, which is upper bound for an 11-bit ID. Once the random offset is generated, each

ECU generates the alternative IDs by adding this offset to each one of the original IDs. The offset

is added even with IDs that are not targeted in order to maintain the overall posture of priorities

across the network that the manufacturer has intended.

Before adding the offset to the original IDs, we check whether the value of the highest ID is

0x7FF . If it is not, we proceed with the described procedure above as shown in Fig.7.4. However,

if the maximum ID is indeed 0x7FF, this means there will be at least an alternative ID out-of-bound

and will have more than 11-bit value. Therefore, the algorithm makes some additional steps before

generating the alternative IDs as shown in Fig.7.5.

Firstly, we take the lowest available set of IDs and add the random offset to each ID. Although

it could be enough to use these low value available IDs as alternative ID, we need to avoid de-

tectable patterns in the alternative IDs such as being consecutive numbers. This is the case because

our algorithm deals with IDs that have been already assigned by a manufacturer in a proprietary

136



Figure 7.4: Alternative IDs’ Generation: Case 1

manner. Therefore, we cannot predict how they have been assigned. There is one case though were

the resulting alternative IDs are in sequence. Such pattern is expected if the value of the highest

original ID is 0x7FE, which is the upper bound 0x7FF - 1. The algorithm can only generate off-

set = 1 because it is the only available number that satisfies the two conditions discussed above.

However, we can easily change the offset requirements to ensure it has a value greater than one.

7.5.3.2 Phase Two: IDs Assignment

When the gateway generates the alternative IDs, all ECUs need to know about the alternatives of

their IDs before an attack takes place. We considered two potential ways to distribute the alternative

IDs: 1) sending a list of the corresponding alternative IDs to each individual ECU or 2) sending the

generated offset instead, and then each ECU calculates the alternative IDs by adding the offset to

each original ID. The first approach takes n transmissions, where n is the number of alternative IDs

to be sent to each ECU. The latter approach only requires one transmission because the gateway

broadcasts the offset and all ECUs receive it simultaneously. Therefore, we chose the latter as it

significantly requires less network usage.

137



Figure 7.5: Alternative IDs’ Generation: Case 2
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Figure 7.6: Flowchart of the ID-Hopping Algorithm
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One might ask how the offset is sent to ECUs. What if an attacker pretends to be a legitimate

ECU, which could potentially allow her to receive the offset and easily deduce the alternative

IDs of the targeted original IDs? One of the most straightforward ways is to establish a secure

connection between the gateway and ECUs. The encryption could be asymmetric, i.e., with a

public/private key pair, or symmetric, i.e., with a shared secret key. The latter is a more efficient

approach that does not introduce network overhead, especially if the encryption is only used for

sending the offset. Therefore, we assume that an encryption mechanism is in place for sending the

offset.

Because encryption operations are relatively expensive and could add network overhead, we

limit the encryption to only this operation, i.e., sending the offset to ECUs once every time alterna-

tive IDs are generated. This operation is required at least once when the car starts, and once again

when an attack is detected. Therefore, when each ECU receives the encrypted offset, encryption is

no longer needed and the network should not suffer from any overhead.

7.5.3.3 Phase Three: ID-Hopping Mode

When an ECU detects that one (or more) of its IDs is no longer able to occupy the network, the

ECU assumes that it is under a targeted DoS attack. Therefore, it resorts to the ID-Hopping mode

where only alternative IDs are used. Receiving ECUs and the gateway will receive the same frame

but with an alternative ID. As a result, they notice that an alternative ID is used, and hence they

switch to ID-Hopping mode as well. The gateway broadcasts a message to all ECUs, including

the unaffected onces, telling them to switch. The message is encrypted and containing a flag that

indicates that ID-Hopping mode is activated. Therefore, all receiving ECUs switch to the ID-

Hopping mode. The reason we force all ECUs in the network to switch is to preserve the IDs’

priorities assigned by the car’s manufacturer. If we only allow one alternative ID to be used,

the overall IDs’ priority order might get compromised. A flowchart of the algorithm is shown in

Fig. 7.6. In the chart, usedIDs is a list of the original IDs, altIDs is a list of alternative ID, and

tempIDs is a list of temporary IDs.
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7.6 Security Analysis

7.6.1 Attack Prevention

We implemented a targeted DoS attack with the testing platform explained in Sec.7.7 and the ID-

Hopping successfully detected the attack and made all ECUs switch to their alternative IDs and

the network behaved normally. The mechanism proved its effectiveness to prevent targeted DoS

attacks.

7.6.2 Collision-Free

Our evaluation showed that when all ECUs switch to the alternative IDs, the network is collision-

free. This is because the ID-Hopping mechanism guarantees that there is no case where two ECUs

have the same alternative IDs unless they had the same original ID assigned by the OEM.

7.6.3 Priority Preservation

ID-Hopping successfully maintains the priorities given to the assigned original IDs as long as all

ECUs switch to the alternative IDs mode. This is because the mechanism is designed to carefully

calculate an offset that guarantees two conditions: 1) original IDs’ priorities are preserved and 2)

alternative IDs are unique.

7.6.4 Protocol-Independent

Compared to Han et al.’s work [69] which needs to be configured differently across different CAN

variants, ID-Hopping is independent of the used CAN variants because it treats the ID as a prior

7.6.5 Efficiency

ID-Hooping is more efficient than other mechanisms such as IA-CAN due to the minimal amount

of encryption operations. Encryption is only used in two cases: 1) when the gateway broadcasts
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the offset to ECUS and 2) when "swich to alternative IDs" frame is sent, either by the attacked

ECU or the gateway.

7.6.6 Limitations

7.6.6.1 Original Frames are intact, except their IDs

One limitation in the ID-hopping mechanism is that when ECUs switch to the ID-hopping mode,

the original frames remain with no modifications. In other words, the only change is in the IDs.

This poses the risk for the attacker to cross match the contents of the frames and infer the alternative

ID for the attacked frame. A possible solution is to modify the contents of the original frame, as

well as the ID, possibly by shifting the values by the same offset used for IDs.

