

Steffen Lehnert

A review of software change impact analysis

Technische Universität Ilmenau
Ilmenau, 2011

URN: urn:nbn:de:gbv:ilm1-2011200618

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224755547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Review of Software Change Impact Analysis
Steffen Lehnert

Department of Software Systems / Process Informatics
Ilmenau University of Technology

Ilmenau, Germany
steffen.lehnert@tu-ilmenau.de

Abstract—Change impact analysis is required for constantly
evolving systems to support the comprehension, implementa-
tion, and evaluation of changes. A lot of research effort has
been spent on this subject over the last twenty years, and many
approaches were published likewise. However, there has not
been an extensive attempt made to summarize and review
published approaches as a base for further research in the
area. Therefore, we present the results of a comprehensive
investigation of software change impact analysis, which is
based on a literature review and a taxonomy for impact
analysis. The contribution of this review is threefold. First,
approaches proposed for impact analysis are explained re-
garding their motivation and methodology. They are further
classified according to the criteria of the taxonomy to enable
the comparison and evaluation of approaches proposed in lit-
erature. We perform an evaluation of our taxonomy regarding
the coverage of its classification criteria in studied literature,
which is the second contribution. Last, we address and discuss
yet unsolved problems, research areas, and challenges of
impact analysis, which were discovered by our review to
illustrate possible directions for further research.

I. INTRODUCTION

Performing impact analysis is an important step when
changing or maintaining software, especially in incremental
processes [1]. It allows to judge the amount of work
required to implement a change [2], proposes software
artifacts which should be changed [3], and helps to identify
test cases which should be re-executed to ensure that the
change was implemented correctly [4]. Impact analysis also
enables developers and project leaders to ask ”what if...?”
questions, and to simulate alternative scenarios without
having to implement them.

However, maintenance is considered to be the most
expensive [5] and long-lasting phase in the lifecycle of most
software systems, where more than 50% of all maintenance
costs arise from changing software [6]. Therefore, every
development or analysis step which can be automated can
save a lot of time and money. On the other hand, partial
implemented changes present high risks. They are likely
to cause unintended side effects, introduce new bugs, and
lead to more instability, rather than improving the software.
Today’s evolutionary development and frequent changes
demand for changing software, and change has become
a daily routine for architects, programmers, and project
leaders

The challenges of impact analysis have been addressed
for many years and date back to the 1970s when main-

taining software and software evolution started to attract
the interest of researchers in software engineering. Bohner
and Arnold [2], [3], [7], [8] investigated the foundations of
impact analysis, and provided the following definition of
the term impact analysis, which has been adapted by most
researchers:

”Identifying the potential consequences of a
change, or estimating what needs to be modified
to accomplish a change [2]”.

Today, there are several hundred studies which are con-
cerned with impact analysis. Thus, we felt the need to
structure the field by establishing a taxonomy for impact
analysis in previous work [9], and to review published
literature, which is the aim of this paper.

A. Scope and Contribution of the Review

As in our previous work, we limit our focus on studies
describing automated and semi-automated impact analysis
approaches. Several experiments have shown that intuition,
experience, and skill alone are not sufficient to capture all
impacts in complex software, which is why tool and method
support is required. Tóth et al. [10] conducted an experi-
ment to compare the results of manual impact analysis to
results achieved by several automated approaches, and they
concluded by strengthening the need for solid tool support.
Likewise, an earlier experiment of Lindvall [11] implies
similar results, as the author has shown that developers
are not able to determine the impacts of a change in a
reliable way. The results of his experiment illustrated the
gap between what developers assume to be impacted and
what is really impacted. Lindvall quantified this difference
as 60% in his experiment.

The focus of this review is not on organizational aspects
of impact analysis or the definition of concepts. However,
we also reviewed such literature to structure the field of
impact analysis, and to develop a classification scheme for
technical approaches [9]. This study reviews the follow-
ing kinds of literature. Articles published at conferences
and workshops, articles published in books and journals,
technical reports, as well as master and PhD thesis which
have been published between 1991 and 2011. We reviewed
studies which focus on developing or improving impact
analysis approaches, studies which describe experiments
to assess the effectiveness of impact analysis techniques,
and studies which compare different techniques. We do not

consider manual approaches such as reviews and audits, as
explained in our previous work [9].

The main contribution of this work is a comprehensive
review of approximately 150 studies, which propose or
improve impact analysis approaches. We name their motiva-
tion, describe the proposed methodology, and classify each
approach according to the criteria of our taxonomy [9]. As
a byproduct of this classification, we evaluate our taxonomy
by checking the coverage of its criteria. This allows us to
draw conclusions about its usefulness in practice. The third
contribution is the identification of future research work,
based on the review of current studies. The following listing
summarizes the contribution of this article:

1) A comprehensive review, including
a) the summary of 150 approaches,
b) the classification of 150 approaches.

2) Evaluation of the taxonomy and its criteria.
3) Identification of future research areas.

B. Organization of the Paper

This short section explains the structure of the article.
The goals of section II are to provide an overview of
existing reviews and to introduce the classification criteria,
which have been developed in [9] and are used to classify
studied literature. The main part of this article, section III,
is concerned with analyzing and classifying impact analysis
approaches. This section is accompanied by Table II at the
end of this article, which contains the results of the actual
classification. Section III is further divided according to the
different scopes of impact analysis which are explained in
section II-B, to allow for easy navigation. Finally, section
IV reports and summarizes major results of the review,
according to the goals of this article.

II. TOWARDS A REVIEW

In this section, we investigate and evaluate existing
attempts to review the field of impact analysis. We analyze
studies which are aimed at evaluating approaches, com-
paring tools, and analyzing the role of certain concepts for
impact analysis. Secondly, this section explains the different
scopes of impact analysis. Finally, a short summary of our
classification criteria is given, which will be used to classify
approaches in section III.

A. Previous and related Studies

One of the first attempts to review and structure the field
of impact analysis were made by Arnold and Bohner back
in 1993 [7]. They established a framework for classifying
and comparing approaches which we discussed in [9]
according to our goals. Arnold and Bohner reviewed five
rather different studies and classified them according to
their criteria.

Orso et al. [12] and Breech et al. [13] compared several
source code based impact analysis techniques regarding
their performance. Orso et al. [12] analyzed two dynamic

impact analysis algorithms called PathImpact and Cover-
ageImpact, and focused their analysis on achieved preci-
sion, memory consumption, and execution time. Breech
et al. [13] analyzed and compared two dynamic (PathIm-
pact, CoverageImpact) and two online impact analysis al-
gorithms (InstrumentedPathImpact, DynamicCompilation).
They evaluated the performance of the algorithms according
to their scalability, precision, recall, memory consumption,
and execution time. However, both studies examine rather
similar approaches and do not provide an overview of the
wide field of impact analysis.

In a similar fashion, Hattori et al. [14], [15] examined
several impact analysis algorithms which they implemented
in their Impala tool. The authors measured the performance
of the algorithms using the information retrieval metrics
precision and recall, and compared their results against
results achieved with the DesginWizard tool.

A review of Bohner [3] is concerned with the question
where and how impact analysis is applied during the de-
velopment and maintenance process. The author proposes a
series of models, which assist with understanding and man-
aging impact detection, change modeling, change imple-
mentation, testing, and related tasks. His focus is therefore
not on reviewing specific approaches, but on illustrating the
integration of impact analysis into the development process.

De Lucia et al. [16] analyzed the role of traceability
relations in impact analysis, as they allow to connect
different software artifacts and to analyze impact relations
between them. The interconnection of different types of
artifacts for analytical purpose is important, as changes do
not only occur in code and their affects are not limited to
code either. Several techniques for establishing traceability
links are explored in their work. However, they do not
analyze and compare specific impact analysis studies.

A study of different scope was conducted by Robbes et
al. [17] who reported on the trend to evaluate impact anal-
ysis approaches with development data stored in versioning
systems such as CVS or SVN. However, their analysis has
shown that these sources cannot always provide accurate
and reliable data for an objective evaluation of approaches.
Thus, they proposed a benchmark and evaluation procedure
for impact analysis approaches to overcome this limitation.

A review of Kagdi et al. [18]–[20] on the topic of Mining
Software Repositories (MSR) explores impact analysis as
one possible application of MSR. This review is valuable
for the impact analysis community, as many studies are
examined which apply MSR techniques for change predic-
tion and the detection of co-change patterns which can be
utilized for impact analysis.

Kilpinen [21] examined the practical applicability of
impact analysis approaches in her PhD thesis. The author
identified a gap between approaches proposed for impact
analysis and their application in practice. However, most
authors neglect this fact and thereby limiting the appli-
cability of their approach. In contrast, experiments and
case studies conducted within the scope of her thesis have

shown a sharp decrease in required design work when
marginally improving the integration of impact analysis into
the development process.

The conclusion of this section is as follows. All reviewed
studies have a very different focus, e.g. they analyzed
techniques and algorithms for impact analysis or the inte-
gration of impact analysis into the development process. So
far, there is no comprehensive review which explains and
classifies research approaches which have been proposed
for the task of impact analysis. In contrast, we identified
roughly 150 studies which are concerned with impact
analysis. Thus, ordering them according to well-defined
criteria is an important and necessary task to understand
impact analysis.

B. Scopes of Interest

We identified three different scopes of impact analysis
approaches [9], as most approaches either analyze source
code, formal models or miscellaneous artifacts. Source code
analysis can either be static, dynamic or online. Formal
models are further divided into architectural and require-
ments models, to reflect the earlier phases of software
development, i.e. requirements capturing and architectural
reasoning. Miscellaneous artifacts span a wide range of
documents and data sources, such as documentation, bug
trackers, and configuration files. Figure 1 illustrates the
scopes. The following five subsections outline each scope
in more detail, to explain why we have chosen such a
distinction.

 Combined Scopes

 Code Models Misc. Artifacts

 Static Dynamic Online Documentation Configuration

 Architecture Requirements

Fig. 1. Scopes of impact analysis

1) Source Code: Many approaches investigate the im-
pacts of changes by reasoning about inheritance relations,
method-call behavior, and other dependencies between pro-
gram entities. Source code files, class packages, classes,
methods, statements, and variables are analyzed to predict
the propagation of changes. However, such techniques are
not applicable in the early phases of software design and
requirements analysis, when no source code is available.
Their rather technical nature also limits their application
to programmers and is of little use for other stakeholders,
such as project leaders.

