66 research outputs found

    High frequency and high dynamic range continuous time filters

    Get PDF
    Many modern communication systems use orthogonal frequency division multiplexing (OFDM) and discrete multi-tone (DMT) as modulation schemes where high data rates are transmitted over a wide frequency band in multiple orthogonal subcarriers. Due to the many advantages, such as flexibility, good noise immunity and the ability to be optimized for medium conditions, the use of DMT and OFDM can be found in digital video broadcasting, local area wireless network (IEEE 802.11a), asymmetric digital subscriber line (ADSL), very high bit rate DSL (VDSL) and power line communications (PLC). However, a major challenge is the design of the analog frontend; for these systems a large dynamic range is required due to the significant peak to average ratio of the resulting signals. In receivers, very demanding high-performance analog filters are typically used to block interferers and provide anti-aliasing before the subsequent analog to digital conversion stage. For frequencies higher than 10MHz, Gm-C filter implementations are generally preferred due to the more efficient operation of wide-band operational transconductance amplifiers (OTA). Nevertheless, the inherent low-linearity of open-loop operated OTA limits the dynamic range. In this dissertation, three different proposed OTA linearity enhancement techniques for the design of high frequency and high dynamic range are presented. The techniques are applied to two filter implementations: a 20MHz second order tunable filter and a 30MHz fifth order elliptical low-pass filter. Simulation and experimental results show a spurious free dynamic range (SFDR) of 65dB with a power consumption of 85mW. In a figure of merit where SFDR is normalized to the power consumption, this filter is 6dB above the trend-line of recently reported continuous time filters

    System-level design and RF front-end implementation for a 3-10ghz multiband-ofdm ultrawideband receiver and built-in testing techniques for analog and rf integrated circuits

    Get PDF
    This work consists of two main parts: a) Design of a 3-10GHz UltraWideBand (UWB) Receiver and b) Built-In Testing Techniques (BIT) for Analog and RF circuits. The MultiBand OFDM (MB-OFDM) proposal for UWB communications has received significant attention for the implementation of very high data rate (up to 480Mb/s) wireless devices. A wideband LNA with a tunable notch filter, a downconversion quadrature mixer, and the overall radio system-level design are proposed for an 11-band 3.4-10.3GHz direct conversion receiver for MB-OFDM UWB implemented in a 0.25mm BiCMOS process. The packaged IC includes an RF front-end with interference rejection at 5.25GHz, a frequency synthesizer generating 11 carrier tones in quadrature with fast hopping, and a linear phase baseband section with 42dB of gain programmability. The receiver IC mounted on a FR-4 substrate provides a maximum gain of 67-78dB and NF of 5-10dB across all bands while consuming 114mA from a 2.5V supply. Two BIT techniques for analog and RF circuits are developed. The goal is to reduce the test cost by reducing the use of analog instrumentation. An integrated frequency response characterization system with a digital interface is proposed to test the magnitude and phase responses at different nodes of an analog circuit. A complete prototype in CMOS 0.35mm technology employs only 0.3mm2 of area. Its operation is demonstrated by performing frequency response measurements in a range of 1 to 130MHz on 2 analog filters integrated on the same chip. A very compact CMOS RF RMS Detector and a methodology for its use in the built-in measurement of the gain and 1dB compression point of RF circuits are proposed to address the problem of on-chip testing at RF frequencies. The proposed device generates a DC voltage proportional to the RMS voltage amplitude of an RF signal. A design in CMOS 0.35mm technology presents and input capacitance <15fF and occupies and area of 0.03mm2. The application of these two techniques in combination with a loop-back test architecture significantly enhances the testability of a wireless transceiver system

    High-speed Time-interleaved Digital-to-Analog Converter (TI-DAC) for Self-Interference Cancellation Applications