7.6.6.2 Attacker retrieves the offset

It could possible for an attacker to compromise an ECU and get access to the encrypted offset. We

assume that such attack needs physical access to the ECU in order to succeed. To prevent such an

attack we need to rely on tamper-proof ECUs that are physically-protected.

7.6.6.3 Potential limited CAN ID space

Because free CAN ID space is only known for OEMs, our mechanism might fall short when

implemented in a network with little or no free CAN ID space. A potential solution that could

be considered is the use extended CAN frames, where we can use 29-bit IDs rather than 11-bit.

Better yet, we could improve our design to use 11-bit IDs by default, and 29-bit IDs when space is

limited. Therefore, the mechanism can scale when free ID space is limited or the number of ECUs

is large.
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Figure 7.7: Testing Platform

7.7 Evaluation

Fig.7.7 shows our test platform which consists of five BeagleBone Black (BBB) microcontrollers,

five CAN Capes, a breadboard, a switch, a multimeter, and an external LED. Four of the BBBs

simulate regular ECUs, and the fifth simulates a gateway. The switch is used for accessing and

configuring the BBBs.

The algorithm successfully generates alternative IDs that substitute the original IDs. Fig. 7.8

shows a real example of three of the ECUs’ IDs before and after applying the offset to the original

IDs. It appears from the figure that the priority of the original IDs is maintained in the alternative

IDs. Furthermore, the alternative IDs maintain the same priority level as in the original IDs. The
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current version of ID-Hopping is designed for a single CAN network and the size of IDs is 11 bits.

We plan to perform a more realistic evaluation on a testing bench and test the mechanism with the

extended 29-bit ID.

Figure 7.8: Original vs. Alternative IDs

7.8 Summary

While CAN is prone to various attacks due to the lack of security measures, smart cars are in-

creasingly exposed to new communication channels. This makes it critical to design short-term

and long-term security solutions. Our work serves as a short-term solution that works with cur-

rent CAN networks such that only minimal modification is needed to the current infrastructure

deployed in todays’ smart cars. Long-term solutions take time to be adopted and require security

considerations from early design phases.

In this chapter, we propose ID-Hopping mechanism to defend against targeted DoS on CAN
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networks. We design the algorithm to provide ECUs with an efficient approach to generate al-

ternative IDs that can be used when a DoS takes place. Of particular significance is that these

alternative IDs maintain the same priorities of the original IDs regardless of the used CAN variant.

In addition, the gateway only needs to send a single frame containing an offset that is carefully

calculated to ECUs so they can calculate their alternative IDs.

We evaluated ID-Hopping with a testing platform consisting of five microcontrollers, simu-

lating ECUs and a gateway, and a breadboard, simulating the CAN bus. The evaluation shows

successful alternative IDs’ generation, DoS detection, and prevention.

ID-Hopping holds a promising solution to defend against CAN IDs’ reverse engineering, which

is one of the most common attacks against CAN networks. Therefore, a future direction could

include improving ID-Hopping to work with 29-bit CAN IDs and tackling multiple simultaneous

targeted DoS against single/multiple ECUs.
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Chapter 8

Firewall To Defend Against Denial Attacks

on CAN

8.1 Introduction

In the previous chapter, a new class of attacks on CAN was introduced and a new attack was pro-

posed and shown to be superior to the discussed attacks. This new class exploits the consequences

when participating ECUs do not adhere to CAN standards. For example, an attacker could inject

carefully-selected bits to achieve various types of denial attacks. The common theme of the dis-

cussed denial attacks is the disobedience of CAN standards. For example, an attacker does not wait

for a specific minimum amount of time before attempting to start submission. Instead, an attacker

could inject anything at any time thanks to the absence of CAN controllers or the misuse thereof.

Conventional controls do not address these attack adequately because they mainly work at a

higher level than where these attacks are. In other words, current solutions first require all ECUs to

accept a frame and then process it to verify its validity. In addition to the introduced unnecessary

latency and waste of resources, attacks that does not require transmitting complete frames, bypass

such controls. Therefore, a need for countermeasure that addresses this kind of attack emerges.

In this chapter, we propose a novel automotive firewall that aims to prevent the discussed
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denial attacks in the previous chapter. The firewall could be located between a single or multiple

potentially-malicious ECUs and the rest of the bus.

8.2 CAN Transceiver-Based Firewall

Since most of the surveyed and proposed attacks rely on either the misuse CAN controllers or

bypassing them, a countermeasure needs to behave in a similar fashion. In other words, we propose

using a countermeasure that does not rely on a CAN controller nor adhere to CAN standards.

Instead, it uses an MCU that is located between a potentially vulnerable ECU and the bus. A CAN

transceiver is needed so the MCU can analyze outgoing bits from ECUs that could be potentially

become a source of attacks. The concept of analyzing serial communications with software is

known as bit-banging.

8.2.1 Firewall Architecture

The nature of the attacks we aim to prevent requires a firewall that closely monitors traffic coming

from the attacker. However, because CAN bus is broadcast-based, it is not possible to identify the

source of any transmission on the bus with the current bus’s architecture. Consider the bus example

in Fig. 8.1, ECU2 is malicious and could launch various attacks. If we introduce a firewall to the

bus by simply plugging it to the same bus, it can not know that ECU2 is ‘the source of an attack

should it occur. We need a firewall that can identify the source of an attack with high certainty.

Figure 8.1: Typical CAN Bus

In order to be able to identify a source of an attack, we propose a slight modification on the
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architecture in Fig 8.1 so that an attacker’s traffic could be identified and prevented. In Fig. 8.2, we

see two instances of the modified architecture. In the left example, a firewall is located between

ECU2 and the rest of the bus, whereas it is located between two additional ECUs in the example

in right. In the first, the firewall can know with 100% certainty when ECU2 is the source of the

top port’s traffic. On the other hand, in the right example, the firewall has a 33% probability of

knowing the source of a frame or malicious injections. In either case, the firewall should be able

to detect and prevent attacks reaching to CAN1 originating from CAN2.