Static code analysis extracts facts from source code to
build call graphs, slices, and other representations which are
used to assess the impacts of a change. In contrast, dynamic

and online approaches instrument the code or compiled
binaries to collect information about method executions.
These so called execution traces are either analyzed after
program execution (dynamic) or on the fly (online) to
enable the concurrent assessment of changes.

2) Architectural Models: Williams and Carver [22] high-
light the importance of change impact analysis for software
architectures to keep their quality and correctness at an
acceptable level.

Architectural models, such as UML component dia-
grams, enable the assessment of architectural changes on a
more abstract level than source code. This enables impact
analysis in earlier stages of development and in model
based development (MBD), which has become more im-
portant in recent years. But dependent on the underlying
modeling language, even architectural analysis allows for
fine-grained results, for example when analyzing detailed
UML class diagrams. Typical levels of granularity are
systems, sub-systems, components, and classes.

3) Requirements Models: Formalized requirements are
the first available artifacts during the software development
process, and undergo many changes until the final version
of a program has been implemented. If requirements are
encoded in formal modeling languages such as UML, GRL
[23] or UCM [23], they can be subject of formal analysis
as they adhere to a well-structured metamodel. In contrast,
if they are expressed as plain text, only textual retrieval
methods such as information retrieval (IR) can be applied.

4) Miscellaneous Artifacts: It is an acknowledged fact
that changes do not only occur in source code or archi-
tectural models. Documentation, configuration files, bug
trackers, and similar auxiliary content of software are also
subject of frequent changes. However, changes to such
entities can also affect the software, e.g. when a configura-
tion file was changed. Performing impact analysis among
such entities, mostly different types of files, has therefore
become an issue to the research community as well.

5) Combined Scopes: The typical software development
process is comprised of different phases, i.e. starting with
requirements analysis and architectural reasoning, which
are then followed by the implementation. When changing
software, impacts do not limit themselves to certain kinds
of artifacts. Changing a requirement can affect different
architectural models, as well as already implemented source
code components. Therefore, comprehensive analysis is
required to trace impacts across all available artifacts. This
however requires sophisticated concepts that are able to deal
with a wide variety of possible types of artifacts.

C. Classification Criteria

Our taxonomy [9] was established after evaluating ex-
isting work which is aimed at providing a classification
scheme for impact analysis. We reviewed the framework
for comparison proposed by Arnold and Bohner [7], a
taxonomy for software change established by Mens and
Buckley [24], [25], and a taxonomy for impact analysis

by Kilpinen [21]. The following listing summarizes our
classification criteria, whereas detailed descriptions can be
found in [9].

• Scope of analysis - what is analyzed?
• Granularity of analysis - how fine-grained are entities,

changes, and proposed results?
• Utilized technique - which algorithms are used?
• Scalability - how scalable is the approach?
• Supported languages - which languages are supported?
• Tool support - is there a tool available?
• Style of analysis - is the analysis performed globally,

search-based or exploratory?
• Experimental results - what experimental results are

available to judge the performance?

III. IMPACT ANALYSIS: A REVIEW

A. Abbreviations

This rather short section explains the abbreviations,
which will be used throughout the review to ensure the
usability of its results, especially concerning Table II which
contains the results of the classification. All algorithms and
techniques which can be found in the following Table I are
explained by our taxonomy in [9].

Abbr. Type Explanation
PM Techn. Probabilistic Models
DG Techn. Dependency Graph
MDG Techn. Message Dependency Graph
SL Techn. Slicing
IR Techn. Information Retrieval
TR Techn. Traceability
HM Techn. History Mining
CG Techn. Call Graph
ER Techn. Explicit Rules
ET Techn. Execution Traces
chg. Change unspecified change
vis. Change visibility change
typ. Change change of data type
val. Change change of value
inh. Change change of inheritance relation
sig. Change change of method signature
mod. Change change of modifier
r. Change rename
m. Change move
+ Change addition of an entity
- Change deletion of an entity
T Misc. time complexity
S Misc. space complexity

TABLE I
ABBREVIATIONS FOR TECHNOLOGIES, ALGORITHMS AND CHANGES

B. Source Code

This section is focused on approaches which analyze
source code. Due to the large amount of studies, we further
structure this section according to the techniques used by
the approaches, to group approaches according to their
similarity.

1) Call Graphs: Changed methods or procedures can
affect other source code entities, which either call them
directly or indirectly. Analyzing the call-behavior of a
system can therefore help to assess the impact of a
method/procedure change. Thus, source code is analyzed
statically while method calls are extracted and stored in
a graph or matrix. This graph then enables developers to
estimate the propagation of a given change.

Ryder and Tip [4] developed an approach to check which
tests are affected by a change and should be re-executed.
In addition, their approach is able to tell which change is
responsible for a test’s failure, based on call graph analysis.
They support fine-grained change operations, such as the
deletion of method from a class and implemented their
approach in a tool called Chianti, which is presented in
the work of Ren et al. [26]–[28]. The tool is implemented
as Eclipse 1 plug-in but does not seem to be available
any longer2. Chianti performs the following four steps to
determine affected test cases. First, it analyzes code edits
to obtain sets of interdependent atomic changes. Secondly,
it constructs a call graph for each test case which is then
used for correlating obtained change sets against the call
graph of the original program to determine which test is
affected. Finally, it constructs a call graph of the edited
version of a program and correlates this graph against the
original call graph to determine which changes affect a test.
The PhD thesis of Ren [29] continues the work and actu-
ally implemented the Chianti prototype, and investigates
dependencies between atomic changes. Ren implemented
a heuristic to rank atomic changes according to their
likelihood of affecting a test case failure based on the type
of dependency between changes. Ren distinguishes between
structural dependencies (sequence when elements are added
or deleted), declaration dependencies (java element declara-
tions), mapping dependencies (mapping changes to method-
level changes), and syntactic dependencies between atomic
changes to exclude changes which do not affect certain
tests.

Xia and Srikanth [30] are concerned with measuring
internal software artifacts to reflect on the external view
of maintainability, and therefore propose a measure to
estimate the change impact. Their approach assumes that
only source code is available for analysis and that there
is no knowledge about change types. They trace changes
to program statements by examining the call hierarchy of
the code until the change rippled across two levels of the
graph, after which further propagation is stopped.

The goal of the work presented by Badri et al. [31]
is to increase the precision of call graph based change
prediction while keeping the analysis costs on a moderate
level. Therefore, they combine static call graphs with static
control flow information to so called Control Flow Graphs,
to overcome the lack of precision of traditional call graph

1http://eclipse.org/
2http://aria.cs.vt.edu/projects/chianti/

based approaches. Their proposed methodology records
control flow between method calls to enhance the call
graph with information about the call order, and to remove
excluded calls in order to remove infeasible paths. Control
call graphs (CCG) are constructed by analyzing source code
while ignoring all statements and instructions which do
not invoke a method call. CCGs are further enhanced with
sequence information to enable the generation of compacted
sequences, which are then used to further prune infeasible
paths. As a result of this process, the behavioral profile
of a program is obtained. The proposed approach is called
CCGImpact and implemented in the PCIA tool. However,
their approach does not yet consider object oriented speci-
fities [31], such as inheritance.

2) Dependency Analysis: There exist a variety of de-
pendencies between source code entities, such as control,
data or inheritance dependencies. They can be extracted by
static source code analysis and either stored in a graph or a
matrix. Based on dependencies between software artifacts,
one can estimate the change propagation between them.

Briand et al. [32] investigate the complex nature of
object oriented programs. The OO paradigm results in large
numbers of dependencies when analyzed with traditional
dependency analysis, which in turn leads to an explosion
of possible impacts computed by dependency analysis.
Therefore, they investigate whether dependency-based cou-
pling measures can be used for impact analysis. Coupling
between object classes (CBO) and data abstraction coupling
(DAC) are two examples for such a coupling measures.
Two classes, A and B, are coupled via CBO if B calls a
method of A. They are coupled via DAC if B contains
an instance of A. Their approach computes all possible
coupling measures and ranks classes according to achieved
values, where a high ranking indicates a strong coupling
and therefore implies that an entity is impact by a change
to the coupled entity.

The work of Kung et al. [33] is concerned with code
changes in object oriented libraries. They developed a
model to capture and reason about changes, as the under-
standing of combined relations and dependencies between
classes is more complicated than ripple effect analysis in
procedural languages. Their proposed model describes con-
trol structures, inheritance relations, and the like between
classes, methods, and attributes. The model is further build
upon three types of diagrams, namely Object Relation Dia-
grams (ORD), Block Branch Diagrams (BBD), and Object
State Diagrams (OSD). These diagrams are generated from
source code and applied for analysis, using the class firewall
concept. Attributes which are affected by a change are
detected by computing the differences between the source
code and the current BBD, whereas impacted methods
are indicated by removed nodes and edges in the BDD.
Impacted library classes are determined by ORD analysis.

Rajlich [34] discusses two approaches of change prop-
agation, which are based on program dependencies and
have been implemented in the tool Ripples 2. The utilized

dependency graph is computed by a code parser which
scans project files and identifies dependencies. Changes
in the dependency graph are modeled by graph rewriting,
whereas the evolution of the dependency graph is modeled
as a sequence of snapshots. The proposed ”change-and-
fix-approach” consists of two steps, which are repeated
until the change has been implemented. First, the developer
changes an entity which then triggers a dependency analysis
to propose possible impacted entities. This process is re-
peated, as long as the developer is changing further entities.
In contrast, the ”top-down-approach” marks entities as
either top elements if they do not support other entities
or bottom elements otherwise. The analysis then starts by
first examining top elements and then moving along the
dependencies if no change is required in the top-elements.

