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Abstract

We show that each quadrangulation on n vertices has a closed rectangle of influence
drawing on the (n − 2) × (n − 2) grid. Further, we present a simple algorithm to obtain a
straight-line drawing of a quadrangulation on the

⌈
n
2

⌉
×
⌈

3n
4

⌉
grid. This is not optimal but

has the advantage over other existing algorithms that it is not needed to add edges to the
quadrangulation to make it 4-connected. The algorithm is based on angle labeling and simple
face counting in regions analogous to Schnyder’s grid embedding for triangulation. This
extends previous results on book embeddings for quadrangulations from Felsner, Huemer,
Kappes, and Orden (2008). Our approach also yields a representation of a quadrangulation
as a pair of rectangulations with a curious property.

Keywords: Embedding, labeling, quadrangulation, planar bipartite graph, rectangle of influence,
rectangulation.

1 Introduction

Finding straight-line drawings of planar graphs on an integer grid is a prominent problem in
graph drawing. A common requirement for such drawings is to guarantee a small size of the
integer grid [8]. One classical algorithm for drawing triangulations, or maximal planar graphs,
was given by Schnyder [15] and is based on labelings of the angles of a triangulation on n vertices,
leading to a drawing on the (n−2)×(n−2) grid. Here we are interested in quadrangulations, or
maximal bipartite planar graphs. Quadrangulations on n vertices have a straight-line embedding
on an integer grid of size (

⌈
n
2

⌉
− 1) ×

⌊
n
2

⌋
. This was proved by Biedl and Brandenburg in [2]

who showed that each quadrangulation can be augmented to a 4-connected plane graph by
adding edges. Miura, Nakano and Nishizeki [13] showed that 4-connected plane graphs can be
drawn on a grid of this size. Another algorithm for drawing quadrangulations on an integer grid
of small size, due to Fusy [9], is based on so-called transversal structures which are related to
angle labelings considered in the present work. Also the algorithm of Fusy requires to add edges
to make the quadrangulation 4-connected. We present here a simple algorithm that does not
need to add edges and also works for quadrangulations with connectivity 2. Our approach is in
analogy to Schnyder’s algorithm for embedding triangulations. We roughly outline the idea of
Schnyder’s proof and its adaption to quadrangulations.

Schnyder [15] showed that labeling the angles of a triangulation T with 3 colors, with special
rules, gives a 3-coloring and 2-orientation of the edges of T such that the edges of each color
form a directed tree. For each interior vertex of T , the three colored paths to the sinks of the
respective trees divide T into three regions. Counting the number of faces in each region gives the
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coordinates of the interior vertex in the grid drawing. Felsner [4] extended this result to the class
of 3-connected plane graphs. In [10] it was studied to adapt this method to quadrangulations Q:
In this case, the angles of Q can be colored with 2 colors, which gives an analogous 2-coloring
and 2-orientation of the edges of Q such that the edges of each color form a directed tree, and
for each interior vertex the two colored paths to the respective sinks divide Q into two regions.
In Felsner et al. [6] it is shown that counting the number of faces in a region of an interior
vertex v of Q gives the coordinate of v in a book embedding of Q with two pages. In a book
embedding with 2 pages the vertices of the graph are placed on a line (the spine of the book)
and the two pages are halfplanes separated by this line; each edge is drawn on one page and no
two edges cross. Each page in this book embedding for Q contains one of the two trees. Book
embeddings of quadrangulations were also found in [7]. Whether this approach also gives a grid
embedding for quadrangulations remained open.

We show here that labeling the angles of Q with 4 colors instead of 2 (which gives a 4-
coloring and 2-orientation of the edges) allows to obtain a pair of book embeddings of Q such
that the coordinates of a vertex v in the two book embeddings are the coordinates of v in the
grid drawing of Q.

