18 research outputs found

    4-labelings and grid embeddings of plane quadrangulations

    Get PDF
    AbstractA straight-line drawing of a planar graph G is a closed rectangle-of-influence drawing if for each edge uv, the closed axis-parallel rectangle with opposite corners u and v contains no other vertices. We show that each quadrangulation on n vertices has a closed rectangle-of-influence drawing on the (n−3)×(n−3) grid.The algorithm is based on angle labeling and simple face counting in regions. This answers the question of what would be a grid embedding of quadrangulations analogous to Schnyder’s classical algorithm for embedding triangulations and extends previous results on book embeddings for quadrangulations from Felsner, Huemer, Kappes, and Orden.A further compaction step yields a straight-line drawing of a quadrangulation on the (⌈n2⌉−1)×(⌈3n4⌉−1) grid. The advantage over other existing algorithms is that it is not necessary to add edges to the quadrangulation to make it 4-connected

    4-labelings and grid embeddings of plane quadrangulations

    Get PDF
    We show that each quadrangulation on nn vertices has a closed rectangle of influence drawing on the (n−2)×(n−2)(n-2) \times (n-2) grid. Further, we present a simple algorithm to obtain a straight-line drawing of a quadrangulation on the ⌈n2⌉×⌈3n4⌉\Big\lceil\frac{n}{2}\Big\rceil \times \Big\lceil\frac{3n}{4}\Big\rceil grid. This is not optimal but has the advantage over other existing algorithms that it is not needed to add edges to the quadrangulation to make it 44-connected. The algorithm is based on angle labeling and simple face counting in regions analogous to Schnyder's grid embedding for triangulation. This extends previous results on book embeddings for quadrangulations from Felsner, Huemer, Kappes, and Orden (2008). Our approach also yields a representation of a quadrangulation as a pair of rectangulations with a curious property

    Mixing Times of Markov Chains on Degree Constrained Orientations of Planar Graphs

    Full text link
    We study Markov chains for α\alpha-orientations of plane graphs, these are orientations where the outdegree of each vertex is prescribed by the value of a given function α\alpha. The set of α\alpha-orientations of a plane graph has a natural distributive lattice structure. The moves of the up-down Markov chain on this distributive lattice corresponds to reversals of directed facial cycles in the α\alpha-orientation. We have a positive and several negative results regarding the mixing time of such Markov chains. A 2-orientation of a plane quadrangulation is an orientation where every inner vertex has outdegree 2. We show that there is a class of plane quadrangulations such that the up-down Markov chain on the 2-orientations of these quadrangulations is slowly mixing. On the other hand the chain is rapidly mixing on 2-orientations of quadrangulations with maximum degree at most 4. Regarding examples for slow mixing we also revisit the case of 3-orientations of triangulations which has been studied before by Miracle et al.. Our examples for slow mixing are simpler and have a smaller maximum degree, Finally we present the first example of a function α\alpha and a class of plane triangulations of constant maximum degree such that the up-down Markov chain on the α\alpha-orientations of these graphs is slowly mixing

    Bijections for Baxter Families and Related Objects

    Get PDF
    The Baxter number can be written as Bn=∑0nΘk,n−k−1B_n = \sum_0^n \Theta_{k,n-k-1}. These numbers have first appeared in the enumeration of so-called Baxter permutations; BnB_n is the number of Baxter permutations of size nn, and Θk,l\Theta_{k,l} is the number of Baxter permutations with kk descents and ll rises. With a series of bijections we identify several families of combinatorial objects counted by the numbers Θk,l\Theta_{k,l}. Apart from Baxter permutations, these include plane bipolar orientations with k+2k+2 vertices and l+2l+2 faces, 2-orientations of planar quadrangulations with k+2k+2 white and l+2l+2 black vertices, certain pairs of binary trees with k+1k+1 left and l+1l+1 right leaves, and a family of triples of non-intersecting lattice paths. This last family allows us to determine the value of Θk,l\Theta_{k,l} as an application of the lemma of Gessel and Viennot. The approach also allows us to count certain other subfamilies, e.g., alternating Baxter permutations, objects with symmetries and, via a bijection with a class of plan bipolar orientations also Schnyder woods of triangulations, which are known to be in bijection with 3-orientations.Comment: 31 pages, 22 figures, submitted to JCT