The approach of Pirklbauer et al. [35] is based on the
tool developed by Fasching [36] for visualizing software
dependencies, and is comprised of six steps as proposed
by Bohner [2], [37]. Impacted elements are computed by
analyzing the dependency graph of a program while using
three parameters to prune infeasible paths: dependency
type, minimal importance of dependency, and maximum
dependency depth. However, the developer has to inspect
the remaining graph manually and decide which entity has
been correctly identified as impacted. In the underlying
master’s thesis of Fasching [36], the author highlights the
importance of visualizing dependencies to enable develop-
ers to understand the changes. The thesis outlines important
requirements for impact and dependency visualization, such
as interaction, navigation, zoom, merge, hiding, reload of
data, and focus, and it also discusses various visualization
techniques and compares existing tools for impact visual-
ization.

Similar to the work of Kung et al. [33], Zalewski and
Schupp [38] are also concerned with assessing the impacts
of library changes. They propose a methodology called
conceptual change impact analysis (CCIA) which is based
on the principle of pipes and filters. In a first step, they
locate changes which impact conceptual specifications and
then apply optional filters to refine the output to detect
specific kinds of impacts. Therefore, they provide two
filter algorithms: one to detect the impact of a change
to the degree of generality, and one to detect the com-
patibility to different versions. The second step involves
the implementation of the change and the identification
of differences between the original and altered version
of the program. Next, a dependency graph is constructed
and nodes are annotated with information gained by the
differencing process (e.g. they are marked as ”added”).
The last step involves a depth-first-search to propagate
the impacts of a change through the graph, which uses
the additional node information to prune the propagation
of changes, e.g. when reaching a node which is marked
as ”deleted”. As a further contribution, they provide two
algorithms to search for specific kinds of impacts, namely
constraints change which checks whether requirements for

algorithm parameters changed, and concept compatibility
which checks whether a concept is compatible between
versions.

Petrenko and Rajlich [39] are concerned with enhanc-
ing impact analysis to cope with variable granularity of
analyzed software artifacts. Therefore, they construct a
dependency graph of the program and use marks to annotate
nodes as either changed, propagates, next, inspected or
blank. If an impacted element is found, it is the programmer
who decides whether the impact propagates at the same, a
coarser or even a finer level of granularity. All children of
the impacted element will be marked, if the programmer
refines the granularity, e.g. from ”class” to ”method”. In
contrast, all parent elements will be marked if the pro-
grammer coarsens the granularity, e.g. from ”attribute” to
”method”. If no granularity is sufficient, the programmer
can select entire code fragments where all encompassing
entities will be marked and used for further impact propa-
gation. They extended the JRipples tool to cope with this
variable approach.

Black [40] is concerned with reformulating the ripple-
effect algorithm as proposed by Yau et al. [41], and
implemented the improved version in the REST tool to
analyze C programs. REST builds a dependency matrix of
the program and applies four different McCabe complexity
measures to compute the ripple effect and stability measures
for the source code. Black performed an evaluation to
gauge the correlation between the original algorithm and
the REST tool and concluded that both match, whereas
REST achieves more accurate results.

The aim of Bilal and Black [42] is to improve the ripple
effect algorithm introduced by Yau et al. [41] in 1978,
by optimizing the ripple effect metric. Their analysis is
based on two types of change propagation to calculate
the ripple effects, namely intra-module change propagation
and inter-module change propagation. Both types of change
propagation are implemented in four different algorithms.
The first algorithm concatenates all the code within a class
apart from local method calls, and computes the ripple
effect between this class and others. The second algorithm
computes ripple effects across methods and classes, but
ignores change propagation within methods. The third
computes ripple effects between methods, within methods,
and between classes. The forth and last algorithm computes
ripple effects across the methods of each class, by ignoring
the change propagation between classes. However, the
authors did not provide any details on the results achieved
with each algorithm and based on the paper one cannot
judge which is more suitable.

Lee et al. [6] utilize three different object oriented depen-
dency graphs of which they compute the transitive closure
to identify impacted elements. The authors propose the
concepts of intra-method data dependency graphs to calcu-
late impacts on entities inside method bodies, inter-method
data dependency graphs to calculate change dependencies
between methods, and object oriented system dependency

graphs which are used to calculate the change impact at
system level. Furthermore, they distinguish between four
different types of impacts between two related entities,
namely contaminated (both are impacted), clean (both are
not impacted), semi-contaminated (the source does not
impact the target, but the source can be impacted), and
semi-clean (the source is not impacted, but it propagates
changes to the target). These types are used to assign
weights to relationships among entities, according to the
type of impact relations between them. The total change
impact weight is then computed as the sum of all weights
which are assigned to the relations between two entities.
Finally, the total change impact weight is assigned to all
three graphs to enable the computation of impacts.

The question which types of changes can occur in object
oriented systems and how they affect other classes is the
driving motivation for the work of Li and Offut [43].
Their proposed algorithm computes the transitive closure
of the program dependency graph, before applying the
actual analysis procedure. The analysis starts by grouping
all classes that are related to a changed class into a set of
affected classes. Secondly, the union of all sets is computed.
The computation of the total effects is then comprised of
the following three sub-computations: the identification of
effects within a class, the identification of effects among
related classes (clients), and finally the identification of
effects caused by inheritance relations between classes.

Beszédes et al. [44] propose the use of Static Execution
After relations (SEA) to approximate static slicing with less
costs. The computation of SEA relations is achieved by
analyzing methods to unveil hidden dependencies between
classes. This is accomplished by constructing a Compo-
nent Control Flow Graph (CCFG) for each method, which
collects method calls by static source code analysis. The
CCFG is build by adding one entry-node for each method
and one component-node for every other method that is
called within the method itself. Both nodes are then con-
nected with ”control flow” connections. The algorithm then
computes all SEA relations by determining the transitive
calls for each method. Then, all identified methods are
processed again to compute the sequence information by
ordering components topologically, and determining the set
of methods which are called in each component.

Jász et al. extend [45] the work of Beszédes et al.
[44] by introducing Static Execution Before/After relations
(SEA/SEB), where SEB are the inverse to SEA. The SEA
and SEB relations are computed based on the interpro-
cedural component control flow graph (ICCFG), which is
comprised of call site nodes and control flow edges that
exist between them. An experiment has shown that the
concept of SEA/SEB results in decreased computation time,
but also in a loss of precision of about 4%. One of the
programs analyzed in the scope of this experiment (Mozilla)
could not even be analyzed with traditional dependency
analysis due to space and time requirements, but with
SEA/SEB relations.

Supporting development activities with solid tool support
is the main goal of the work presented by Chen and
Rajlich [46]. They introduce their tool RIPPLES, which
uses an Abstract System Dependency Graph (ASDG) to
estimate the propagation of changes. RIPPLES combines
dependencies obtained through static analysis with concep-
tual dependencies, as not all dependencies between code-
components can be captured by static analysis. Nodes of the
ASDG are comprised of program variables, methods, and
data types, whereas edges in the graph are based on control
flow information. The size and complexity of the ASDG
is reduced by removing statements containing no function
call or variable modification. Next, nodes of the ASDG are
either marked as unmarked (default), candidate or changed,
where edges are also marked as either unmarked (default),
forward or backward. When a programmer inspects the
ASDG and updates program entities, assigned marks are
updated according to the actions taken by the programmer
to signal possible impacts, e.g. when deleting an entity.

Gwizdala et al. [47] propose the JTracker tool to guide
programmers while changing software. JTracker analyzes
the program and builds a dependency database, which is
updated after each operation. The tool considers inher-
itance, aggregation, and other relations between classes
as dependencies. JTracker marks classes which require
inspection by the programmer until no marked class is
left in the program database. Gwizdala et al. analyzed a
program consisting of 400 classes in a case study, but
unfortunately they did not provide any results in terms of
precision and recall.

The traditional tradeoff between achieved precision and
required computation time is the motivation for Bishop
[48] to propose an incremental approach which requires
less analysis effort to compute impacts. The main goal
is to reuse earlier results of impact calculations, and to
update them according to changes made to the program. A
dependency graph of the program is constructed based on
a method input-output-mapping and enhanced with static
data flow information which are obtained from method
bodies. The incremental approach stores the results of
each analysis process to enable an incremental search for
impacted entities, which results in reduced costs.

3) Program Slicing: Slicing is one application of static
source code analysis and is build upon code dependency
analysis. A comprehensive study on slicing can be found
in the work of Tip who conducted a survey on the topic
[49]. Slicing removes all program statements which are not
related to the slicing criterion, i.e. which do not affect the
state of a variable and thereby being of no use for impact
analysis. A short tabular comparison of several slicing tools
which can be used for impact analysis is contained in
the work of Korpi and Koskinen [50] which will also be
discussed in this section.

The work of Gallagher and Lyle [51] is concerned with
forming slice-based decompositions of programs, contain-
ing only those parts which are affected by a change. They

use the concept of decomposition to break the program
into manageable pieces and to guarantee that there are
no ripple effects. Decomposition slices are constructed
by applying an algorithm which was originally designed
for dead code detection and locates all instructions which
are useful regarding the slicing criterion. The detection
algorithm marks all output instructions as critical and traces
instructions that impact the output statements (called ”use-
definition”). Detected relations are then examined to build
the actual decomposition slices, by forming a lattice of
slices for each variable and ordering them by set inclusions.
Finally, all output statements are removed from the slices,
as they do not contribute anything to the variables. The
result of this process is a slice which only contains impacted
code elements.

Visualizing impacts is a useful technique for developers
to understand which entities are affected by a change.
However, current visualization techniques which are based
on acyclic graphs flood developers with too much informa-
tion, and are less useful for slicing. The aim of Hutchins
and Gallagher [52] is therefore to reduce the amount of
slicing information which must be displayed to assess
the impact of a change. They introduce the concept of
inference between variables, which distinguishes between
strong (directly related) and weak dependencies (mutually
dependent on other variables), and result in two different
impact graphs. They further propose a set of interface
features to reduce the size of slices. Their approach allows
to hide any variable of a particular procedure, hide variables
with empty slices (|slice| ≤ 2), group equivalent variables
of the same procedure into one entity, group all slices of all
variables of a procedure into one entity, and hide variables
without relationships to current selection.