    Get PDF
    Nowadays, the need for higher data-rate is constantly growing to enhance the quality of the daily communication services. The full-duplex (FD) communication is exemplary method doubling the data-rate compared to half-duplex one. However, part of the strong output signal of the transmitter interferes to the receiver-side because they share the same antenna with limited attenuation and, as a result, the receiver’s performance is corrupted. Hence, it is critical to remove the leakage signal from the receiver’s path by designing another block called self-interference cancellation (SIC). The main goal of this dissertation is to develop the SIC block embedded in the current-mode FD receivers. To this end, the regenerated cancellation current signal is fed to the inputs of the base-band filter and after the mixer of a (direct-conversion) current-mode FD receiver. Since the pattern of the transmitter (the digital signal generated by DSP) is known, a high-speed digital-to-Analog converter (DAC) with medium-resolution can perfectly suppress main part of the leakage on the receiver path. A capacitive DAC (CDAC) is chosen among the available solutions because it is compatible with advanced CMOS technology for high-speed application and the medium-resolution designs. Although the main application of the design is to perform the cancellation, it can also be employed as a stand-alone DAC in the Analog (I/Q) transmitter. The SIC circuitry includes a trans-impedance amplifier (TIA), two DACs, high-speed digital circuits, and built-in-self-test section (BIST). According to the available specification for full-duplex communication system, the resolution and working frequency of the CDAC are calculated (designed) equal to 10-bit (3 binary+ 2 binary + 5 thermometric) and 1GHz, respectively. In order to relax the design of the TIA (settling time of the DAC), the CDAC implements using 2-way time-interleaved (TI) manner (the effective SIC frequency equals 2GHz) without using any calibration technique. The CDAC is also developed with the split-capacitor technique to lower the negative effects of the conventional binary-weighted DAC. By adding one extra capacitor on the left-side of the split-capacitor, LSB-side, the value of the split-capacitor can be chosen as an integer value of the unit capacitor. As a result, it largely enhances the linearity of the CADC and cancellation performance. If the block works as a stand-alone DAC with non-TI mode, the digital input code representing a Sinus waveform with an amplitude 1dB less than full-scale and output frequency around 10.74MHz, chosen by coherent sampling rule, then the ENOB, SINAD, SFDR, and output signal are 9.4-bit, 58.2 dB, 68.4dBc, and -9dBV. The simulated value of the |DNL| (static linearity) is also less than 0.7. The similar simulation was done in the SIC mode while the capacitive-array woks in the TI mode and cancellation current is set to the full-scale. Hence, the amount of cancelling the SI signal at the output of the TIA, SNDR, SFDR, SNDRequ. equals 51.3dB, 15.1 dB, 24dBc, 66.4 dB. The designed SIC cannot work as a closed-loop design. The layout was optimally drawn in order to minimize non-linearity, the power-consumption of the decoders, and reduce the complexity of the DAC. By distributing the thermometric cells across the array and using symmetrical switching scheme, the DAC is less subjected to the linear and gradient effect of the oxide. Based on the post-layout simulation results, the deviation of the design after drawing the layout is studied. To compare the results of the schematic and post-layout designs, the exact conditions of simulation above (schematic simulations) are used. When the block works as a stand-alone CDAC, the ENOB, SINAD, SFDR are 8.5-bit, 52.6 dB, 61.3 dBc. The simulated value of the |DNL| (static linearity) is also limited to 1.3. Likewise, the SI signal at the output of the TIA, SNDR, SFDR, SNDRequ. are equal to 44dB, 11.7 dB, 19 dBc, 55.7 dB

    Continuous-time micropower interface for neural recording applications

    No full text
    This paper presents a novel amplifier architecture intended for low power neural recording applications. By using continuous-time signal representation, the proposed topology predominantly leverages digital topologies taking advantage of efficient techniques used in time domain systems. This includes higher order feedback dynamics that allow direct analogue signal quantization and near ideal integrator structures for noise shaping. The system implemented in 0.18 μ m standard CMOS demonstrates the capability for low noise instrumentation with a bandwidth of 6 kHz and highly linear full dynamic range. Simulation results indicate 1.145 μW budget from 0.5 V supply voltage with an input referred thermal noise of 7.7 μVrms

    RF MEMS reference oscillators platform for wireless communications

    Get PDF
    A complete platform for RF MEMS reference oscillator is built to replace bulky quartz from mobile devices, thus reducing size and cost. The design targets LTE transceivers. A low phase noise 76.8 MHz reference oscillator is designed using material temperature compensated AlN-on-silicon resonator. The thesis proposes a system combining piezoelectric resonator with low loading CMOS cross coupled series resonance oscillator to reach state-of-the-art LTE phase noise specifications. The designed resonator is a two port fundamental width extensional mode resonator. The resonator characterized by high unloaded quality factor in vacuum is designed with low temperature coefficient of frequency (TCF) using as compensation material which enhances the TCF from - 3000 ppm to 105 ppm across temperature ranges of -40˚C to 85˚C. By using a series resonant CMOS oscillator, phase noise of -123 dBc/Hz at 1 kHz, and -162 dBc/Hz at 1MHz offset is achieved. The oscillator’s integrated RMS jitter is 106 fs (10 kHz–20 MHz), consuming 850 μA, with startup time is 250μs, achieving a Figure-of-merit (FOM) of 216 dB. Electronic frequency compensation is presented to further enhance the frequency stability of the oscillator. Initial frequency offset of 8000 ppm and temperature drift errors are combined and further addressed electronically. A simple digital compensation circuitry generates a compensation word as an input to 21 bit MASH 1 -1-1 sigma delta modulator incorporated in RF LTE fractional N-PLL for frequency compensation. Temperature is sensed using low power BJT band-gap front end circuitry with 12 bit temperature to digital converter characterized by a resolution of 0.075˚C. The smart temperature sensor consumes only 4.6 μA. 700 MHz band LTE signal proved to have the stringent phase noise and frequency resolution specifications among all LTE bands. For this band, the achieved jitter value is 1.29 ps and the output frequency stability is 0.5 ppm over temperature ranges from -40˚C to 85˚C. The system is built on 32nm CMOS technology using 1.8V IO device