Figure 8.2: Firewall Architecture

8.2.2 Firewall Requirements

8.2.2.1 Low Latency

CAN-based systems are typically time-critical, and not only any added latency to the network is

very undesired, but it could also result in safety-related incidents. Therefore, any controls need to

make real-time decisions. Our firewall’s rules need to be simple enough to accommodate real-time

requirements. It should be seamless to honest ECUs so their communications do not get affected.

Meanwhile, an attacker’s malicious activities should be detected and prevented with the lowest

possible impact on the honest ECUs.

8.2.2.2 Low Cost

For an easy adoption, the firewall needs to be as cheap as possible.
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8.2.2.3 Compatibility

The firewall needs to work with any CAN-based network with minimum modifications.

8.2.3 Firewall Goals

We analyzed the aforementioned attacks and deduced a set of attack patterns that we desire to pre-

vent with the least amount of false positives or negatives. As each category of the aforementioned

attacks shares common features, we categorize the attacks to prevent as the same categories of the

attacks: bus, ECU, arbitration, and frame denial attacks.

8.2.3.1 Bus Denial

In the current version of the firewall, we focus on preventing the continuous dominant state attack,

discussed in Sec. 6.2.1.1. The firewall should prevent any injected dominant bits that violate CAN

standards. For example, a dominant bit that is not a SOF should not be allowed. On the other

hand, because 0x0 ID flooding attack, discussed in Sec. 6.2.1.1, do not violate CAN standards, it

is slightly harder to prevent. If the attacker uses a conventional ECU that follows CAN standards,

then the firewall could launch a bus-off attack against the malicious ECU. However, if the attacker’s

ECU does not follow the standards, then further measures are needed to prevent such an attack.

8.2.3.2 ECU and Frame Denial

Attacks discussed in Sec. 6.2.2 and 6.2.3.2 violate CAN standards by injecting a dominant bit to

override a carefully selected recessive bit in the target frame while in transmission. To prevent such

an attack, we need to block any injections from the attacker’s side during any transmission on the

main bus. Therefore, the firewall should prevent any transmission if a frame is being transmitted. A

frame on the main bus is assumed to have already won arbitration and no other ECUs are supposed

to send unless an error is detected. Since other ECUs on the main bus detect errors, the potential

attacker’s ECU will not be able to send error flags. It is a trade-off that seems to be worth preventing
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the attacker from sending error flags.

8.2.3.3 Arbitration Denial

The attack discussed in Sec. 6.2.4 is realized by injecting a dominant bit to replace a recessive

one in the arbitration ID of the target frame. Prevent this attack is realized by disallowing single

dominant bits during the arbitration phase.

8.3 Algorithm

In this section, we introduce our algorithm for preventing the denial attacks. As shown in Fig 8.2,

the firewall faces two CAN buses: 1) the main bus where the honest ECUs reside (CAN1) and 2)

the potentially-malicious bus where an ECU or more reside (CAN2). The aim is to allow traffic to

flow from CAN1 bus to CAN2 bus and vice versa without any collisions. The algorithm consists

of two main parts:

1. Traffic forwarding from CAN1 to CAN2.

2. Traffic forwarding from CAN2 to CAN1.

Figure 8.3: Firewall Demonstration
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Since the attacks discussed in Chapter 6 exploit the absence of CAN controller. They could

inject malicious traffic arbitrarily such that CAN standards are not followed. The proposed firewall

ensures that once the arbitration phase is won, no ECU on the potentially-malicious bus can inter-

rupt the transmission. Fig 8.3 shows the mutually-exclusive forwarding scheme. We see in the top

case, Case 1, that when the firewall detects a CAN frame on CAN1 bus, it disables the interrupt

waiting for a frame on CAN2’s side before forwarding the traffic. The second step is critical to

avoid an unnecessary infinite loop. Once CAN1’s frame is forwarded successfully to CAN2, the

interrupts are enabled again on both interfaces. Algorithm. 3 illustrates the steps of forwarding

between the two buses.

Algorithm 3 Allow and Block Traffic Between CAN1 and CAN2

1: while true do . Infinite loop

2: if A frame is detected on CAN1 then

3: Disable frames’ detection on CAN2

4: Forward traffic to CAN2

5: else if A frame is detected on CAN2 then

6: Disable frames’ detection on CAN1

7: Forward traffic to CAN1

8: end if

9: end while

8.4 Evaluation

The attacks that we aim to prevent with the proposed firewall require a bit-by-bit analysis due to the

lack of CAN standards adherence from the attackers. Therefore, we use the same mechanism in the

attack proposed in Chapter .6. In other words, we build on CANT to monitor and allow/block the

traffic coming from the attacker’s ECU. As shown in Fig. 8.4, the proposed firewall consists of 3

components: a microcontroller and two CAN transceivers. One transceiver interfaces the attacker’s
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ECU, where the other interfaces the bus. The microcontroller in the middle analyzes traffic coming

from the attacker’s ECU and blocks it when an attack is detected. On the other hand, the traffic

coming from the bus is forwarded to the ECU without any intervention as we assume that the bus

is not malicious and therefore will not transmit malicious traffic. We only monitor traffic coming

from the attacker’s ECU to protect the bus, i.e., other ECUs from the ECU behind the firewall.

Figure 8.4: Firewall Example

8.4.1 Testing Platform

The testing platform consists of two STM32 Nucleo-144 microcontrollers, one acts as an attacker

and the other as the firewall, and four BBB microcontrollers as conventional ECUs.

As shown in Fig ?? the attacker is separated from the main bus and is connected to a small

CAN bus that works as a bridge with the firewall. PA15 and PB12 GPIOs are connected to the

CAN transceiver’s Tx and Rx pins, respectively.

The firewall has more connections because it interfaces tow CAN buses, CAN1 and CAN2.
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Four GPIOs are connected to two CAN transceivers as follows: PXXX and PXXX are connected

to the main bus’s CAN transceiver PXXX and PXXX are connected to the attacker bus’s CAN

transceiver

8.4.2 Traffic To Attacker (CAN1 to CAN2)

Our experiments show no delays caused by this forwarding. An important observation to note is

that the main bus has to consist of two ECUs or more for successful transmission of frames because

they require the ACK bit which is sent by at least one receiving ECU on the same bus.