It turns out that this grid drawing for a quadrangulation Q is a closed rectangle of influence
drawing on the (n − 2) × (n − 2) grid. In such a straight line drawing for each edge uv of Q,
the closed axis-parallel rectangle with opposite corners u and v is empty. Rectangle of influence
drawing have been studied for example in [1, 3, 11, 12, 14]. In particular, Biedl, Bretscher, and
Meijer [3] showed that every planar graph on n vertices without separating triangle has a closed
rectangle of influence drawing on the (n− 1)× (n− 1) grid. The rectangle of influence drawing
that we obtain has the further property that edges of different colors are oriented in different
directions (north-east, south-east, south-west, north-west). Since no two interior vertices lie on
the same column or raw in the grid drawing, we can further reduce the size of the grid to at
most

⌈
n
2

⌉
×
⌈

3n
4

⌉
by simple scaling.

Quadrangulations Q are known to admit a touching segment representation: de Fraysseix,
de Mendez and Pach [7] showed that one can assign vertical segments and horizontal segments
to the vertices of Q such that two segments touch if and only if the two corresponding vertices of
Q are adjacent. A different proof of this result, based on book embeddings of Q, is by Felsner et
al. [5], who provided a bijection between the two trees of book embeddings of quadragulations
and rectangulations of a diagonal point set. For a given point set S and an axis-parallel rectangle
R that contains S in its interior, a rectangulation of S is a subdivision of R into rectangles by
non-crossing axis-parallel segments, such that every segment contains a point and every point
lies on a segment; in a diagonal point set the points are placed on the line y = x or y = n− x.

The 4-labeling of a quadrangulation Q gives two book embeddings and therefore two rect-
angulations by [5]. This pair of rectangulations has the further nice property that in each
rectangulation the boxes correspond isomorphically to the faces of Q (that is, the dual graphs
are isomorphic), both rectangulations have the same fixed outer face, and each segment inter-
sects the line with slope 1 in one rectangulation and intersects the line with slope −1 in the
other one.

The work is organized as follows. In Section 2 we introduce the 4-labeling of a quadrangula-
tion, we give the relation to binary labelings and obtain a pair of book embeddings on two pages
for a quadrangulation. In Section 3 we show that this pair of book embeddings gives a closed
rectangle of influence drawing and we show that the grid size of this drawing can be reduced.
Finally in Section 4 we state the relation of a quadrangulation to a pair of rectangulations.

Using 4-labelings, which are in bijection with binary labelings from [6], allows us to get more
insight into the combinatorial structure of quadrangulations. In Section 2 we refer to [6] and
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Figure 1: (a) 4-labeling of a plane quadrangulation of order 11. (b) The corresponding 4-edge-
coloring and 2-orientation.

extensively make use of results therein since identifying pairs of colors in the 4-labeling brings
us to the setting of binary labelings; this also significantly shortens the presentation.

2 4-labelings and their properties

In what follows we consider only quadrangulations, that is, planar graphs every face of which
has degree 4. Quadrangulations can also be seen as maximal bipartite planar graphs. We will
assume that the vertices are colored black and white, according to the two independent sets. In
this section we give the definition and properties of 4-labelings of quadrangulations.

Definition 2.1 (4-labeling) Let Q be a quadrangulation. A 4-labeling of Q is a labeling of
the angles of Q on {1, 2, 3, 4} satisfying:

• The two black vertices of the external face, say s1 and s3, are called special vertices. All
the angles incident to si are labeled i.

• At every other black vertex, the incident labels form a non-empty interval of 1s and a
non-empty interval of 3s, while the incident labels of every white vertex satify the same
property, with 2s and 4s.

• At every edge, the incident labels coincide at one endpoint and differ at the other.

• The four angles in each internal face are labeled consecutively counter-clockwise from 1 to
4.

We assume the vertices in the external face to be labeled s1, x, s3, y, in counter-clockwise
order. The definition implies that the incident labels of x are all equal to 2, except for the
external angle, which is labeled 4. Similarly, the incident labels of y are all equal to 4, except
for the external angle, which is labeled 2. See Figure 1 (a) for an example of a quadrangulation
with a 4-labeling.

A strong binary labeling of a quadrangulation [6], a binary labeling for short, is a labeling
of the angles on {0, 1}, with two special vertices, s0 and s1, such that angles incident at si are
labeled i; the incident labels at every non-special vertex form a non-empty interval of 0s and a
non-empty interval of 1s; at every edge, the incident labels coincide at one endpoint and differ
at the other; and each face has exactly one pair of adjacent 0-labels and one pair of adjacent
1-labels, in such a way that the edge incident to s0 which has the outer face on its right, when
traversed from its white end to its black end, has two 0-labels in the outer face.