    High performance RF and baseband building blocks for wireless receivers

    Get PDF
    Because of the unique architecture of wireless receivers, a designer must understand both the high frequency aspects as well as the low-frequency analog considerations for different building blocks of the receiver. The primary goal of this research work is to explore techniques for implementing high performance RF and baseband building blocks for wireless applications. Several novel techniques to improve the performance of analog building blocks are presented. An enhanced technique to couple two LC resonators is presented which does not degrade the loaded quality factor of the resonators which results in an increased dynamic range. A novel technique to automatically tune the quality factor of LC resonators is presented. The proposed scheme is stable and fast and allows programming both the quality factor and amplitude response of the LC filter. To keep the oscillation amplitude of LC VCOs constant and thus achieving a minimum phase noise and a reliable startup, a stable amplitude control loop is presented. The proposed scheme has been also used in a master-slave quality factor tuning of LC filters. An efficient and low-cost architecture for a 3.1GHz-10.6GHz ultra-wide band frequency synthesizer is presented. The proposed scheme is capable of generating 14A novel pseudo-differential transconductance amplifier is presented. The proposed scheme takes advantage of the second-order harmonic available at the output current of pseudo-differential structure to cancel the third-order harmonic distortion. A novel nonlinear function is proposed which inherently removes the third and the fifth order harmonics at its output signal. The proposed nonlinear block is used in a bandpass-based oscillator to generate a highly linear sinusoidal output. Finally, a linearized BiCMOS transconductance amplifier is presented. This transconductance is used to build a third-order linear phase low pass filter with a cut-off frequency of 264MHz for an ultra-wide band receiver. carrier frequencies

    High Performance Class-AB Output Stage Operational Amplifiers for Continuous-time Sigma-delta ADC

    Get PDF
    One of the most critical blocks in a wide-band continuous time sigma delta (CTSD) analog-to-digital converter (ADC) is the loop filter. For most loop filter topologies, the performance of the filter depends largely on the performance of the operational amplifiers (op-amps) used in the filter. The op-amps need to have high linearity, low noise and large gain over a wide bandwidth. In this work, the impact of op-amp parameters like noise and linearity on system level performance of the CTSD ADC is studied, and the design specifications are derived for the op-amps. A new class-AB bias scheme, which is more robust to process variations and has an improved high frequency response over the conventional Monticelli bias scheme, is proposed. A biquadratic filter which forms the input stage of a 5th order low pass CTSD ADC is used as a test bench to characterize the op-amp performance. The proposed class-AB output stage is compared with the class-AB output stage with Monticelli bias scheme and a class-A output stage with bias current reuse. The filter using the new op-amp architecture has lower power consumption than the other two architectures. The proposed class AB bias scheme has better process variation and mismatch tolerance compared to the op-amp that uses conventional bias scheme