When the firewall synchronizes with the main bus, it waits for the SOF’s interrupt to start

forwarding to the attacker’s bus.

Figure 8.5: Firewall Forwards Traffic From CAN1 to CAN2

8.4.3 Traffic From Attacker (CAN2 to CAN1)

Another interrupt is configured on a different GPIO to detect an SOF from the attacker’s side. Once

it is detected, the traffic coming from the main bus is blocked and the attacker’s traffic is forwarded

to the main bus. No forwarding is allowed while a frame is being transmitted, and forwarded, from

the main bus to the attacker’s. This prevents attacks 1, 3, 4, 5, and 6. The attacker cannot arbitrarily

inject dominant bits while a frame is being transmitted on the main bus.

Figure 8.6: Firewall Forwards Traffic From CAN2 to CAN1
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8.4.4 Prevention of Bus Denial

The firewall successfully prevents an attack from launching the bus denial attack discussed in

Sec 6.2.1.1. The firewall prevents injecting arbitrarily to the bus. Any attempts from the attack to

inject dominant bits at arbitrary times are prevented.

8.4.5 Prevention of ECU and Frame Denial

In Fig. 8.7, the bus-off attack, discussed in Sec. 6.2.2.2, starts at time ≈ 40 ms and the firewall is

not activated. TEC at the target ECU increases until it reaches more than 127 and 255 causing its

error state to change to Error-Passive and then Bus-Off, respectively. When the firewall is activated

at time ≈ 80 ms, we see a sharp drop in TEC until the error state is back to Error-Active. We then

turned the firewall off for a brief period of time and the same behavior occurs until we reactivate

the firewall to prevent the attack.

Figure 8.7: Bus-Off Attack with and Without the Firewall

8.4.6 Prevention of Arbitration Denial

Fig. 8.8 demonstrate the effectiveness of the firewall against the arbitration denial attack discussed

in Sec. 6.2.4. We see that at time ≈ 30 ms REC starts to sharply increase until it stops increasing

at the Error-Passive state. When we activate the firewall, REC decreases until the error state goes
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back to Error-Active. The reason that TEC was not affected is when a CAN ID loses arbitration

due to the injected bit by the attacker, it switches to a receiving mode. Then the interrupted ECU

that lost the arbitration does not complete the interrupted frame causing an uncompleted frame on

the bus. In other words, the interrupted frame violates CAN standards such that the frame is not

terminated. As a result, one or more of the receiving ECUs generates an error flag caused by a

form error.

Figure 8.8: Firewall with The Arbitration Denial Attack

8.4.7 Prevention of The Stealthy Targeted Arbitration Denial

Finally, we show the effectiveness of the firewall against the proposed stealthy targeted arbitration

attack that does not affect the error states as we show in Fig. 6.16. Since the error states do not

change during the attack, we show the impact on the targeted CAN ID 0x777. In Fig. 8.9, once

the attack starts, 0x777 ID disappears from the bus and a lower ID replaces it every time it tried

to retransmit. This ID is 0x776 which results from replacing the least significant bit in the target

CAN ID with a dominant bit. When the firewall is activated, the ECU sending the target0x777 is

able to transmit it even though the attacker is still attempting to attack it.
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Figure 8.9: Firewall and The Stealthy Targeted Arbitration Denial

8.5 Related Work

Current solutions assume that an attacker uses an ECU that adheres to CAN standards in terms

of transmission and receiving. Therefore, most of them detect and prevent malicious frame based

on their CAN IDs. However, the frame-less attacks discussed in Chapter 6 can not be detected

nor prevented with such solutions [141]. Therefore, the countermeasures for similar attacks are

relatively limited.

Cho et al. [38] proposed a three-stepped approach to detect and prevent the bus-off attack

discussed in Sec. 6.2.2. When a minimum occurrence of two consecutive active error flags during a

transmission of a CAN frame, followed by a transmission of a frame with the same CAN ID, a bus-

off attack is detected. To prevent it, the attacked ECU resets to avoid increasing its TEC to 255 and

therefore, switching to a bus-off state. This countermeasure ensures the targeted ECU preserves its

error-active state and thus, transmit and receive successfully. This solution is fine-grained towards

thwarting the bus-off attack only. It does not address other attacks like our proposed firewall.

Another solution that to the bus-off attack is to counter-attack the attacker’s ECU. Souma et

al. [160] proposed to perform a bus-off attack against the malicious bus-off frame itself. This will

cause the attacker’s TEC to keep increasing until it reaches 255, and thus, a bus-off state. This
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solution is also specific to bus-off attacks, unlike our firewall that targets a plethora of attacks. In

addition, this solution assumes that the attacker launches the attack using an ECU with a CAN

controller so TEC could be targeted. However, the countermeasure is defenseless against CAN

controller-less attacks.

8.6 Summary

In this chapter, we introduced a novel CAN firewall for addressing attacks on CAN that violate

CAN standards and misuse the error-handling mechanism to achieve various malicious goals. The

firewall is placed between any potentially-malicious ECU and the rest of the bus. The evaluation

shows the effectiveness of the firewall against the attacks discussed in Chapter. 6 with no latency.

The firewall opens up new opportunities to address a plethora of attacks that either misuse CAN

design or use bit-banging for achieving their goals. We build on CANT, the open source tool used

for the Stealthy Targeted Arbitration Denial Attack.
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Chapter 9

Firewall-Complementing Intrusion

Detection System (IDS)

9.1 Introduction

The current version of the firewall prevents any injection that occurs after the arbitration takes

place in the main bus. This prevents the ECU denial attacks in Sec. 6.2.2, frame denial attacks in

Sec. 6.2.3, and the arbitration denial attacks in Sec. 6.2.4 and our proposed stealthy targeted denial

attack in Sec. 6.3. However, the firewall might fall short of detecting and preventing attacks that

perform injection when the bus is idle. This include the bus denial 1 attack, Sec. 6.2.1.1, that could

be launched when the main bus is idle. Another potential attack that might bypass the firewall is the

transmission of incomplete frames. Unterminated frames trigger errors at the receiving ECUs due

to the form error generated from observing incomplete frames. Although this attack does not lead

to shutting off ECUs (bus-off), it is still a valid attack that we need to consider preventing. Adding

more logic to the firewall might introduce overhead that could affect its effectiveness. Therefore,

we need to complement the firewall with another mechanism that detects and reacts to such attacks,

i.e., an Intrusion Detection System (IDS).