3



s1

3s

x

y

a

b

c d

e

f

A

B
C

D

E

F

G

H
g

I

0
0

0

1

0

0

0

1

1

1
1

1

1

1

1 1

0

0

00

0

0

1

0
1

0

1

1 0

0

1 1

0

1 0

1

s1

3s

x

y

a

b

c d

e

f

A

B
C

D

E

F

G

H
g

I

0
0

1

1

1

0

0

0

0

0
0

0

1

1

1 1

1

1

11

0

0

0

1
1

0

0

1 0

0

0 1

1

0 1

1

(a) (b)

Figure 2: The binary labelings corresponding to the 4-labeling in Figure 1: (a) assigning 0 to
1 and 2, and 1 to 3 and 4; (b) assigning 0 to 1 and 4, and 1 to 2 and 3. The corresponding
2-edge-coloring and 2-orientations are also shown. In (a), the set of black arcs forms the tree
T0, and the set of grey arcs forms the tree T1.

Proposition 2.2 Strong binary labelings and 4-labelings of a quadrangulation are in bijection.

Proof. Let Q be a quadrangulation with a 4-labeling. It is easy to verify that assigning 0 to
angles labeled 1 and 2, and 1 to angles labeled 3 and 4 gives a binary labeling. This bijectively
maps the set of 4-labelings onto the set of strong binary labelings. Indeed, given a binary
labeling, the corresponding 4-labeling can be obtained by assigning angles labeled 0 to 1 and
2, and angles labeled 1 to 3 and 4, while preserving the counter-clockwise order of the labels in
each face.

Assigning 0 to angles labeled 1 and 4, and 1 to angles labeled 3 and 2, gives a labeling
which can be obtained from the strong binary labeling by reversing all the angle labels at
white vertices. This labeling satisfies properties analogous to those satisfied by a strong binary
labeling. Figure 2 shows the two binary labelings obtained from the 4-labeling in Figure 1.

It is worth noticing that the use of 4-labelings instead of binary labelings leads us to define
an edge coloring with four colors instead of two. This gives us more insight into the underlying
combinatorial structure and allows us to extend the results from [6] to obtain two book em-
beddings (instead of one) which will be used in the definition of a grid embedding of Q with
good properties. An orientation in which every vertex but s1 and s3 has out-degree 2 is a
2-orientation.

Definition 2.3 (4-coloring and 2-orientation associated to a 4-labeling) A 4-labeling of
a quadrangulation Q defines a 4-coloring and a 2-orientation of the edges in the following way.
An edge uv is assigned color i and oriented from v to w if and only if the two angles incident
to w are labeled i. (See Figure 1 (b).)

In all figures we use red for color 1, blue for color 2, green for color 3 and black for color 4.
Proposition 2.2 states the equivalence between strong labelings and 4-labelings. In fact, it

is proved in [6] that strong labelings are in bijection with 2-orientations.
The next proposition is a direct consequence of the existence of strong binary labelings of

a quadrangulation and Proposition 2.2. A direct proof can also be obtained following the lines
in [10].
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Proposition 2.4 Every quadrangulation admits a 4-labeling.

Given a quadrangulation Q with a 4-labeling, the following properties are satisfied. (See
Figure 1 (b).)

Property 2.5 Around each vertex the colors of the edges appear in clockwise increasing order
from 1 to 4, according to the following properties:

• The vertex s1 has only in-arcs, all of color 1; the vertex s3 has only in-arcs, all of color 3.

• At every non-special black vertex there are exactly one out-arc of color 2 and one of color
4, and two (possibly empty) intervals of in-arcs of colors 1 and 3.

• At every white vertex there are exactly one out-arc of colors 1 and one of color 3, and two
(possibly empty) intervals of in-arcs of colors 2 and 4.

Proof. All the angles incident to the special vertex s1 are labeled 1. This implies that every
arc at s1 is an in-arc, and it is colored 1. The same is true for s3, with labels 3 and color 3.