Tonella [53] investigates how decomposition slice graphs
can be combined with concept lattices which group ele-
ments sharing common attributes, to increase the precision
and recall of impact analysis. Tonella combines nodes
from both approaches via and and or relations to obtain a
lattice of decomposition slices (and-lattice, or-lattice). Two
decomposition slices are considered to interfere, if there
exists a non-empty intersection of them, i.e. decomposition
slices provide strong-intersections, whereas lattices provide
weak and strong-intersections. The identification of nodes
which are directly affected by a change is achieved by
traversing the lattices upwards, as all upwards nodes share
the same line of code.

The concepts of dependence clusters and dependence
pollution are introduced in the work of Binkley and Har-
man [54], who also propose a visualization technique for
locating such clusters. Their approach is based on the size
of computed slices, i.e. they create slices for each variable
and check whether the slices have the same size. If so, such
variables contribute to a cluster and changes to one variable
in the cluster are likely to cause changes to other variables
of the same cluster. They implemented their idea in the
concept of monotone slice-size graphs (MSG), which is

used to visualize detected clusters. An experiment revealed
that 80% of all studied programs contained clusters which
consist of 10% of the original program.

Korpi and Koskinen [50] developed an automated PDG-
based forward slicer for Visual Basic called GRACE, to
enable impact analysis for Visual Basic programs. GRACE
applies static forward slicing to capture all possibly affected
parts of the program, and consists of two main components.
The parser translates Visual Basic programs into abstract
syntax trees (AST) and symbol tables. The PDG-generator
finally converts the ASTs into graphs. GRACE combines
single graphs to system graphs, and performs a straightfor-
ward reachability analysis on the PDG to compute impacted
code entities. An evaluation based on a program consisting
of 18700 LOC revealed that parsing the code and generating
the PDG took five seconds with GRACE.

Preprocessor macros are a useful concept in program-
ming languages. However, they result in sometimes in-
comprehensible and unmaintainable code. Also, there is no
impact analysis approach available which is able to analyze
the effects of macro changes. Therefore, Vidács et al. [55]
propose a slicing algorithm for C++ preprocessor macros
to enable impact analysis on macro level. They build a
macro dependency graph which is used to compute dynamic
forward slices, as they contain possibly affected program
entities. The edges of this graph are based on macro de-
pendencies, whereas nodes are based on macro invocations
and macro definitions. Their approach is enhanced with the
concepts of coloring and multiple edges to provide support
for later defined and re-defined macros in dynamic forward
slices.

Santelices and Harrold [56] are concerned with the
question how static slicing or slicing in general can be
enhanced to reduce the set of proposed impacts by utilizing
probabilistic algorithms. Their research is based on the
following three observations:

1) Not all statements have a similar probability of being
impacted by a certain change.

2) Some data dependencies are less likely to be covered.
3) Data dependencies propagate changes with a higher

probability than control dependencies.
The probability that A is affected by B is computed by
statically analyzing whether the execution of a program
reaches A after executing B, if there are sequences of
data or control dependencies between B and A, and if
a modification of a program state propagates from B to
A. Standard slicing procedures are used to generate a
dependency graph that covers all possible executions, which
is then used to create an interprocedural dependency graph.
This graph is annotated with the probabilities that depen-
dencies are affected by a change and will propagate the
change themselves. After this step, each path is annotated
with the probability of propagating changes from the source
node to the target node, which is composed of all single
probabilities on the path. This composition is achieved by
computing the coverage and propagation probabilities and

executing a data-flow analysis on the PDG to combine all
dependencies between the source node and the target node.
The decision whether an entity is impacted or not is then
dependent on computed probabilities.

4) Execution Traces: In contrast to static call graphs,
dynamic execution traces contain only those methods which
have been called during the execution of a program. Similar
to call graphs, they allow to assess the impact of a method-
change by analyzing which methods were called after
the changed method, thus being possibly impacted too.
Approaches which rely on dynamic execution data were
established to overcome the limitations of static slicing
(expensive) and call graphs (imprecise).

Law and Rothermel [57], [58] developed two dynamic
impact analysis algorithms: PathImpact and its improved
version EvolveImpact which are explained in this section.

PathImpact [57] instruments methods to collect method
entry and method exit events as execution traces. How-
ever, traces suffer from duplicated entries and have to be
compressed, since methods can be called more than once.
Law and Rothermel compressed traces to DAGs using
the SEQUITUR compression algorithm to overcome this
problem. A traversal of the DAG reveals all methods which
were called after a changed method was called, or in which
a changed method returned into. All these methods are
therefore considered as being potentially impacted.

EvolveImpact [58] was proposed to overcome the prob-
lem of updating the DAG after changes, as rebuilding the
entire DAG for larger programs is an expensive task. The
goal is to incrementally update the DAG by observing
changes to test suites and system components. Therefore,
each test case is tagged with a unique identifier which also
appears at the beginning of each trace and is supplemented
by special ending symbols. These keys and ending symbols
are then used to remove traces from the DAG if they contain
changed methods and indicate that some traces should
be refreshed. Law and Rothermel developed a modified
version of the SEQUITUR compression algorithm called
ModSEQUITUR to cope with these new symbols and keys.

Orso et al. [59] claim that program testing and analysis
under development conditions is not realistic, since real
world factors such as different hardware, different users
etc. have a big influence on the behavior of software.
They are concerned with gathering ”field data” from real
users under real world conditions, to evaluate software
and perform impact analysis. They investigate the use of
the Gamma-approach for impact analysis, which has been
introduced by the same authors. This approach enables
remote analysis and the collection of field data from real
users. Developers have to instrument their programs to
collect dynamic data (i.e. execution data) in a lightweight
manner. The users execute the programs and send back the
execution data (coverage data at block and method levels).
The developer then computes dynamic slices, which are
based on execution data of entities that traversed a changed
entity. This kind of analysis also allows to estimate the

impact of a change on different users by asking questions
like ”How many % of the users will be impacted by this
change?”. Orso et al. compared their approach against static
slicing and call graphs and concluded that real field data is
different to synthetically computed data.

Breech et al. [60] proposed an approach for online
impact analysis. The authors instrumented a compiler to
add callbacks to each function, in order to be able to gather
execution data during runtime. Once the data has been
collected, they analyze the call stack to judge whether a
function is affected by a change of other functions. All
functions which were called by a changed function are
considered as impacted, and all functions which remain in
the call stack after the changed function’s return event are
also considered as being impacted.

In further work, Breech et al. [61] are concerned with
combining the precision of static techniques and the anal-
ysis speed of dynamic techniques. As a first step, they
build an influence graph of the program, as changes can
only ripple through return values, parameters, and global
variables. The graph is comprised of methods (nodes) and
their relations (edges), and is used to compute the transitive
closure of the source code. A dynamic analysis is then
performed and results are merged with information inferred
from the influence graph. That is, only those methods
are considered as impacted, which are connected in the
influence graph with the same type of relation as inferred
by the dynamic analysis. However, case studies have shown
that this approach can only achieve a 3-5% gain of precision
compared to PathImpact [57].

Apiwattanapong et al. [62] are concerned with overcom-
ing the performance limitations of PathImpact [57] and the
lack of precision of CoverageImpact [59]. Therefore, the
authors introduce the concept of Execute-After sequences
(EA). They achieve their goal by simplifying recorded
traces in terms that they only record the first and last event
of each method, i.e. they neglect method return events
and instead only record method return into events. Each
EA-sequence is enhanced with additional timestamps to
determine impacted methods. If a method is changed, all
possibly impacted methods are determined by searching for
methods whose timestamp is equal or higher than the first
timestamp of the changed method. The algorithm proposed
by Apiwattanapong et al. is called CollectEA, and results of
several case studies have shown that CollectEA is almost
as precise as PathImpact, but only slightly more expensive
than CoverageImpact.

Existing dynamic techniques introduce too much over-
head in terms of space and time costs, as stated by Huang
and Song [63]. Therefore, the authors propose a dynamic
impact analysis technique which collects method return
into events, rather than method return events. The aim of
the authors is to achieve the same precision and recall as
PathImpact [57] and CollectEA [62], but with less time
and space complexity. Their algorithm retrieves informa-
tion about the execution order of methods by correlating

method events with methods executed after the event. These
information are then used to reduce the redundancy in
execution traces. Execution events which do not traverse a
changed method are skipped, and methods whose events are
listed before any event of a changed method took place are
removed as well. As a result of this process, only methods
executed after the execution of a changed method remain
in the estimated impact set.

Beszédes et al. [64] introduce a new coupling measure,
Dynamic Function Coupling (DFC), in order to take both
directions of an Execute-After relation into account. The
basic idea of DFC is to utilize the closeness of two
functions to estimate whether one impacts the other. The
closeness of two functions is determined for each pair of
functions, by computing the distance between their call
levels, therefore using forward and backward Execute-After
relations. The DFC measure is used to select function pairs,
whose distance is below a certain cut-off level (threshold).
The DFC values are computed based on a dynamic call
tree, which is comprised of method entry and method exit
events. Each function pair selected according to the DFC
measure is then considered as being impacted by a change
to one of the functions.

Gupta et al. [65] propose a new dynamic algorithm to
compute the impact of a method change, which allows
to trace the impact of a change on other program vari-
ables: CallImpact. Tracing impacts relies on dependencies
between program entities, which can be distinguished based
on their type and usage, based on the types of paths between
definition and usage, and based on the reach of the data
dependency. They build a control flow graph (CFG) of the
program while inserting variable definitions or assignments
as nodes. This control flow graph and the different types of
dependencies between the nodes enable them to distinguish
between directly and indirectly impacted entities. Direct
impacts are computed by collecting all usage traces of the
changed node. Indirect impacts are computed by analyzing
previously collected directs sets and further tracing them,
according to the type of dependency.