    Two Results in Drawing Graphs on Surfaces

    Get PDF
    In this work we present results on crossing-critical graphs drawn on non-planar surfaces and results on edge-hamiltonicity of graphs on the Klein bottle. We first give an infinite family of graphs that are 2-crossing-critical on the projective plane. Using this result, we construct 2-crossing-critical graphs for each non-orientable surface. Next, we use 2-amalgamations to construct 2-crossing-critical graphs for each orientable surface other than the sphere. Finally, we contribute to the pursuit of characterizing 4-connected graphs that embed on the Klein bottle and fail to be edge-hamiltonian. We show that known 4-connected counterexamples to edge-hamiltonicity on the Klein bottle are hamiltonian and their structure allows restoration of edge-hamiltonicity with only a small change

    Schnyder decompositions for regular plane graphs and application to drawing

    Full text link
    Schnyder woods are decompositions of simple triangulations into three edge-disjoint spanning trees crossing each other in a specific way. In this article, we define a generalization of Schnyder woods to dd-angulations (plane graphs with faces of degree dd) for all d≥3d\geq 3. A \emph{Schnyder decomposition} is a set of dd spanning forests crossing each other in a specific way, and such that each internal edge is part of exactly d−2d-2 of the spanning forests. We show that a Schnyder decomposition exists if and only if the girth of the dd-angulation is dd. As in the case of Schnyder woods (d=3d=3), there are alternative formulations in terms of orientations ("fractional" orientations when d≥5d\geq 5) and in terms of corner-labellings. Moreover, the set of Schnyder decompositions on a fixed dd-angulation of girth dd is a distributive lattice. We also show that the structures dual to Schnyder decompositions (on dd-regular plane graphs of mincut dd rooted at a vertex v∗v^*) are decompositions into dd spanning trees rooted at v∗v^* such that each edge not incident to v∗v^* is used in opposite directions by two trees. Additionally, for even values of dd, we show that a subclass of Schnyder decompositions, which are called even, enjoy additional properties that yield a reduced formulation; in the case d=4, these correspond to well-studied structures on simple quadrangulations (2-orientations and partitions into 2 spanning trees). In the case d=4, the dual of even Schnyder decompositions yields (planar) orthogonal and straight-line drawing algorithms. For a 4-regular plane graph GG of mincut 4 with nn vertices plus a marked vertex vv, the vertices of G\vG\backslash v are placed on a (n−1)×(n−1)(n-1) \times (n-1) grid according to a permutation pattern, and in the orthogonal drawing each of the 2n−22n-2 edges of G\vG\backslash v has exactly one bend. Embedding also the marked vertex vv is doable at the cost of two additional rows and columns and 8 additional bends for the 4 edges incident to vv. We propose a further compaction step for the drawing algorithm and show that the obtained grid-size is strongly concentrated around 25n/32×25n/3225n/32\times 25n/32 for a uniformly random instance with nn vertices

    A Schnyder-type drawing algorithm for 5-connected triangulations

    Full text link
    We define some Schnyder-type combinatorial structures on a class of planar triangulations of the pentagon which are closely related to 5-connected triangulations. The combinatorial structures have three incarnations defined in terms of orientations, corner-labelings, and woods respectively. The wood incarnation consists in 5 spanning trees crossing each other in an orderly fashion. Similarly as for Schnyder woods on triangulations, it induces, for each vertex, a partition of the inner triangles into face-connected regions (5~regions here). We show that the induced barycentric vertex-placement, where each vertex is at the barycenter of the 5 outer vertices with weights given by the number of faces in each region, yields a planar straight-line drawing.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Planar Open Rectangle-of-Influence Drawings

    Get PDF
    A straight line drawing of a graph is an open weak rectangle-of-influence (RI) drawing, if there is no vertex in the relative interior of the axis parallel rectangle induced by the end points of each edge. Despite recent interest of the graph drawing community in rectangle-of-influence drawings, no algorithm is known to test whether a graph has a planar open weak RI-drawing, not even for inner triangulated graphs. In this thesis, we have two major contributions. First we study open weak RI-drawings of plane graphs that must have a non-aligned frame, i.e., the graph obtained from removing the interior of every filled triangle is drawn such that no two vertices have the same coordinate. We introduce a new way to assign labels to angles, i.e., instances of vertices on faces. Using this labeling, we provide necessary and sufficient conditions characterizing those plane graphs that have open weak RI-drawings with non-aligned frame. We also give a polynomial algorithm to construct such a drawing if one exists. Our second major result is a negative result: deciding if a planar graph (i.e., one where we can choose the planar embedding) has an open weak RI-drawing is NP-complete. NP-completeness holds even for open weak RI-drawings with non-aligned frames
    corecore