Let v be a non-special black vertex. Its incident angles form a non-empty interval of 1s and
a non-empty interval of 3s. The edges with two different angles at v will be out-arcs, one of
them colored 2 and the other one colored 4. If there is more than one angle labeled 1, the edges
with both incident angles in v labeled 1 will be in-arcs, colored 1. The same is true for angles
labeled 3. Finally, since the orientation of angle labels in each face is counter-clockwise, the
orientation of colors in the arcs at each vertex is clockwise.

The result for white vertices can be analogously proved.

Property 2.6 There is no vertex with an in-arc and an out-arc of the same color. This implies
that the set of edges of color i is the union of disjoint stars, each with arcs pointing to its center.

Proof. Black vertices have out-arcs colored 2 and 4, and in-arcs colored 1 and 3, while white
vertices have out-arcs colored 1 and 3, and in-arcs colored 2 and 4.

Since black and white vertices correspond to the two independent sets in Q, we have that
there is no vertex with an in-arc and an out-arc of the same color. Clearly, this implies that Q
has no monochromatic path and, thus, the set of edges of one color induces a union of stars.
Moreover, at each star, arcs are oriented from the leaves to the center.

Property 2.7 For every pair i, j, with 1 ≤ i, j ≤ 4, i odd and j even, let us denote by Tij the
union of the sets of edges of colors i and j. Then, Tij induces a directed tree with sink si, that
spans all vertices but s4−i.

This property is a consequence of the results in [6]. Let 1 ≤ i, j ≤ 4 with i odd and j even
and consider the set Tij . We have four possible sets: T12, T34, T14, and T32. If we define the
binary labeling as in the proof of Proposition 2.2, then T12, T34, and the vertices s1 and s3

correspond to the sets T0, T1, and the vertices s0 and s1 in [6], respectively. Corollary 3.9 in [6]
states that T0 and T1 are directed trees with sinks s0 and s1, respectively. To prove the result
for T14 and T32, we only need to notice that the results in [6] also hold for the binary labeling
obtained by assigning label 0 to angles labeled 1 and 4, and label 1 to angles labeled 3 and 2.

Notice that we have two different partitions of Q into two disjoint directed trees, Q =
T12 ∪ T34, and Q = T14 ∪ T32. T12 and T14 are rooted at s1, and span all vertices of Q except
s3. T34 and T32 are rooted at s3, and span all vertices of Q except s1. Since black vertices
have in-arcs of odd color, and white vertices have in-arcs of even color, we can identify colors i
and j in Tij without losing any information. By identifying two colors i, j (i odd, j even) and
identifying the other two colors we are in the setting of [6].
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Figure 4: The four paths Pij(v), 1 ≤ i, j ≤ 4 with i odd, j even, do not cross.

2.1 Book embeddings of a quadrangulation

In [6], the authors define a method to obtain a book embedding with 2 pages of a quadrangu-
lation Q, given a binary labeling of Q. In this section the same method, which is inspired in
Schnyder’s method to obtain straight-line embeddings of triangulations on small grids [15], is
used to obtain two different 2-book embeddings of a quadrangulation Q with a 4-labeling.

First we define some particular paths and regions in the plane.

• For each non-special vertex v and every pair i, j, with 1 ≤ i, j ≤ 4, i odd and j even, the
path Pij(v) is the directed path from v to the special vertex si in the tree Tij . From [6]
it follows that Pij(v) is chord-free and if {i, j, k, `} = {1, 2, 3, 4} (i and k odd) then Pij(v)
and Pk`(v) do not cross.

• For each non-special vertex v, the paths P12(v) and P34(v) split the quadrangulation into
two regions R12(v) and R12(v), where R12(v) is the region to the right of the path P12 and
including both paths. Similarly, the paths P14(v) and P32(v) split the quadrangulation
into two regions R14(v) and R14(v), where R14(v) is the region to the left of the path P14

and including both paths. (See Figure 6.)

In the next two lemmas we state some properties of the paths Pij(v) and the regions R1j(v)
that will be used for the definition of the two book embeddings of Q and in the proof of
Theorem 3.1.