In this chapter, we propose a novel IDS design that aims to detect attacks based on certain rules
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and then inform the firewall to prevent them. To the best of our knowledge, the IDS is the first one

that detects attacks by bit banging, unlike traditional IDS that perform analyses at the frame level.

9.1.1 IDS Detection Rules

9.1.1.1 Bus Denial by Dominant Bits Stream

The SOF bit signals the start of a frame from the attacker’s side and the frame is forwarded to

the main bus. The firewall stops forwarding when the EOF delimiter is recognized. However, an

attacker could perform the bus denial by dominant bits stream by starting the attack when the bus

is idle, i.e., no traffic on either bus, CAN1 nor CAN2. To detect and then prevent such an attack

the IDS needs to recognize it by its identifying pattern. It starts with an SOF, and more than four

consecutive dominant bits follow the presumably SOF bit. When this happens, the IDS should

immediately know that this is a potential bus denial by dominant bits stream.

9.1.1.2 Bus Denial by 0x0 ID flooding

This attack is easy to detect because the IDS waits for the entire arbitration ID to complete and

then sees a 0x0 ID is being transmitted. If 0x0 ID is not expected to be used from the attacker’s

ECU, then it must be prevented.

9.1.1.3 Incomplete Frames Injection

Although this attack does not lead to a bus-off error state, it is still worth preventing. The attack

occurs when an attacker starts sending a frame correctly by sending a CAN ID that wins the

arbitration phase so the rest of the ECUs are in receiving mode. However, once the arbitration

is complete and the dominance of the bus is gained, the attacker does not transmit the rest of the

frame resulting in form errors that could lead the receiving ECUs to be in Error-Passive states. The

reason of this attack’s success at bypassing the firewall is that it starts with a SOF bit which the

firewall detects and then starts forwarding the traffic from the attacker’s bus to the main bus.
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9.1.2 IDS and Firewall Integration

When the IDS detects the discussed attacks, it should notify the relevant firewall to block the

attacker for a random period of time. When the same attacker reattempts the attack, it gets blocked

for a longer time. In some cases, performing a bus-off attack might be considered to shut down the

attacker’s ECU.

9.1.2.1 Prevention of Bus Denial by Dominant Bits Stream

IDS informs the firewall to block traffic from the attacker’s ECU and not forward it to the main

bus. Fig 9.1 shows that how the attack bypasses the firewall and then how the IDS detects such an

attack when the pattern is recognized.
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Figure 9.1: Bus Denial 1 Attack Demonstration

9.1.2.2 Prevention of Bus Denial by 0x0 ID flooding

When 0x0 ID flooding is detected, the IDS informs the firewall about the attack. Consequently,

if the attacker’s ECU is a conventional one with the a CAN controller, then a bus-off attack could

be performed to drive the attacker’s ECU to the bus-off state. If CAN controller is not used, then

blocking the traffic is a safer option. Fig 9.2 illustrates how the attack bypasses the firewall and

how the IDS detects it and helps preventing it.
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Figure 9.2: Bus Denial 2 Attack Demonstration

9.1.2.3 Prevention of Incomplete Frames Injection

When the IDS detects the attack’s pattern, the firewall could do one of several options. For exam-

ple, it could complete the incomplete frame so that no form errors are generated and thus, receivers

do not switch to the error-passive state. Another option is to block the traffic from the attacker’s

ECU for a random period of time.
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Figure 9.3: Bus Denial 2 Attack Demonstration

9.1.3 IDS Architecture

Fig. 9.4 illustrates the architecture of the proposed IDS. The IDS is connected to every firewall

with three connections, two from the firewall and one to the firewall. The connections from the

firewall provides the IDS the means for real-time analysis for attack detection. One is used for

reading the Rx in the CAN transceiver facing the attacker’s bus and another for the Rx in the main

bus’s transceiver. On the other hand, the connection to the firewall is used to inform the firewall’s

decisions for preventing ongoing attacks from the attacker’s bus.
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Figure 9.4: IDS Architecture

9.2 Related Work

The conventional approaches detect based on analyses frames’ frequency and contents. Frames

based on their CAN IDs and data fields are analyzed and attacks are detected. A detailed review

of the current IDS is in Sec 4.7.10. However, we propose the first IDS that perform the analysis

at a frame-less level. In other words, our IDS detects attacks of a nature that current IDS is not

designed to detect.

9.3 Summary

In this chapter, we introduced a novel IDS design for detection of three of the denial attacks dis-

cussed in Chapter 6. Because these attacks initially follow CAN standards, the proposed firewall,

proposed in Chapter. 8, does not prevent them. The proposed IDS is connected bidirectionally with

each firewall. It monitors each firewall’s traffic from the attacker’s side to detect attacks. Once an

attack is detected by the IDS, the firewall receives a notification from the IDS in order to prevent it

by blocking the traffic from the attacker’s side. This proposal complements the firewall and more
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attacks could be easily added.

165



Chapter 10

Conclusions and Future Work

In this dissertation, we surveyed four CPS application and presented a framework to capture their

security issues from a cyber-physical perspective. We then presented a stealthy targeted denial

attack on CAN that could have cyber-physical implications. In addition, we proposed three simul-

taneous solutions to detect and prevent DoS attacks on CAN. The first solution is the ID-Hopping

mechanism. Denial attacks rely on the detection of target CAN IDs to launch an attack. When

an attacker learns about a CAN ID and that it is used for a certain function that they target, the

attacker will wait for this CAN ID to start a denial attack.