    Design of PVT Tolerant Inverter Based Circuits for Low Supply Voltages

    Get PDF
    University of Minnesota Ph.D. dissertation. June 2015. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); xiv, 187 pages.Rapid advances in the field of integrated circuit design has been advantageous from the point of view of cost and miniaturization. Although technology scaling is advantageous to digital circuits in terms of increased speed and lower power, analog circuits strongly suffer from this trend. This is becoming a crucial bottle neck in the realization of a system on chip in scaled technology merging high-density digital parts, with high performance analog interfaces. This is because scaled technologies reduce the output impedance (gain) and supply voltage which limits the dynamic range (output swing). One way to mitigate the power supply restrictions is to move to current mode circuit circuit design rather than voltage mode designs. This thesis focuses on designing Process Voltage and Temperature (PVT) tolerant base band circuits at lower supply voltages and in lower technologies. Inverter amplifiers are known to have better transconductance efficiency, better noise and linearity performance. But inverters are prone to PVT variations and has poor CMRR and PSRR. To circumvent the problem, we have proposed various biasing schemes for inverter like semi constant current biasing, constant current biasing and constant gm biasing. Each biasing technique has its own advantages, like semi constant current biasing allows to select different PMOS and NMOS current. This feature allows for higher inherent inverter linearity. Similarly constant current and constant gm biasing allows for reduced PVT sensitivity. The inverter based OTA achieves a measured THD of -90.6 dB, SNR of 78.7 dB, CMRR 97dB, PSRR 61 dB wile operating from a nominal power of 0.9V and at output swing of 0.9V{pp,diff} in TSMC 40nm general purpose process. Further the measured third harmonic distortion varies approximately by 11.5dB with 120C variation in temperature and 9dB with a 18% variation in supply voltage. The linearity can be increased by increasing the loop gain and bandwidth in a negative feedback circuit or by increasing the over drive voltage in open loop architectures. However both these techniques increases the noise contribution of the circuit. There exist a trade off between noise and linearity in analog circuits. To circumvent this problem, we have introduced nonlinear cancellation techniques and noise filtering techniques. An analog-to-digital converter (ADC) driver which is capable of amplifying the continuous time signal with a gain of 8 and sample onto the input capacitor(1pF) of 1 10 bit successive approximation register (SAR) ADC is designed in TSMC 65nm general purpose process. This exploits the non linearity cancellation in current mirror and also allows for higher bandwidth operation by decoupling closed loop gain from the negative feedback loop. The noise from the out of band is filtered before sampling leading to low noise operation. The measured design operates at 100MS/s and has an OIP_3 of 40dBm at the nyquist rate, noise power spectral density of 17nV/sqrt{Hz} and inter modulation distortion of 65dB. The intermodulation distortion variation across 10 chips is 6dB and 4dB across a temperature variation of 120C. Non linearity cancellation is exploited in designing two filters, an anti alias filter and a continuously tunable channel select filter. Traditional active RC filters are based on cascade of integrators. These create multiple low impedance nodes in the circuit which results in a higher noise. We propose a real low pass filter based filter architecture rather than traditional integrator based approach. Further the entire filtering operation takes place in current domain to circumvent the power supply limitations. This also facilitates the use of tunable non linear metal oxide semiconductor capacitor (MOSCAP) as filter capacitors. We introduce techniques of self compensation to use the filter resistor and capacitor as compensation capacitor for lower power. The anti alias filter designed for 50MHz bandwidth is fabricated in IBM 65nm process achieves an IIP3 of 33dBm, while consuming 1.56mW from 1.2 V supply. The channel select filter is tunable from 34MHz to 314MHz and is fabricated in TSMC 65nm general purpose process. This filter achieves an OIP3 of 25.24 dBm at the maximum frequency while drawing 4.2mA from 1.1V supply. The measured intermodulation distortion varies by 5dB across 120C variation in temperature and 6.5dB across a 200mV variation in power supply. Further this filter presents a high impedance node at the input and a low impedance node at the output easing system integration. SAR ADCs are becoming popular at lower technologies as they are based on device switching rather than amplifying circuits. But recent SAR ADCs that have good energy efficiency have had relatively large input capacitance increasing the driver power. We present a 2X time interleaved (TI) SAR ADC which has the lowest input capacitance of 133fF in literature. The sampling capacitor is separated from the capacitive digital to analog converter (DAC) array by performing the input and DAC reference subtraction in the current domain rather than as done traditionally in charge domain. The proposed ADC is fabricated in TSMC's 65nm general purpose process and occupies an area of 0.0338 mm^2. The measured ADC spurious free dynamic range (SFDR) is 57dB and the measured effective number of bits (ENOB) at nyquist rate is 7.55 bit while using 1.55mW power from 1 V supply. A sub 1V reference circuit is proposed, that exploits the complementary to absolute temperature (CTAT) and proportional to absolute temperature (PTAT) voltages in the beta multiplier circuit to attain a stable voltage with temperature and power supply. A one-time calibration is integrated in the architecture to get a good performance over process. Chopper stabilization is employed to reduce the flicker noise of the reference circuit. The prototype was simulated in TSMC 65nm process and we obtain the nominal output of 236mW, while consuming 0.7mW from power supply. Simulations show a temperature coefficient of 18 ppmC from -40 to 100C and with a power supply ranging from 0.8 to 2V
    • …
    corecore