Lemma 2.8 For each non-special vertex v /∈ {s1, s3}, and for 1 ≤ i, j, k, ` ≤ 4, with i, k odd,
j, ` even, the paths Pij(v) and Pk`(v) do not cross.

Proof. We just have to consider two paths Pij(v) and Pik(v) with k 6= j. Observe that along
each of the paths the color of arcs alternates.

Property 2.5 implies that all outgoing edges of color k of vertices of Pij(v) lie on the same
side of Pij(v), that is in the same region Rij(v) or Rij(v). (See Figure 3.)
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Furthermore, if the path Pik(v) meets the path Pij(v) in a vertex w and points towards w
from the side containing the outgoing arcs of color k of Pij(v), then this arc towards w in Pik(v)
can only have color i and the next arc on the path is of color k, thus staying on the same side
of Pij(v). It remains to show that the path Pik(v) starts at the side of Pij(v) that contains the
outgoing arcs of color k. This is again implied by Property 2.5. The paths Pij(v) and Pik(v)
might share the first arc, as shown in Figure 4.

The following lemma from [6] also holds for the case of four colors instead of two.

Lemma 2.9 Let u, v be distinct interior vertices. Let m ∈ {12, 14}, and m denote the two
colors different from m. The following implications hold:

• u ∈ int(Rm(v))⇒ Rm(u) ⊂ Rm(v);

• u ∈ Pm(v) ∪ Pm(v)⇒ Rm(u) ⊂ Rm(v) or Rm(v) ⊂ Rm(u).

Based on this lemma, and also similar to [6, 15], we can count the number of internal faces
fm(v) contained in region Rm(v), m ∈ {12, 14}, which yields a pair of book embeddings of a
quadrangulation on two pages. More precisely, given v an internal vertex of Q, f12(v) is the
number of internal faces of Q in R12(v) and f14(v) is the number of internal faces of Q in R14(v).
For the vertices of the external face, we define f12(s1) = f14(s1) = −1, f12(y) = f14(x) = 0,
f12(s3) = f14(s3) = n− 2, and f12(x) = f14(y) = n− 3.

Then, v → f12(v) + 1 and v → f14(v) + 1 both give orderings of the vertices of Q on
{0, 1, . . . , n−1} which induce two different book embeddings of Q in two pages. (See Figure 5.)

The next proposition is a direct consequence of the results in [6].

Proposition 2.10 The two book embeddings defined by f12 and f14 satisfy:

• The arcs of one page correspond to the edges of one of the trees in the tree decomposition
of Q defined by the 4-labeling. More precisely, in the book embedding defined by f12, the
tree T12 is in one page, while T34 is in the other. In the book embedding defined by f14,
the tree T14 is in one page, while T32 is in the other.

• In both book embeddings, two edges of different color in the same page, have opposite
orientations.

In fact, the trees T12 and T34 obtained by the 4-labeling of a quadrangulation Q correspond
to the pair of trees T0 and T1 obtained by a binary labeling of Q in [6], and denoted as twin-
alternating pairs of trees in [5]. (See Figure 5.)

We remark that at first sight the two orders of vertices along the spines of the two book
embeddings do not seem to be related, but this orders reveal a very nice correspondence when
representing the quadrangulation as rectangulations in Section 4.

3 Embedding on the grid

Theorem 3.1 Given a quadrangulation Q and a 4-labeling of Q, we draw Q by placing vertex
v in the point of coordinates (i, j), with 0 ≤ i, j ≤ n − 1, if v is in position i in the first book
embedding associated to the labeling and j in the second one.

This embedding satisfies:

1. No two vertices are in the same vertical line or horizontal line.
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2. Arcs of color 1 point in direction south-west, arcs of color 2 in direction south-east, arcs
of color 3 in direction north-east, and arcs of color 4 in direction north-west.

3. No two edges cross and any two disjoint edges are separated by a vertical line or a hori-
zontal line.

To prove the theorem we will use the following lemma. Its proof makes use of Lemmas 2.8
and 2.9.