Gupta et al. [66] extended their work, and addi-
tionally propose a classification of changes to improve
impact detection. They distinguish between functional
changes (changed statements which affect functions), logi-
cal changes (control-flow changes), structural changes (ad-
dition/deletion of code entities) and behavioral changes
(change of execution order, change of program entry and
exit). Their revised algorithm works as follows. The original
and the modified version of the program are analyzed for
differences, which are stored together with their respective
CFGs in a database. A classification algorithm is applied
on the collected differences to calculate functional impacts
based on the connectivity of changed statements in the
CFG. This step adds all changed statements and their direct
impacts to the impact set. As a second step, all logical
changes are computed by analyzing statements in the CFG
which resulted in control flow changes. All these statements

and those which depend on them via definition or usage are
also added to the impact set. Structural changes are then
computed by identifying all added or removed statements of
the original code, whereas behavioral changes are computed
by adding all statements to the impact set which cause
behavioral changes in the original program.

Hidden dependencies play an important role in software
evolution and even exist in well structured software. Vanciu
and Rajlich [67] propose an approach for dynamic data
flow analysis to uncover such hidden dependencies for
impact analysis. Their approach is based on Executed
Completely After (ECA) relations, which state that methods
calling others must be terminated, before the other method
is executed. They also introduce the Interclass Executed
Completely After relations (IECA), which extend ECA re-
lations by stating that both methods must not belong to the
same class. ECA/IECA relations consist of preconditions
(required state of memory before executing a method) and
postconditions (state of memory after executing a method).
The potential hidden dependencies between two methods f
and g are revealed, if there is one post-condition of f which
is implied by at least one pre-condition of g, which they
call significant precondition conjunction SPC(f,g). Finally,
a potential hidden dependency is a true hidden dependency,
if both methods share the same domain or programming
concept.

5) Explicit Rules: Design, domain, and expert knowl-
edge can be used to form strict impact rules, which de-
termine which entities have to change if a certain entity
changes. For example, if an interface is changed, all classes
which implement this interface must be changed as well,
dependent on the type of change (e.g. deletion of a method).

The aim of the work of Han [68] is to support developers
with a framework for software change management, which
is integrated into the software engineering environment to
enable impact analysis for forward engineering and reengi-
neering. The proposed impact analysis approach combines
automated techniques with guided user intervention, by
augmenting the kernel of the software engineering envi-
ronment with change management features. The impact
analysis process is accomplished as follows. First, the
approach extracts a dependency graph from the program
and then applies a set of propagation rules to determine
impacted entities. The obtained set of possibly impacted
entities is then presented to the developer, who is then able
to decide which one to implement.

Chaumun et al. [69] are interested in measuring the influ-
ence of high-level design on maintainability, and how inter-
class dependencies influence changeability. They propose a
change impact model which is defined at the conceptual
level, and map it to the C++ programming language. The
conceptual model is comprised of components (classes,
methods, variables), relationships between them (associa-
tion, aggregation, inheritance, invocation), and 66 change
types, such as the addition of a component. The impact of
a change now depends on two main factors in their model:

the type of change and the type of relation between both
code entities. Chaumun et al. define a set of impact rules
which are comprised of change types and relation types,
and are expressed as boolean equations.

Many coupling measures do not capture all aspects
of object oriented software, such as multiple inheritance.
Therefore, Arisholm et al. [70] propose a new dynamic
coupling measure which can be used for impact analysis
in object oriented software. Dynamic coupling measures
are collected in two different ways. First, the program is
executed and message traces and other information supplied
by the Java Virtual Machine (JVM) are used, rather than
instrumenting the source code. Secondly, dynamic UML
diagrams (e.g. sequence diagrams) are analyzed to extract
information about the dynamic behavior of the system.
Based on the monitored behavior, a set of 12 coupling
measures built on rules is derived.

The main motivation for the work of Sun et al. [71]
is that different change types result in different impacts,
and therefore require specific rules to compute the impacts.
They propose a static impact analysis approach, which
considers different change types and impact mechanisms,
by classifying change types at class and class member
level. Their approach starts by constructing an intermediate
representation of Java programs, called Object Oriented
Class and Member Dependence Graph (OOCMDG), which
contains classes, methods, variables, and their dependen-
cies. The proposed model for change propagation considers
different change types and dependency types for classes,
methods, and variables which are used to formulate impact
rules. The starting impact set (SIS) [9] is obtained by
performing forward and backward walks on the OOCMDG,
starting at the changed entity. The estimated impact set
(EIS) [9] is obtained by classifying changes according to
their change types and then computing the union of all
change types for each entity. Based on this union of change
types, the appropriate impact rules are chosen which then
compute the final impact set for a given change.

6) Information Retrieval: Information retrieval (IR)
techniques exploit natural languages by searching for simi-
lar terms in different documents, to infer a relation between
them. The interested reader might be referred to a recent
survey of Binkley and Lawrie [72] on the application of IR
in software evolution and maintenance.

In contrast to most impact analysis approaches that
estimate which software entities are affected by a change,
Antoniol et al. [73] propose an approach to identify entities
which must initially be changed to fulfill a change request,
i.e. the identification of the starting impact set (SIS) [9].
They apply two IR techniques (a vector-space model and
a probabilistic model) to score documents associated with
the software, according to their likelihood of belonging
to the SIS of a change request. First, their approach ex-
tracts ”meaningful” words from documents, which are then
matched with code entities. Thereby, they are ranking the
documents to limit the amount of retrieved documents to the

relevant ones only. The whole process consists of two steps,
and starts with identifying the set of high-level documents
and then using documentation-to-code traceability links
to identify source code components which are initially
affected. They performed an early evaluation while studying
the LEDA C++ library and achieved a precision of 48%
with 70% of recall.

Uncovering evolutionary patterns from source code can
assist with impact analysis, if developers are aware of fre-
quent change patterns and involved code entities. The work
of Vaucher et al. [74] is therefore aimed at identifying such
patterns on the level of classes, using IR techniques. They
calculate the level of change for each class evolution by
retrieving information regarding the implementational and
functional changes from code, which are then stored in a
vector. Their technique retrieves the relative implementation
changes by counting the number of added, removed, and
modified instructions of methods. Functional changes in
public interfaces of classes are identified by dividing the
number of added and removed public methods through
the total number of public methods. The total change
of a class is then computed as the sum of all relative
and functional changes. Once all information have been
gathered, classes are clustered according to their change
behavior, where dynamic time warping (DTW) is applied
to identify similar groups of class-clusters (patterns). Class
patterns are further grouped according to categories such as
usual suspects (classes which frequently change together),
code stabilizations (new classes that require a few versions
before becoming stable), punctual changes (classes grouped
due to change in specific version), and common concern
(classes implementing same concern).

Similar to Arisholm et al. [70], Poshyvanyk et al. [75]
are also concerned with overcoming the limitations of static
coupling measures, and claim that different dimensions
must be covered by a reliable coupling measure to be of
use for impact analysis. They propose a new set of coupling
measures for classes, which are based on IR techniques.
Their approach utilizes overlappings in identifiers, names,
and comments to detect similarities between code entities
using latent semantic indexing (LSI). However, they do
not use common IR techniques such as word stemming,
expansion of abbreviations, and word replacement to limit
the amount of extracted terms. LSI creates a term-by-
document matrix which captures the distribution of words
in methods, and which represents each document as a vector
in the LSI subspace. Based on this matrix, they compute the
cosine between vectors to measure the conceptual coupling
between methods and then apply coupling measures to rank
classes for impact analysis, based on their coupling value.

7) Probabilistic Models: Probabilistic models, such as
Markow chains and Bayesian Belief Networks (BBN),
allow to model the propagation of changes based on well
explored mathematical models and theorems. Thus, they al-
low to compute the probability of an entity being impacted
by a change.

Zhou et al. [76] state that most MSR approaches neglect
code ownership and the age of changes in their analysis pro-
cess, as code of the same author is more likely to change as
well and entities affected by recent changes are candidates
which most likely change again. They propose an approach
which is based on BNNs, and is able to predict change
couplings. Changes are mapped onto different significance
levels, which are based on several complexity indicators
(e.g. nesting depth) or whether they modify or preserve
functionality. First, the change history and transactions are
recovered from version control repositories in order to
extract fine-grained code changes, which are then classified.
During this data import, a sliding window approach is used
to extract co-changes for preparing a static source code
dependency model. The second step consists of feature ex-
traction and instance generation, by selecting features that
influence whether entities might co-change. The number of
features per entity is counted to classify them into impact
groups of low, middle, high, and uncertain, by taking into
account the change significance level, co-change frequency,
age of change (old = stable, latest = most likely to change),
and the author. The third phase is comprised of training
and validation, therefore using the selected entities and their
instances to build the structure of the BNN. This is achieved
by applying the K2 algorithm and the SimpleEstimator
algorithm for calculating feature frequencies, which are
used to derive the probabilities.

To evaluate how each class will be affected by a change,
Tsantalis et al. [77] propose an approach to measure the
change proness of object oriented software. They distin-
guish between three ways how a class can be affected
externally by inheritance, references or dependencies. Fur-
thermore, they also consider the ”inner axis”, i.e. changes
within the class itself. Their proposed tool computes the
probability of a change for each axis while scanning the
development database of the software, where the devel-
oper has to classify changes as either internal or ripple
effect (external). The calculation of probabilities starts with
classes which are not part of a dependency cycle to enable
the stepwise computation of classes, where either their
internal or external axis belongs to a dependency cycle.
In the case of two classes being mutually dependent, the
following additional steps are performed. First, all relations
between the classes are temporarily removed to calculate
probabilities for single classes. Finally, the relations are
added again to adjust the probabilities accordingly.

Abdi et al. [78], [79] use static analysis to uncover
potentially affected classes and apply machine learning
to score each detected, possible impact with probabilities.
They consider 13 change types for classes, methods, vari-
ables, and distinguish between four types of links between
entities (association, aggregation, inheritance, invocation).
The impact depends on the type of link between two entities
and the type of change applied upon them. It is computed
by static code analysis based on couplings between classes,
using several coupling metrics. Four different machine

learning techniques (J48, Jrib, PART, NBTree) are then used
to compute the likelihoods of previously discovered poten-
tial impacts. Their approach is implemented in PTIDEJ for
Java, and achieved a precision of 69% in a case study of a
system consisting of 394 classes.