10.1 Conclusions

In Chapters 3 and 4, we surveyed the literature on security and privacy of cyber-physical systems

in four representative CPS applications: ICS, smart grids, and medical devices, with a special fo-

cus on smart cars. We presented a taxonomy of threats, vulnerabilities, known attacks and existing

controls. A cyber-physical security framework was also presented that incorporated CPS aspects

into the security aspects. The framework captured how an attack of the physical domain of a CPS

can result in unexpected consequences in the cyber domain and vice versa along with proposed

solutions. Using our framework, effective controls can be developed to eliminate cyber-physical

attacks. For example, we identified that the heterogeneity of CPS components contributes signifi-
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cantly to many attacks. Therefore, for an effective solution, special attention should be paid when

heterogeneous components interact. Another example that the dissertation is based on is the DoS

attack, which is one of the most common attacks with safety-critical implications in CPS. When a

cyber-physical system undergoes a DoS attack, life-threatening impacts are expected. For exam-

ple, car brakes ECU must be secure against DoS so that an attacker cannot harm passengers and

their safety.

Therefore, in addition to the surveyed attacks in the four CPS applications, we then further

explored a new class of DoS attacks on CAN. CAN is the de facto communication protocol in

many CPS applications, most notably smart cars. These attacks render targeted ECUs useless

when they are most needed. For example, an attacker could disable the collision avoidance system

when an accident is about to be avoided by targeting the ECU’s CAN IDs. Therefore, an important

question was raised: How we can detect and prevent such an attack in a protocol that lacks the most

basic security measures such as identification and authentication? Furthermore, CAN is broadcast-

based so that CAN frames are identified only by their CAN IDs that determine their priority to

occupy the bus and the relevance for the receiving ECUs. Introducing controls that are common

in IT applications such as authentication and access control are not directly applicable and might

add a non-negligible overhead and delays in such limited-spaced CAN frames that are expected to

perform in real-time conditions.

Therefore, in Chapter 6, we surveyed the non-traditional denial attacks on CAN and classified

them into four categories: bus, ECU, frame, and arbitration denial. All the surveyed attacks ei-

ther exploited existing design vulnerabilities, such as the bit-wise arbitration and error-handling

mechanism, or misused features in CAN controllers such as the "Test Mode." Before addressing

the attacks, we proposed and demonstrated in the same chapter a new stealthy targeted arbitration

denial attack that avoids detection by existing countermeasures due to its adherence to CAN speci-

fications. The attack is demonstrated and compared with the other denial attacks. Our experiments

show that it is superior to the other denial attacks in terms of stealthiness.

In Chapter 7, we propose the ID-Hopping mechanism to defend against CAN ID-based DoS
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attacks. ID-Hopping randomizes CAN IDs in a way that deters an attacker. When an attack is

detected, the targeted ECU transmitting the target ID signals the other ECUs to use a different set

of IDs that does not include the target ID that the attacker is seeking for. This results in the disap-

pearance of the attack’s trigger, and therefore prevention of that attack. We evaluated ID-Hopping

using a set of micro-controllers that act as normal ECUs and an attacking ECU. Because the normal

ECUs simulate legitimate CAN nodes, we used four BeagleBone Black micro-controllers where

each one includes a CAN controller that is connected to an external CAN transceiver. For the

attacker, we implemented the attack using an STM32 Nucleo-144 development board due to its

support for CANT - an open source CAN security testing tool that allows for testing security when

CAN specifications are not followed. The evaluation shows that the attack was successfully pre-

vented when ID-Hopping was activated because it replaced the target ID by another one that the

attacker was not aware of.

In Chapter 8, we propose a novel CAN transceiver-based firewall that prevented the stealthy

targeted denial attack in addition to most of the surveyed denial attacks. The firewall is located

as a gateway between a potential attacker‚Äôs ECU and the rest of the CAN bus. The traffic is

forwarded bi-directionally between the main bus and the attacker. The firewall prevents the attacker

from performing any malicious attacks when there is a frame being transmitted in the main bus.

The attacker’s ECU is only permitted to participate with the main bus when CAN specifications

are followed. The specifications states that an ECU can only start transmission when the bus

is idle [16]. In other words, when the main bus is occupied by a legitimate ECU transmission,

the attacker’s ECU is not allowed to transmit until the bus is idle. We evaluated the proposed

firewall and demonstrated its effectiveness against most of the denial attacks with the use of BBBs

as legitimate ECUs and two STM32 Nucleo-144 development boards; one is used as an attacker

while the other as the firewall.

Finally, in Chapter 9, we introduced a novel IDS design for detection of three of the denial

attacks discussed in Chapter 6. Because these attacks initially follow CAN standards, the pro-

posed firewall, proposed in Chapter. 8, does not prevent them. The proposed IDS is connected
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bi-directionally with each firewall and monitors each firewall’s traffic from the attacker’s side to

detect attacks. Once an attack is detected by the IDS, the firewall receives a notification from the

IDS to prevent it by blocking the traffic from the attacker’s side. This proposal complements the

firewall and more attacks could be easily added.

Since the ID-Hopping mechanism prevented the stealthy targeted denial attack, it should also

prevent any ID-based attacks due to the randomization of the IDs that are only known to legitimate

ECUs. The mechanism’s strength lies in the secrecy of the offset. In addition, the proposed

firewall was able to prevent most of the denial attacks by ensuring that the CAN specifications are

followed by preventing an attacker from injecting dominant bits during frame transmissions on the

main bus. This prevents the interruption of legitimate frames, and therefore any consequences of

the interruption.

CAN is used real-time in a plethora of applications ranging from small and large vehicles, ships,

planes, and even in artificial limbs, drones, radar systems, and submarines. Therefore, prevention

of various types of denial attacks in CAN-based systems is crucial to prevent potential safety-

critical consequences. Several proposals attempted to address denial attacks, some by randomizing

CAN IDs so an attacker cannot detect them, and therefore attack them [68]. Others use a type of

counterattack so that an attacker‚Äôs ECU shuts off and stops sending to the CAN bus affecting the

target ECUs [38, 160]. However, there is not yet a control that could intrusively prevent malicious

ECUs from performing denial attacks with little to no latency and computation overhead. We

claim that our firewall contributes to addressing this gap. It is inexpensive, so its adoption would

not be costly and it is compatible with any CAN-based application regardless of the higher layer

protocols.
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10.2 Future Work

10.2.1 CPS Applications

CPS is becoming more popular and its applications are growing. Therefore, it would be a beneficial

future direction to apply the proposed CPS security framework to emerging CPS applications such

as smart cities wherein more than CPS applications integrate to make security issues even more

complex.