Lemma 3.2 For any two edges ab and cd of a quadrangulation Q and for at least one of
m ∈ {12, 14} we have max{fm(c), fm(d)} < min{fm(a), fm(b)} or max{fm(a), fm(b)} <
min{fm(c), fm(d)}.

Proof. Assume the arc ab is oriented from a to b and consider the eight paths Pij(a) and Pij(b)
(i odd, j even), which divide the quadrangulation into several regions, as shown in Figure 6.
The vertices c and d are contained in one of this regions, they also possibly lie on the boundary
of a region.

First, consider the case when neither c nor d lies on a path Pij(a) or Pij(b). Note that the
statement holds if both vertices of the edge cd lie on the same side of the paths P12(a) and
P12(b) (respectively P14(a) and P14(b)) by Lemma 2.9. It might be that the vertices c and d
lie on different sides of the paths P12(a) and P12(b), namely to the left of P12(a) and to the
right of P12(b), in which case they belong to a critical region as shown in Figure 7. Similarly,
c and d might be in the critical region to the right of P14(a) and to the left of P14(b). Note
that this critical regions for P12(a) and P14(a) only share the two outgoing arcs from vertex a.
This follows from Property 2.5 and Lemma 2.8. Therefore c and d cannot lie in both critical
regions and by Lemma 2.9 max{fm(c), fm(d)} < min{fm(a), fm(b)} or max{fm(a), fm(b)} <
min{fm(c), fm(d)} for at least one m ∈ {12, 14}.

It remains to consider the case when at least one of c and d lies on the boundary of a region.
We focus on the case when vertex c lies on the path P14(a), the other cases can be treated
similarly. If c is a black vertex, then its outgoing arc of color 2 points inside R14(a), which
implies that f14(c) < f14(a) < f14(b). Further, f12(c) < f12(a) < f12(b). Now, if d is contained
in int(R14(a)) then f14(d) < f14(a) < f14(b) as claimed. Otherwise, d is contained in R12(a)
and f12(d) < f12(a) < f12(b). Finally, if c is a white vertex, then its outgoing arc of color 3
points inside R14(a) ⊂ int(R12(a)), which implies that f12(c) < f12(a) < f12(b). If d lies in the
interior of R12(a) then also f12(d) < f12(a). If d lies on the path P12(a) then arc cd is oriented
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Figure 6: The regions R12(a) and R14(a).

towards c and points inside R12(a). Thus, we also obtain f12(d) < f12(a) < f12(b), as claimed.

Proof of Theorem 3.1. Property 1 of this theorem follows immediately from the two book
embeddings. That is, each vertex appears exactly once in each of the two book embeddings and
any two vertices have different positions along the spine of a book. Thus, no two vertices (i, j)
and (k, `) in the grid drawing have a common coordinate.

For proving Property 2 let us examine the edges of color 1. In each of the two book
embeddings the arcs of color 1 are oriented towards the vertex s1. Thus, in the grid drawing
these arcs point to the left (since they point to the left in one book embedding with vertices
drawn with increasing x-coordinate from s1 to s3) and downwards (since they point downwards
in the other book embedding, with vertices drawn with increasing y-coordinate from s1 to s3).
Thus, arcs of color 1 point in direction south-west. It is straightforward to verify the directions
of arcs for the other colors.

The proof of Property 3 follows almost immediately from Lemma 3.2, which implies that
any two edges ab, cd of the quadrangulation are separated in at least one of the two-book
embeddings, i.e., the vertices a and b both appear before c and d, or both after c and d, in the
vertex ordering along the spine of the book. Thus, they are also separated in the grid drawing.
This separation property also implies that no two edges cross.

A (closed) rectangle of influence drawing of a graph is a straight line drawing where for each
edge uv the (closed) axis-parallel rectangle with opposite corners u and v is empty. Property 3
of Theorem 3.1 also implies the following corollary.

Corollary 3.3 The drawing given in Theorem 3.1 is a (closed) rectangle of influence drawing.

This drawing has size (n−2)×(n−2), when moving vertex (0, 0) to position (1, 1) and vertex
(n− 1, n− 1) to position (n− 2, n− 2). Rectangle of influence drawings for planar graphs have
been widely studied, see e.g., [1, 3, 11, 14]. In particular, a different algorithm for obtaining a
closed rectangle of influence drawing was given in [3].