Further work of Abdi et al. [80], [81] is concerned with
the problem that causality relations between software arti-
facts are still not explained. Therefore, they propose a prob-
abilistic approach using BBNs to model impact propagation
on the level of source code. The proposed methodology
consists of three steps. First, the structure of the BNN
is constructed by analyzing the structure of the software
and by manually assigning initial probabilities. Secondly,
the parameter affectation is computed by distinguishing
between entry variables which can be directly measured,
and intermediate variables which are influenced by parent
nodes and are obtained through machine learning. The third
and last step performs the actual bayesian inference and
updates all conditional probabilities assigned to the nodes
of the BNN.

Mirarab et al. [82] also propose the usage of BBNs for
change impact analysis. Their proposed solution consists
of the three steps data extraction, network generation, and
network analysis. Data extraction recovers changes and
extracts dependencies from repositories through static cou-
pling measures. Meanwhile, IR heuristics are used to limit
the number of dependencies, and co-change patterns are
extracted from version control repositories. Secondly, net-
work generation uses three different models for prediction,
the bayesian dependency model (BDM), bayesian history
model (BHM), and the combination of both, the bayesian
dependency and history model (BDHM). The creation of
the models is based on the previously extracted informa-
tion and uses parameter learning to incorporate historical
information into the models. Last, the network analysis is
executed by applying bayesian inference to predict changes
from the network models, while using the EPIS sampling
algorithm. A case study conducted on a 263 kLOC system
revealed a precision of 63% while achieving a recall of
26%.

Similar to the work presented by Poshyvanyk et al. [75],
Gethers and Poshyvanyk [83] are concerned with detecting
conceptual couplings which are encoded in identifiers, com-
ments, and other attributes. They propose a new probability-
based coupling detection technique, Relation Topic based
Coupling (RTC), to compute the coupling between classes.
The applied RTM model is an unsupervised probabilistic
topic modeling technique, which associates topics with
documents by predicting links between documents, based
on topics and relations among documents. RTM extends the
latent dirichlet allocation (LDA) technique and represents
the software as a collection of documents, where a word is
the basic element, e.g. an identifier. In the RTC model,
each document corresponds to a class and is therefore
a collection of words (identifiers, methods etc.). They
conducted a case study on 13 programs, where Eclipse with

1.9 mLOC was the largest among them and achieved an
average precision of 12% and an average recall of 45%.

8) History Mining: History Mining is one possible tech-
nique for impact analysis and related to MSR [19]. It mines
clusters or patterns of entities from software repositories
which often changed together, as a change to one entity of
a cluster is likely to affect all the other entities within this
cluster as well.

Fluri et al. [84] acknowledge that MSR is able to detect
patterns of co-changing entities. However, most approaches
are not able to tell which co-changes were caused by struc-
tural changes and therefore being important for impact anal-
ysis, and which ones were caused by other, less important or
even non-relevant changes. They present an approach which
adds structural information to change couplings to improve
history-based impact analysis. Their approach consists of
the following four steps. First, modification records are
retrieved from CVS to build a release history database
(RHDB). Secondly, change coupling clusters are calculated
based on the information stored in the RHDB. Thirdly,
subsequent CVS versions are structurally compared, using
the following two techniques: the comparison of their ASTs
and the comparison of code entities (classes, methods, etc.).
Finally, change coupling clusters and structural differences
are used to filter changes that were not caused by structural
modifications. An early experiment with a 26 kLOC Eclipse
plug-in has shown that the distinction between structural
changes and other changes can help to reduce the amount
of mined change couplings, thereby increasing the precision
of impact analysis.

Fluri and Gall [85] continued their work presented in
[84] and analyze the impact of different change types.
They propose a taxonomy for change types and define
source code changes as tree edit operations on the AST
of a program. They further classify changes according to
their significance level, which can either be low, medium,
high or crucial. For example, they consider local changes
to have a low significance, whereas interface changes are
considered to be crucial. Their approach assigns a label to
each source code entity in the AST, which represents the
type of the entity. They also add a textual description (called
value), which contains the actual source code, e.g. a method
call with parameters. As a next step, they extract change
couplings from the RHDB which have a similar total
significance level, and weight them according to the number
of transactions they occurred in. The remaining change
couplings are then the most likely candidates for being
impacted by changes to coupled entities. The approach
has been implemented in the ChangeDistiller plug-in for
Eclipse, and was evaluated in a case study containing 1400
classes.

In earlier work, Gall et al. [86] proposed an approach to
extract software evolution patterns and dependencies from
CVS data. Their proposed methodology, QCR, investigates
the historical development of classes by analyzing the
structural information of programs, modules, and subsys-

tems in combination with version numbers and change
information obtained from CVS. QCR consists of three
analysis methods: the quantitative analysis (QA) to analyze
the change and growth rate of modules, the change se-
quence analysis (CAS) to identify common change histories
of modules, and the relation analysis (RA) to compare
modules and identify dependencies. The RA methodology
is able to detect couplings which refer to similar change
patterns among different parts of the software, to identify
classes which were most frequently changed together. The
detection is based on the comparison of class changes,
regarding the author, date, and time of the change, and uses
a time window of four minutes. The underlying assumption
of this analysis is, that all changes implemented by the same
developer at the same day point towards a logical coupling
between involved entities. The more congruities are found,
the stronger is the observed coupling. For example, if the
average class was changed five times a day, the analysis
is focused on classes which were changed more than five
times a day.

Zimmermann et al. [87] apply data mining techniques
to uncover couplings between fine-grained entities to
guide programmers among related changes. Their approach,
which has been implemented in the ROSE tool, consists of
two steps. First, the preprocessing extracts data sets from
CVS and maps changes to concrete entities of the program.
The second step involves the actual mining process to
uncover association rules between related program entities.
Each analyzed entity consists of three attributes, namely
category (e.g. file, method), identifier, and parent entity
(can be NULL). The process of mining association rules is
then based on these entities and different change types (e.g.
added, removed, altered), and uses the Apriori -algorithm to
compute rules from the data sets. Finally, mined association
rules are interpreted based on two different measures:
support count (number of transactions this rule has been
derived from) and confidence (how often did the rule
predict changes correctly).

Treating history as an explicit first class entity requires
the existence of a (meta-)model for software evolution,
which is proposed in the work of Gı̂rba et al. [88]–[91].
The authors define four characteristics for categorizing class
evolution [89], [90], namely age of hierarchy, stability of
inheritance relations, stability of class size, and balance
of development effort to define history as a sequence of
versions of the same kind of entities. Based on their Hismo
metamodel, they developed an approach to characterize and
visualize the evolution of classes [89], [90] called Class
Hierarchy History Complexity View, which utilizes tree
layouts and polymetric views, and two impact analysis ap-
proaches: Yesterday’s Weather [92] and the work presented
in [93].

Yesterday’s Weather [92] is build on the everyday phe-
nomena that today’s weather can be used to forecast to-
morrow’s weather. This also applies to software evolution,
where previous changes can be used to predict future

changes. The approach is build on top of two assumptions:
not every change is useful, and classes which changed in
the most recent past are most likely to change again. Class
changes in general are measured by monitoring changes
to their total number of methods. The authors measure
the evolution of the total number of methods (ENOM), the
latest evolution of number of methods (LENOM) which is
similar to ENOM but ranks changes according to their
time stamp, and the earliest evolution of number of meth-
ods (EENOM) which is the opposite to LENOM. The
detection of classes as potential candidate is then based
on intersections between EENOM (classes that did change)
and LENOM (classes likely to change). The final value of
Yester Weather’s forecast is then computed by counting the
hits for all versions and divide them by the total number
of possible hits.

Gı̂rba et al. [93] use formal concept analysis (FCA) to
detect common change patterns, which affect many entities
at the same time. They utilize a historical measure to detect
changes between two versions by identifying an excerpt
of history in which a certain change condition is met,
built upon the Hismo model. For identifying changes, FCA
uses a matrix to associate entities with properties. The
property matrix of two versions is then compared using
logical expressions to identify changes among properties.
This detection process applies three different measures to
identify changes: number of packages (NOP), number of
classes (NOC), and number of methods (NOM). Once all
changes have been retrieved, a concept lattice is constructed
based on the matrix. Meanwhile, a heuristic is used to
remove entities which changed more often than the detected
concept and to remove concepts with less than two entities.
The remaining co-change patterns can then be used for
impact analysis as they contain the entities which changed
together the most.

Dependencies between source code entities encoded in
different programming languages are difficult to determine
using traditional impact analysis techniques. Ying et al. [94]
propose an approach which is based on mining change
patterns among files to suggest possibly impacted source
code files to the developer, independent of the programming
language. First, their approach extracts historical data from
repositories and preprocesses them, by dividing them into
sets of atomic changes and by skipping non-useful changes
(e.g. changed comments). Then, an association rule mining
algorithm is applied to detect reoccurring patterns, using
the FP-tree algorithm. All relevant source code files are
identified by querying the file under consideration against
the mined patterns, to identify files which should change
together with this one. Finally, query results are sorted
into three groups according to their relevance: surprising,
neutral, and obvious based on structural information of the
changes.

Hassan and Holt [95] investigate how changes of one
entity propagate towards other entities of the same pro-
gram. They analyze historical development data stored in

source code versioning systems by transforming change
information (granularity: files) into the more appropriate
level of source code entities. The transformation process
consists of the classification changes into the groups of
changes containing added code entities, and such containing
no added code entities. Their approach utilizes several
heuristics to capture impacts, namely historical co-change
records, code structure relations (i.e. calls, uses, defines),
code layout (i.e. location of entities relative to classes and
components), developer data (entities changed frequently
by same developer), process data (change propagation
depending on the used process), and the similar names
heuristic. Each heuristic uses several pruning techniques to
cut off unlikely results: frequency pruning (i.e. remove the
least frequent ones), recency technique (i.e. return those
that where related in the past), and a combination of
frequency pruning and recency technique together with a
decay function or a counter. An evaluation of all heuristics
revealed that the hybrid ones achieved the best results.