10.2.2 Firewall for Other Attacks

The focus in this dissertation has been in detecting and preventing denial attacks. However, a

promising future direction would be the prevention of false data injection attacks that are easily

done in CAN-based applications due to the broadcast nature and lack of authentication.

10.2.3 Evaluation of the IDS

Due to time constraints, we did not evaluate the proposed IDS thoroughly. A future direction would

be to implement the design and evaluate it.

10.2.4 Detection of Subtle Attacks

An IDS could have more analytical capabilities so it could prevent attacks with a completely legit-

imate format but with malicious purpose. For example, the IDS should be provided with the CAN

IDs that each ECU is expected to transmit, especially for the ECUs that are sitting behind the fire-

wall. Then, it should monitor the traffic coming from that ECU and detect abnormal/unexpected

IDs so it could inform the firewall to block them.
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10.2.5 Fingerprinting ECUs

Bit banging could be used to identify ECUs based on characteristics. Due to the imperfection of

the ECUs clock skews, there will be unique offset that makes a CAN transceiver-based firewall or

IDS able to fingerprint ECUs [39].
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Appendix A

BeagleBone Black Configuration

A.1 Static IP Configuration

Although BBB are accessible via USB cable, it is cumbersome when you have more than one

BBB. Therefore, we connect to the BBBs through a switch and configure each BBB to have a

unique static IP address.

A.1.1 Host Machine IP Configuration

The following configurations need to be written in the /etc/network/interfaces file on the host ma-

chine:

$ a u t o e t h 0

$ i f a c e e t h 0 i n e t s t a t i c

$ a d d r e s s 1 9 2 . 1 6 8 . 1 . 1 0

$ netmask 2 5 5 . 2 5 5 . 2 5 5 . 0

$ ne twork 1 9 2 . 1 6 8 . 1 . 0

$ gateway 1 9 2 . 1 6 8 . 0 . 1
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A.1.2 BBB IP Configuration

I configured each BBB by accessing through the USB cable only once as follows:

$ s s h root@192 . 1 6 8 . 7 . 2

Then add the following to the /etc/network/interfaces file:

$ a u t o e t h 0

$ i f a c e e t h 0 i n e t s t a t i c

$ a d d r e s s 1 9 2 . 1 6 8 . 1 . 1 1

$ netmask 2 5 5 . 2 5 5 . 2 5 5 . 0

$ ne twork 1 9 2 . 1 6 8 . 1 . 0

$ gateway 1 9 2 . 1 6 8 . 0 . 1

The above example is for BBB1, and for the BBB2 through BBB5, I change the address to

192.168.1.12, 192.168.1.13, 192.168.1.14, 192.168.1.15, respectively.

A.1.3 Connecting to BBBs

I open a separate terminal, a new terminal or with tmux, for each BBB as follows:

Connecting to BBB1:

$ s s h root@192 . 1 6 8 . 1 . 1 1

Connecting to BBB2:

$ s s h root@192 . 1 6 8 . 1 . 1 2

Connecting to BBB3:

$ s s h root@192 . 1 6 8 . 1 . 1 3

Connecting to BBB4:

$ s s h root@192 . 1 6 8 . 1 . 1 4

Connecting to BBB5:
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$ s s h root@192 . 1 6 8 . 1 . 1 5

A.2 CAN Configuration

BBB has two built-in CAN controllers, DCAN0 and DCAN1. I will use DCAN1 on each BBB

because it is more straightforward than DCAN0. DCAN0 needs more work to be done such as

disabling i2s pins.

A.2.1 DCAN1 Configuration

1. Copy the Device Tree shown in Fig.A.1 to each BBB1.

2. Execute the following command:

$ d t c −O d t b −o BB−DCAN1−00A0 . d tbo −b 0 −@ BB−DCAN1−00A0 . d t s

This will create the overlay binary BB-DCAN1-00A0.dtbo.

3. To use the overlay, copy it to /lib/firmware as follows:

$ sudo cp BB−DCAN1−00A0 . d tbo / l i b / f i r m w a r e

$ echo BB−DCAN1 > / s y s / d e v i c e s / bone_capemgr . ∗ / s l o t s

A.2.2 CAN Transceiver Wiring

A.2.3 CAN Interface Configuration

$ sudo modprobe can

$ sudo modprobe can−dev

$ sudo modprobe can−raw

1Found at http://www.embedded-things.com/bbb/enable-canbus-on-the-beaglebone-black
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Figure A.1: DCAN1 Device Tree
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A.2.4 SocketCAN Utilities

Get and build can-utils

$ g i t c l o n e h t t p s : / / g i t h u b . com / l i n u x−can / can−u t i l s . g i t

$ cd can−u t i l s /

$ . / a u t o g e n . sh

$ . / c o n f i g u r e

$ make

$ sudo make i n s t a l l

Set up the bus speed and enable it:

$ sudo i p l i n k s e t can0 up t y p e can b i t r a t e 500000

$ sudo i f c o n f i g can0 up

A.2.5 Scripts and Commands

Here we include some of the useful and time-saving commands that we have used in our work.

A.2.5.1 Start CAN with Error Reporting

We start CAN interface with the error reporting option enabled to get the most amount of error-

related information. Below is the used command:

$ canconfig can0 bitrate 500000 ctrlmode berr-reporting on

$ canconfig can0 start

A.2.5.2 Script for Extracting Errors’ Information

We wrote this script to extract error handling information: error states, TEC and REC before,

during, and after that attack and then plot the data to see whether or not the attack disrupted the

bus and triggered errors.
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Figure A.2: Showing the settings to confirm the disabling took effect

A.2.6 CAN Simulation with 2 BBBs

We have two BBBs connected to a breadboard as the physical CAN bus. Both BBBs exchange

CAN frames under normal operations when the attack is not present. The configurations are as

follows for each BBB:

1. ssh to BBB

$ ssh root@192.168.1.1x

x is the BBB’s number. 1 and 2 for BBB1 and BBB2, respectively.