3.1 Reducing the grid size

Using that in the drawing given in Theorem 3.1 no two vertices lie on the same axis-parallel
line, we can further reduce the grid size:
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Corollary 3.4 The drawing given in Theorem 3.1 can be reduced to a grid of size at most⌈n

2

⌉
×
⌈3n

4

⌉
such that each row and each column contains at most two vertices and no two edges cross.

Proof. Consider four mappings which map the vertices of the n×n grid drawing of Theorem 3.1
to a grid of size

⌈
n
2

⌉
×
⌈

n
2

⌉
:

g1(i, j) = (
⌊

i
2

⌋
,
⌊

j
2

⌋
), g2(i, j) = (

⌈
i
2

⌉
,
⌊

j
2

⌋
), g3(i, j) = (

⌈
i
2

⌉
,
⌈

j
2

⌉
), g4(i, j) = (

⌊
i
2

⌋
,
⌈

j
2

⌉
).

Observe that two vertices of the grid drawing are mapped to the same point by some gi if
and only if they are consecutive vertices in both book embeddings. More specifically, for some
i, j,

• g1(v) = g1(w) iff v = (2i, 2j) and w = (2i+1, 2j+1), or v = (2i, 2j+1) and w = (2i+1, 2j);

• g2(v) = g2(w) iff v = (2i−1, 2j) and w = (2i, 2j+1), or v = (2i, 2j) and w = (2i−1, 2j+1);

• g3(v) = g3(w) iff v = (2i, 2j) and w = (2i−1, 2j−1), or v = (2i, 2j−1) and w = (2i−1, 2j);
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• g4(v) = g4(w) iff v = (2i, 2j) and w = (2i+1, 2j−1), or v = (2i, 2j−1) and w = (2i+1, 2j).

Thus, we can partition the n−1 pairs of consecutive vertices in one of the book embeddings
into five classes, where a pair belongs to class Ci if gi maps this pair of vertices to the same
point, and it belongs to class C5 if none of the gi maps this pair to the same point. It follows
that at least one of the classes Ci, 1 ≤ i ≤ 4 contains at most

⌊
n
4

⌋
pairs.

Let us assume that C1 contains at most
⌊

n
4

⌋
pairs; the other three cases can be treated the

same way. We now define a mapping h which maps the vertices of the quadrangulation of the
n× n grid drawing of Theorem 3.1 to a grid of size

⌈
3n
4

⌉
×
⌈

n
2

⌉
as follows:

h(i, j) = (
⌊ i

2

⌋
+ ki,

⌊ j

2

⌋
),

where ki = |{v = (vx, vy) such that vx < i and g1(v) = g1(vx + 1, z)}|, that is, ki is the number
of pairs of consecutive points ordered by x-coordinate that appear before i in this order and
that are mapped to the same point by g1.

First, observe that since |C1| ≤
⌊

n
4

⌋
and

⌈
n
2

⌉
+
⌊

n
4

⌋
≤
⌈

n
2 + n

4

⌉
the vertices of the grid

drawing are mapped to the grid of size at most
⌈

n
2 + n

4

⌉
×
⌈

n
2

⌉
. We now show that h is an

injective mapping. Consider two vertices v = (vx, vy) and w = (wx, yw) with vx < wx. Note
that ki does not decrease as i increases. That is, if vx < wx in the grid drawing, then kvx ≤ kwx .
Therefore vx < vw implies h(vx) ≤ h(wx), and vy < wy implies h(vy) ≤ h(wy) because of the
monotonicity of the floor-function. If g1 maps v and w to the same point, then v and w form a
pair of consecutive vertices in both book embeddings and kvx and kwx differ by 1 (namely by the
pair v, w). Consequently, h(v) and h(w) have different x-coordinate. Thus, assume that g1 maps
v and w to different points. If

⌊vy

2

⌋
6=
⌊wy

2

⌋
then h(v) and h(w) have different y-coordinates.