The approach presented by Bouktif et al. [96] proposes
files that should co-change with a given entity, based on the
detection of change-patterns through dynamic time warping
(DTW). The approach computes distance measures between
two files within a certain time window to filter unrelated
files, using distance thresholds. The actual identification of
change patterns is a three pronged process, which starts by
building an XML-based log file containing all moments
in time when files were added, removed, or changed.
The second step involves the transformation of data by
computing appropriate time windows to limit the effects
of past changes, where the length of a window can be
determined by either imposing a fixed distance in time
(”changes not older than...”), or by imposing a fixed number
of past changes (”the last X changes”). Finally, DTW is
used to identify change patterns by aligning each possible
pair of file histories, and by grouping histories with a
distance below a predefined threshold.

Instead of extracting evolutionary data from version con-
trol repositories, which involves expensive preprocessing
[97], it is also possible to extend IDEs to record changes on
the fly. Robbes et al. [98], [99] propose a new concept for a
CASE tool supporting software evolution by recording de-
veloper activities in an IDE and demonstrate their SpyWare
platform in [100]. When recording every step of developers,
there is no more need for extracting data from repositories,
which contain only those information which have actually
been committed. The tight integration into the IDE also
eases the work for developers, who no longer must cope
with a multitude of different tools. Automatically recorded
changes enable to model the change history as a sequence
of first-class change operations, in contrast to the concept of
program versions. There exist a variety of embedded tools
within SpyWare to facilitate impact analysis and to assist
developers when changing software.

9) Combined Technologies: Combining MSR which an-
alyzes a series of versions with traditional impact analysis

which is focused on a single version could yield several ad-
vantages. Traditional analysis applied on single versions of
a program is not adaptive, whereas MSR-based approaches
rely on historical data, which might be incomplete or out-
dated and therefore inferring wrong impacts [101]. There-
fore, Kagdi and Maletic [102], [103] are concerned with
combining both methodologies to improve the prediction of
changes. The basic idea is to apply traditional techniques
on single revisions and to infer additional dependencies
from version histories using MSR approaches. Using the
achieved results to cross validate each other is a potential
technique to further improve impact analysis. In [104],
Kagdi and Maletic further refine the idea by proposing to
convert the source code into an XML representation using
srcML to enable source code dependency analysis. The
authors plan to use the mining tool sqminer and the diff-tool
codeDiff to mine fine-grained co-changes at code level. The
last step is focused on matching the granularity of entities
obtained through MSR and traditional analysis to incorpo-
rate both results by either forming the union (Disjunctive
Approach) or intersection (Conjunctive Approach) of both
sets.

The approach of German et al. [105] is aimed at identify-
ing parts of a program which have been forgotten to change,
by utilizing prior code changes to determine what functions
have been modified. The approach is based on the con-
struction of a dependency graph for each function, which
contains all invoked functions (similar to a call graph), by
defining a window of interest which contains a sequence of
changes. This change information is extracted from version
control systems by comparing subsequent versions of the
program. Each changed node of the dependency graph is
marked as changed, whereas all successor nodes are marked
as affected. Unmarked nodes and nodes outside the area of
interest are pruned using the following two metrics: ratio
of affected functions, and ratio of changed functions. The
result of this process is a change impact graph (CIG), which
visualizes the impacted elements and can be used for further
judging the effects of a change.

Canfora and Cerulo [106] want to combine the infor-
mation stored in CVS and Bugzilla3 to improve impact
analysis. The authors combine MSR with IR techniques to
bridge between both data sources. Therefore, the authors
assume that commit reports and previous change requests
which focus on a certain file are a good indicator to predict
further changes of the same file. The proposed approach
computes the similarity between old and new change re-
quests, which is based on textual similarities of bug reports,
feature proposals, commit messages, and change requests
themselves. The computation of similarities uses standard
IR procedures, such as stop word elimination, word stem-
ming, and a probabilistic IR comparison algorithm. Finally,
a ranked list of files is presented to the developer listing
likely candidates.

3http://www.bugzilla.org/

Both authors present a refinement of their approach in
[107] to enable more fine-grained analysis. The improved
approach recovers the history of source code modifications
(added, removed, and changed LOC) from CVS, and creates
a line history table, which states when each LOC was
modified. Therefore, they are storing each LOC together
with related free text (e.g. comments). The association
between free text and LOC is established by an indexing
process, which generates a ranked list of code entities
through IR techniques. The index process is comprised
of free text analysis, building document descriptions, and
scoring each document description to match documents and
code. Free text analysis divides free text into a sequence of
index terms, which is compressed by word stemming and
stop word elimination. Obtained index terms are counted
per document to build the document description, which is
then used to describe each source code file together with
a change request. Finally, a scoring function is applied to
match the document descriptions with related lines of code.

A typical limitation of existing MSR-based techniques
is the large amount of data which is spread over a long
period of time, which typically complicates the mining of
association rules. Ceccarelli et al. [108] propose a new
MSR approach which is combined with a statistical learn-
ing algorithm to overcome this limitation. The proposed
methodology infers mutual relationships between software
artifacts and utilizes the Granger causality test to identify
consequent changes. Evolutionary dependencies between
multiple time series are captured using the Vector Auto-
Regression model, whereas the Granger test is used to
identify changes which are useful for forecasting future
changes of other software artifacts. Canfora et al. [109]
extend the work presented by Ceccarelli et al. [108] by per-
forming a more detailed case study, including the analysis
of the Firefox web browser. However, the average precision
achieved with the Granger test is below 25% in two of four
studies, at approximately 25% for one study and 60% for
the fourth study, while recall is also between 15% and 60%.

Kabaili et al. [110] investigate how developers can evalu-
ate the changeability of object oriented software, based on a
formal model for impact detection proposed by Chaumun et
al. [69]. The developed extension of the model encompasses
impact analysis and regression testing by analyzing classes,
methods, and variables of a program. According to the
utilized impact model, the impact of a change depends on
the type of the change and the type of relation between
two program entities. The process of computing ripple
effects begins with identifying directly affected classes.
Indirectly affected classes are then computed by analyzing
the relations between affected and related classes, while
considering the type of change. The identification of af-
fected regression tests to be re-executed is achieved in a
similar fashion, based on affected classes.

The contribution of Queille et al. [111] is twofold. First,
they separate the definition of impact analysis from program
comprehension. Secondly, they develop an impact analysis

model which is based on propagation rules and program
dependencies. The proposed impact model is based on
static source code analysis, i.e. the extraction of a program
dependency graph, which is combined with closeness infor-
mation of textual entities. They define a set of propagation
rules for the computation of change impacts, which is
based on the dependency graph and is implemented in
their IAS prototype tool. Barros et al. [112] continue the
work of Queille et al. by refining the concept of impact
rules and providing steps required for an interactive impact
analysis process. The extended rule concept distinguishes
between rules which result in a strict impact, and those
which result in a potential impact, by assigning a virtual
order to potential impacts when recursively propagating
changes. Barros et al. enhanced the IAS tool by reacting
on developer feedback to enable interactive impact analysis,
i.e. allowing developers to invalidate proposed impacts and
edit the dependency graph.

The goal of the work presented by Huang and Song
[113] is to combine static dependencies and dynamic source
code analysis to improve the precision of impact anal-
ysis. The proposed dynamic approach calculates impacts
according to binary dependency information gathered at
runtime, by collecting execution traces and considering
different entry and exit types (e.g. method entry without
passing arguments). The impact of method body changes
is then computed as follows. First, the execution-after set is
calculated for the changed method. Secondly, the approach
constructs a dependency graph for the changed method
and adds all related methods to the impact set, according
to the relation between them, e.g. returns into or passes
parameter. In contrast, the impact of method interface
changes is calculated as follows. First, recorded execution
traces are searched for method entry events of the changed
method. A backwards trace is then computed to identify the
method’s caller, and both methods are added to the impact
set. Finally, the impacts of atomic changes of attributes
are calculated by determining methods which depend on
them and adding transitively related methods to the impact
set. Huang and Song later improved the first version of
their methodology and implemented the approach in the
JDIA tool [114]. They added support for the identification
of runtime inheritance relations, which is achieved by
identifying how the inheritance hierarchy is reflected in an
execution trace. Therefore, they monitor constructor calls
and investigate the differences in event sequences of certain
Java-instantiation rules to identify inheritance relationships.

Walker et al. [115] propose a new approach to assess
and communicate technical risks, which is based on weakly
change estimations, historical change behavior, and the
current structure of the software. The approach is built on
a probabilistic algorithm, which is combined with depen-
dency analysis and history mining. A structural dependency
graph is constructed where each edge is annotated with
the probability of propagating changes from the source to
the target node. The initial probabilities are computed by

extracting atomic change sets from CVS repositories and
counting how often two entities changed together. These
initial probabilities are then propagated through the graph
using a modified version of the Dijkstra-algorithm. Once
the graph and all probabilities have been computed, the
TRE tool presents the graph to the developer who then
decides which entity is truly impacted, based on assigned
probabilities.

Similar to the work of Huang and Song [113], [114],
Maia et al. [116] propose a new approach to combine
static and dynamic impact analysis to improve the detection
of impacted entities, and to reduce the number of false-
positives. The approach combines execution after sequences
with the analysis of program dependencies for impact
prediction. First, a dependency graph is extracted from
source code while using a fixed distance to cut off branches.
Secondly, execution after sequences and frequency informa-
tion are recorded to derive further dependencies (succession
relations) for impact analysis. The required frequency in-
formation are collected by counting the number of calls
per method, as long as the successor-stop-distance has not
been reached. Finally, results of both steps are joined and
ranked based on the impact factor gained in the 2nd step,
where the impact factor is the probability of an entity being
the successor of an event in the change set, obtained by
dynamic analysis.

Wong et al. [117] emphasize the importance of con-
sidering the temporal dimension of history when mining
change couplings from version history, as the choice of
the timespan to be analyzed impacts the achieved results.
The authors provide a formalization of logical couplings as
stochastic processes, which are based on Markov chains,
and define families of stochastic dependencies. The pro-
posed methodology applies a sliding window approach,
which equals a discrete k-th order Markow process to
limit the length of the historical data which should be
analyzed. The probability of dependencies is computed
by a smoothing function, which controls how much each
transaction contributes to a dependency. This is achieved
by preferring recent history over distant history. Stochastic
dependencies obtained through this process are then used
to reason whether an element will be impacted or not.