2. Configure CAN

$ canconfig can0 bitrate 500000

3. Start CAN

$ canconfig can0 start

A.2.7 DCAN

Using canconfig utility, we start the CAN controller and by default the automatic transmission is

enabled. We can directly access the CTL register and set the 5th bit to disable automatic retrans-

mission, DAR as shown in Fig. A.2.
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A.2.8 Automatic Retransmission

By desging, CAN controllers have an automatic retransmission capability that ensures the success-

ful transmission of frames that get disrupted or lose arbitration. However, with frames that are

time-sensitive or perodic, the automatic retransmission is not desired [? ]. Therefore, we have

evaluated the attack under two circumstances: when the automatic retransmission is enabled and

disabled. We can configure the built-in CAN controller in the BBB by accessing the registers with

devmem2 [? ]. Using devmem2 we can directly access the registers and modify their values. After

consulting with the Technical Reference Manual (TRM), section 23.4, we found DCAN registers’

addresses [? ].

A.2.8.1 Disable Automatic Retransmission

Figures A.3, A.4, and A.5 show the CTL’s values during setting the automatic retransmission.

Figure A.3: The register’s setting before disabling automatic retransmission

Figure A.4: The register’s value after disabling the retrinamission

Figure A.5: Showing the settings to confirm the disabling took effect

A.2.8.2 Show DCAN1 Settings

Using devmem2, we can see the current settings of DCAN1 with the following command:
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• $ ./devmem2 0x481d0000

Please note this step cannot work if the CAN has not been started.
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Appendix B

Programmable Real-Time Units (PRUs)

Before we decided on using CANT for attack’s implementations, we had stared using BBB’s real-

time capabilities and had satisfactory results. However, CANT was a better option because it

provided us with the exact capabilities we were aiming to realize in BBBs but with a more intuitive

approach. We added this appendix as a future reference researchers.

BBB has real-time capabilities that sets it apart from other reasonably-priced microcontrollers. In

addition to the core 1 GHz AM335x processer, BBB has two independent real-time cores, called

Programmable Real-Time Units (PRUs). Each one which has a 32-bit 200 MHz RISC processor

core with an 8 kB of RAM, in addition to a shared 12 kB of RAM between the two PRUs. Also,

they have a direct access to the BBB’s input/output pins with only a cost of one cycle. A single

cycles takes only 5 nanoseconds. The PRUs are designated for specific tasks that require real-time

capabilities. For examples, input/output manipulation, implementation of custom communication

interfaces such as UART and SPI [? ]. PRUs can be programmed in the PRU Assembly Language

(PASM) or C. Either of the two languages can be compiled into a machine language by Texas

Instruments’ compiler written for the PRUs.

Configuration and programming PRUs is somewhat complex and time-consuming. Alanwar

et al. ?? proposed a framework that greatly facilities the configurations and programming efforts

from a PRU-specific environment to an accessible one. The framework gives three options for
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programming the PRUs, Javascript-like language, C, and assembly. In this paper, we chose to

work with C and partially assembly. Mostly we used C for its familiarity and assembly whenever

C is not fast enough. Cyclops provides an easy way to access the PRU’s GPIO pins. This allowed

us to focus on the CAN-related aspects, instead of worrying about the configurations and the

platform-specific instructions.

B.1 Download a Customized Image

To work with PRUs, one can either build the OS image or use a customized one. We downloaded

the imaged named 4.1.12-bone-rt with QoT from Cyclops1.

B.2 Load Devicetree Overlays

Devicetree is a way to describe a processor with data structures. Upon booting, the kernel will

learn the current processor’s configurations such as input/output pins. Although useful, this de-

vicetrees require rebooting with every reconfiguration. Therefore, overlays emerged in BBB to

allow developers to reconfigure pins from the user-space without the need to reboot the system.

1. Loading NESL-PRU overlay:

$ echo "NESL−PRU" > / s y s / d e v i c e s / bone_capemgr . 9 / s l o t s

2. Load universala overlay:

$ c o n f i g−p i n o v e r l a y cape−u n i v e r s a l a

B.3 Configure Pins

Cyclops provide an easy way to configure the GPIO pins on the BBB using the following com-

mands:
1https://github.com/nesl/Cyclops-PRU/tree/master/FullImage/images
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Input pin configuration:

$ c o n f i g−p i n P8_15 p r u i n

Output pin configuration:

$ c o n f i g−p i n P8_11 p r u i n

To check the pin’s status:

$ c o n f i g−p i n −q P8_15

It is important to consult with the pins’ mapping before assigning them. One excellent re-

source is Derek Molloy’s book [124] and website [123]. In the website, two comprehensive tables

are given showing all of the possible options pins can be configured to. These tables can be found

at these two links: P8 header, http://exploringbeaglebone.com/wp-content/uploads/

resources/BBBP8Header.pdf, and P9 header, http://exploringbeaglebone.com/wp-content/

uploads/resources/BBBP8Header.pdf. For example, the pins 11 and 15 on the header P8 was

configured as an input pin for the PRU because the mode 6 of the pinmux shows that it is possible

to do so. Without Cyclops, this operation is time-consuming and somewhat complex.

B.4 Programming

Cyclops provides a convenient way to program PRUs. Our implementation is built on the GPIO

example in the examples directory. It contains the necessary code examples to get started with

PRU programming with C programming. The most important files to consider are:

• host_main.c

- This file contains the components that run on the Linux side such as interrupts.

• pru_main.c

- This file contains the actual tasks that you need to be done in real-time by the PRU.
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• build.sh

- In addition to compiling your c code in the above two files, you can determine which

PRU to use. This is useful when you want to use both PRUs: PRU0 and PRU1.

• gen directory

- This directory contains the executable files that will actually run the PRU. Change

directory to gen and then execute host file as instructed.

B.4.0.1 PRU Configuration

1. ssh to BBB

$ ssh root@192.168.7.2

2. Configure the PRU

$ cd ucla-nesl-pru-lib/examples/myGpio

$ ./loadAll.sh

- This is a script to load the overlays and configure pins.

3. The attack’s code resides in pru_main.c. To run it:

$ cd gen

$ ./host

- Now the PRU is running
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