Otherwise
⌊

vx
2

⌋
<
⌊

wx
2

⌋
and since kvx ≤ kwx , h(v) and h(w) have different x-coordinate. Hence,

h is injective.
To see that no row or column contains more than two vertices in the reduced grid, observe

that for vertices v and w at distance at least two in one coordinate, h(v) and h(w) have distance
at least 1 in this coordinate, because of the floor-function and because ki is not decreasing. It
remains to show that the mapping h preserves planarity of the quadrangulation. By Property 3
of Theorem 3.1 any two edges ab and cd are separated by an axis-parallel line. Assume that
ax < bx < cx < dx and that ab and cd are separated by a vertical line. Thus, h(ax) ≤ h(bx) ≤
h(cx) ≤ h(dx) which precludes a crossing. Analogously, if the edges ab and cd are separated by
a horizontal line, we can assume that ay < by < cy < dy which implies h(ay) ≤ h(by) ≤ h(cy) ≤
h(dy) which again precludes a crossing.

In Figure 8 the grid size can even be reduced to
⌈

n
2

⌉
×
⌈

n
2

⌉
by choosing g2(i, j) instead of

g1(i, j).

4 Rectangulations

For a given point set S and an axis-parallel rectangle R that contains S in its interior, a
rectangulation of S is a subdivision of R into rectangles by non-crossing axis-parallel segments,
such that every segment contains a point and every point lies on a segment.

In [5] rectangulations of diagonal point sets, that is, sets of points with coordinates (i, n− i),
are considered. This rectangulations are in close relation to quadrangulations: the trees T12

and T34 obtained by the 4-labeling constitute a twin-alternating pair of trees [5]. One of the
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Figure 9: The quadrangulation of Figure 1 represented by a pair of rectangulations.

results in [5] states that twin-alternating pairs of trees and rectangulations of a diagonal point
set are in bijection. In particular, given the book embedding of the trees T12 and T34, the order
of vertices along the spine of the book corresponds to the order of vertices on the diagonal set
in the rectangulation, starting at s1. We assume the sides of the outer rectangle R correspond
to the vertices s1, y, s3, x and S is formed by the remaining vertices of the quadrangulation Q.
Figure 9 shows an example, where also vertices s1 and s3 are drawn on the diagonal line.

This rectangulation has the further property that white vertices correspond to horizontal
segments, and black vertices correspond to vertical segments. Such a representation of a quad-
rangulation also is a contact graph of segments [7]: two segments of the rectangulation touch if
and only if the corresponding two vertices are adjacent in the quadrangulation.

Now, the pair of trees T14 and T32 also corresponds to a rectangulation of a diagonal point set,
with vertices placed on a diagonal line according to the order of vertices in the book embedding
of T14 and T32. When drawing the vertices on a diagonal point set with coordinates (i, i), that
is, on the line y = x instead of y = n− x we obtain the following curious property:

Theorem 4.1 Every quadrangulation (with outer face s1, y, s3, x) has a representation by a
pair of rectangulations, such that each edge intersects the line y = x in one rectangulation
and intersects the line y = n − x in the other one, and such that the two rectangulations are
isomorphic drawings with fixed outer face s1, y, s3, x in clockwise order and s1 being the left side
of the bounding rectangle.

Proof. By drawing the vertices of one book embedding on the line y = n− x with increasing
x-coordinates in the order s1, y, . . . , x, s3 and drawing the vertices of the other book embedding
on the line y = x in the order s1, x, . . . , y, s3 we obtain two rectangulations with common outer
face s1, y, s3, x in clockwise order. Note that s1 and s3 correspond to vertical segments, and
x and y to horizontal segments. Further, every segment intersects the line y = x, respectively
y = n − x in the other rectangulation. Since adjacent vertices in Q correspond to touching
segments in the rectangulation, a face of Q forms a rectangle in the rectangulation. Further,
adjacent faces of Q correspond to adjacent rectangles in the rectangulation by construction of
the book embedding in Section 2.1 and of the rectangulation [5]. That is, when considering the
book embedding, the spine of the book embedding crosses each face of the quadrangulation and
two faces are adjacent in the book embedding if they share an arc. This translates to adjacency
of rectangles in the rectangulations via the bijection in [5].
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