83 research outputs found

    Structured Review of the Evidence for Effects of Code Duplication on Software Quality

    Get PDF
    This report presents the detailed steps and results of a structured review of code clone literature. The aim of the review is to investigate the evidence for the claim that code duplication has a negative effect on code changeability. This report contains only the details of the review for which there is not enough place to include them in the companion paper published at a conference (Hordijk, Ponisio et al. 2009 - Harmfulness of Code Duplication - A Structured Review of the Evidence)

    Structured Review of Code Clone Literature

    Get PDF
    This report presents the results of a structured review of code clone literature. The aim of the review is to assemble a conceptual model of clone-related concepts which helps us to reason about clones. This conceptual model unifies clone concepts from a wide range of literature, so that findings about clones can be compared with each other

    Mining Version Histories for Detecting Code Smells

    Get PDF
    Code smells are symptoms of poor design and implementation choices that may hinder code comprehension, and possibly increase change-and fault-proneness. While most of the detection techniques just rely on structural information, many code smells are intrinsically characterized by how code elements change over time. In this paper, we propose Historical Information for Smell deTection (HIST), an approach exploiting change history information to detect instances of five different code smells, namely Divergent Change, Shotgun Surgery, Parallel Inheritance, Blob, and Feature Envy. We evaluate HIST in two empirical studies. The first, conducted on 20 open source projects, aimed at assessing the accuracy of HIST in detecting instances of the code smells mentioned above. The results indicate that the precision of HIST ranges between 72 and 86 percent, and its recall ranges between 58 and 100 percent. Also, results of the first study indicate that HIST is able to identify code smells that cannot be identified by competitive approaches solely based on code analysis of a single system\u27s snapshot. Then, we conducted a second study aimed at investigating to what extent the code smells detected by HIST (and by competitive code analysis techniques) reflect developers\u27 perception of poor design and implementation choices. We involved 12 developers of four open source projects that recognized more than 75 percent of the code smell instances identified by HIST as actual design/implementation problems

    Mining Version Histories for Detecting Code Smells

    Get PDF
    Code smells are symptoms of poor design and implementation choices that may hinder code comprehension, and possibly increase change-and fault-proneness. While most of the detection techniques just rely on structural information, many code smells are intrinsically characterized by how code elements change over time. In this paper, we propose Historical Information for Smell deTection (HIST), an approach exploiting change history information to detect instances of five different code smells, namely Divergent Change, Shotgun Surgery, Parallel Inheritance, Blob, and Feature Envy. We evaluate HIST in two empirical studies. The first, conducted on 20 open source projects, aimed at assessing the accuracy of HIST in detecting instances of the code smells mentioned above. The results indicate that the precision of HIST ranges between 72 and 86 percent, and its recall ranges between 58 and 100 percent. Also, results of the first study indicate that HIST is able to identify code smells that cannot be identified by competitive approaches solely based on code analysis of a single system\u27s snapshot. Then, we conducted a second study aimed at investigating to what extent the code smells detected by HIST (and by competitive code analysis techniques) reflect developers\u27 perception of poor design and implementation choices. We involved 12 developers of four open source projects that recognized more than 75 percent of the code smell instances identified by HIST as actual design/implementation problems

    Semantic Clone Detection via Probabilistic Software Modeling

    Full text link
    Semantic clone detection is the process of finding program elements with similar or equal runtime behavior. For example, detecting the semantic equality between the recursive and iterative implementation of the factorial computation. Semantic clone detection is the de facto technical boundary of clone detectors. This boundary was tested over the last years with interesting new approaches. This work contributes a semantic clone detection approach that detects clones with 0% syntactic similarity. We present Semantic Clone Detection via Probabilistic Software Modeling (SCD-PSM) as a stable and precise solution to semantic clone detection. PSM builds a probabilistic model of a program that is capable of evaluating and generating runtime data. SCD-PSM leverages this model and its model elements to finding behaviorally equal model elements. This behavioral equality is then generalized to semantic equality of the original program elements. It uses the likelihood between model elements as a distance metric. Then, it employs the likelihood ratio significance test to decide whether this distance is significant, given a pre-specified and controllable false-positive rate. The output of SCD-PSM are pairs of program elements (i.e., methods), their distance, and a decision whether they are clones or not. SCD-PSM yields excellent results with a Matthews Correlation Coefficient greater 0.9. These results are obtained on classical semantic clone detection problems such as detecting recursive and iterative versions of an algorithm, but also on complex problems used in coding competitions.Comment: 12 pages, 2 pages of references, 5 listings, 2 figures, 4 table

    On the Use of Process Trails to Understand Software Development

    Full text link

    Spartan Daily, April 10, 2000

    Get PDF
    Volume 114, Issue 45https://scholarworks.sjsu.edu/spartandaily/9542/thumbnail.jp

    A review of software change impact analysis

    Get PDF
    Change impact analysis is required for constantly evolving systems to support the comprehension, implementation, and evaluation of changes. A lot of research effort has been spent on this subject over the last twenty years, and many approaches were published likewise. However, there has not been an extensive attempt made to summarize and review published approaches as a base for further research in the area. Therefore, we present the results of a comprehensive investigation of software change impact analysis, which is based on a literature review and a taxonomy for impact analysis. The contribution of this review is threefold. First, approaches proposed for impact analysis are explained regarding their motivation and methodology. They are further classified according to the criteria of the taxonomy to enable the comparison and evaluation of approaches proposed in literature. We perform an evaluation of our taxonomy regarding the coverage of its classification criteria in studied literature, which is the second contribution. Last, we address and discuss yet unsolved problems, research areas, and challenges of impact analysis, which were discovered by our review to illustrate possible directions for further research

    Proceedings of Monterey Workshop 2001 Engineering Automation for Sofware Intensive System Integration

    Get PDF
    The 2001 Monterey Workshop on Engineering Automation for Software Intensive System Integration was sponsored by the Office of Naval Research, Air Force Office of Scientific Research, Army Research Office and the Defense Advance Research Projects Agency. It is our pleasure to thank the workshop advisory and sponsors for their vision of a principled engineering solution for software and for their many-year tireless effort in supporting a series of workshops to bring everyone together.This workshop is the 8 in a series of International workshops. The workshop was held in Monterey Beach Hotel, Monterey, California during June 18-22, 2001. The general theme of the workshop has been to present and discuss research works that aims at increasing the practical impact of formal methods for software and systems engineering. The particular focus of this workshop was "Engineering Automation for Software Intensive System Integration". Previous workshops have been focused on issues including, "Real-time & Concurrent Systems", "Software Merging and Slicing", "Software Evolution", "Software Architecture", "Requirements Targeting Software" and "Modeling Software System Structures in a fastly moving scenario".Office of Naval ResearchAir Force Office of Scientific Research Army Research OfficeDefense Advanced Research Projects AgencyApproved for public release, distribution unlimite
    • โ€ฆ
    corecore