By combining information retrieval (IR) and evolutionary
couplings for impact analysis, Kagdi et al. [118] provide a
developer centric technique which focuses on identifiers,
comments, and other source code entities. Their approach
obtains conceptual information using IR techniques, and
mines evolutionary information (co-change patterns) from
version control repositories. The process of identifying
possible impacts starts with computing conceptual cou-
plings between entities of the same program version (the
most recent version) using IR techniques. Next, evolu-
tionary couplings are mined from version history while
not considering the current (most recent) version. The
mining process consists of itemset mining, as the order of
entities is not important and fine-grained change sets are

searched for evolutionary couplings. In a final step, both
coupling information are combined to predict the impact.
However, it still remains an open question whether to use
the intersection or union of both as shown in earlier work
of Kagdi and Maletic [104].

Sun et al. [119] propose a static impact analysis tech-
nique called HSMImpact, which is based on hierarchical
slicing models. They apply a stepwise slicing algorithm
on four types of hierarchical dependency graphs: package-
level dependency graph (PLDG), class-level dependency
graph (CLDG), method-level dependency graph (MLDG),
and statement-level dependency graph (SLDG). The en-
tire HSM analysis process consists of three steps. First,
hierarchical change sets are defined at different levels of
granularity. Secondly, the slicing algorithm is applied using
appropriate slicing criteria for each level of granularity, e.g.
variables or classes. Finally, hierarchical impact sets are
compute ranging from package to statement level.

The aim of the master thesis of Mohamad [120] is
to improve program comprehension by applying impact
analysis techniques, where the actual impact analysis is
achieved with the help of program slicing and traceability
links. The approach of Mohamad is based on the CATIA
tool developed by Ibrahim et al. [121]–[123]. It supports
impact analysis by visualizing program dependencies and
traceability links, which are used to trace changes across
different entities of the program. The author enhanced the
tool by providing a graph view for impacted elements,
which replaced the former textual output of CATIA.

The PhD thesis of Kagdi [20] is build upon a compre-
hensive survey of MSR approaches conducted by Kagdi
et al. [19], and the work presented by Kagdi and Maletic
in [102]–[104]. The author proposes an approach to mine
evolutionary couplings from version histories, which is
combined with static dependency analysis of single versions
to improve coupling detection. The goal of his work is to
build a holistic approach for software change recommenda-
tion, by validating the outcome of dependency analysis with
results achieved by MSR techniques. The mining process
is comprised of training and validation phases. The training
process mines a certain potion of the version history to infer
change couplings between software entities. The validation
process then examines extracted couplings to check whether
changes were predicted correctly. Apart from impact anal-
ysis, his thesis also addresses the application of MSR for
mining traceability links from software repositories, and
other related tasks.

Lee [124] investigates the additional challenges of ripple
effect analysis in object oriented software, which due to
its nature and many hidden dependencies, is more compli-
cated than ripple effect analysis in procedural programming
languages. The contribution of her PhD thesis is a set of
object oriented data dependency graphs, impact analysis
algorithms, and evaluation metrics, which have been imple-
mented in the ChaT tool. The proposed algorithms, such as
FindEffectInClass or FindEffectByInheritance, rely on the

computation of the transitive closure of object oriented data
dependency graphs (OODG), which are based on control
and data flow information extracted from the program. The
algorithms analyze relationships among components and
weight them according to the type of relation, which is
expressed by a set of impact propagation rules.

Similar to the work of Kagdi and Maletic [102], [103],
Hattori et al. [14] combine traditional impact analysis and
MSR by applying Bayes’ theorem to combine results com-
puted with both techniques. First, their approach computes
a dependency graph that represents the source code and
uses dependency types like contains, isAccessedBy, and
many others. A reachability analysis is then applied on
the graph to estimate possibly impacted elements. Next,
a MSR approach using a sliding window of 200 seconds
is used to extract change sets. Computed change sets
and possibly impacted entities are then analyzed by a
probabilistic algorithm using Bayes’ theorem to remove
false-positives, which is based on the frequency of commits.
In a final step, the Apriori and Disjunctive Association
Rule (DAR) algorithms are used to weight and sort possible
impacts according to their likelihood. As a result of their
conducted case study, DAR turned out to be more reliable
and less resource consuming then Apriori when analyzing
fine-grained entities.

Many software systems are comprised of different mid-
dleware and other COTS components, which communicate
via messages. Popescu et al. [125], [126] are concerned
with analyzing impacts which spread across system borders
due to message communication in event based systems.
Their approach analyzes control and data flow to iden-
tify incoming and outgoing message interfaces, and dis-
tinguishes between inter-component and intra-component
dependencies. Inter-component dependencies are collected
while analyzing incoming and outgoing component inter-
faces and matching message types of sinks and sources. In
contrast, the intra-component dependencies are identified
by calculating a call graph which is annotated with message
types and access permission information to analyze the
message control flow within a component. Finally, both
dependencies are merged into a system dependency graph
where reachability analysis is used to detect impacted
entities.

10) Other Technologies: There are two studies which
cannot be classified according to their utilized technology,
as one is using a unique method [127], and the other study
provides no details on the utilized method [128].

The approach of Moonen [127] introduces a lightweight
impact analysis technique, which is based on the concept
of island grammars, and provides a reusable and generative
framework for impact analysis. The author developed the
ISCAN tool, which uses a extract-query-view-approach and
consists of a parser, a repository, and a user interface. The
parser utilizes syntactical analysis which is based on island
grammars and consist of two parts: the detailed productions
(the language constructs of interest; the islands) and the

liberal productions (the remainder of the input; the water).
In this case, the language constructs of interest are COBOL
data fields. The remainder of the code, which is not related
to these data fields is considered to be water. The technique
of island grammars brushes aside non interesting parts of
the code to speed up the analysis. Every entity which
remains in one island after brushing aside the water is
reported to be impacted by a change.

Hoffman [128] investigates the complex nature of re-
lationships in object oriented software, which are caused
by information hiding, encapsulation, polymorphism, and
related concepts. The author concludes that developers must
be able to trace such relations, as they support the testing
and understanding of software. The proposed approach is
based on a multistaged process, the comparative software
maintenance (CSM) methodology. CSM enables developers
to determine the components of a system and their rela-
tionships. It allows to model components as extended low
level software architecture (ELLSA), which creates a virtual
software system and can be used for predictive impact
analysis (PIA). It further allows to compare the ELLSA
model structure for PIA and comparative impact analysis
(CIA) to determine affected components, and to instrument
source code for checking test execution coverage. CSM
performs change analysis as a base for impact analysis
and is implemented in JFlex, which scans source files
and compiles obtained data into the ELLSA model. This
ELLSA model (a copy of original system) can be used to
ask ”what if” questions (PIA) and enables the comparison
of two different versions of ELLSA model.

C. Architectural Models

Existing impact analysis techniques require source code
or architectural representations in order to predict changes.
However, such data is not always available for all software
systems or they are not useful for the person performing
the impact analysis (e.g. a requirements engineer might find
it hard to analyze source code). Therefore, Aryani et al.
[129], [130] propose an approach to predict the change
propagation based on information which are visible and
understandable to domain users. The approach operates
without requiring access to source code or development
histories, as it derives information from user manuals and
expert knowledge, and stores them in a weighted depen-
dency graph. Logical relations between domain functions
(functions provided to users), domain variables (data with
clear meaning at domain level, e.g. a date) and user inter-
face components (contains at least one domain function) are
used to derive the dependency graph, and enable to reason
about change propagation, using reachability analysis.

The work of Briand et al. [131], [132] is concerned with
keeping the architecture of a software system in a consistent
state and synchronized with the underlying source code.
Therefore, the authors propose an impact analysis approach
for architectural models, which operates on UML models
and supports the entire UML2 specification. The authors

use OCL4 to express explicit rules, which are used to search
for impacted elements, where a set of 97 OCL rules is
provided in [131]. The propagation of changes to indirectly
related software entities is controlled by a distance measure,
which is used to either cut off the change propagation or
to weight impact paths according to their nesting depth.
Another contribution of their work is a taxonomy of change
types proposed in [131], which provides three elemental
change types: add, remove, and change.

Analysis and design models must change when software
evolves. Which elements of design models should change
due to a given change, and which elements changed to-
gether and are likely to do so again are the motivating
questions for the work of Dantas et al. [133]. Their pro-
posed methodology uses historical information to uncover
traceability links between UML models, based on mined
association rules. Each traceability link can be enhanced
with the information who, when, where, why, what, and
how it was changed to support the developer. The actual
mining of association rules is based on the Apriori al-
gorithm which uses support and confidence metrics, and
minimum thresholds for pruning proposed impacts.

The work of Xing and Stroulia [134]–[136] is focused
on the evolution of UML class diagrams. The motivation
for their work is the insufficient support of diff -tools for
the differencing of logical models. Existing tools are only
able to perform a line-based differencing which is not suit-
able for hierarchical models. However, understanding class
evolution is essential for understanding the current design
of the software. Thus, they developed the UMLDiff tool
which provides fine-grained change information between
subsequent versions of a class diagram. The tool allows to
extract hidden evolutionary dependencies between classes
and creates class evolution profiles which can be used to
predict future changes.

Current visualization approaches are useful for under-
standing software evolution, but they assume that evolution
of a system can be displayed as an unbroken sequence
of time, which does not hold for every system [137].
McNair et al. [137] developed a lightweight approach to
examine the impact of changes on a system’s architecture
by visualizing ripple effects and incomplete histories, which
is implemented in the Motive prototype. The required in-
formation are collected by analyzing a development period
within a certain timeframe. This is achieved by prepro-
cessing data from CVS repositories to compute the impact
of a change-set by scanning files which were modified
by this change. Motive then uses these information to
display software as a graph and annotates entities as either
added, deleted or phantom objects (added and deleted
within analyzed timeframe) to visualize the evolution of
the system.

Many systems are interconnected with other software
components, as they offer special interfaces or services.

4http://www.omg.org/spec/OCL/

Changes to one system or its interface are therefore likely to
affect connected systems as well. However, it is difficult to
estimate the impact of changes, which are spread across
system borders. Yoo and Choi [138] propose an XML
based approach for Interface Impact Analysis, which builds
a common information architecture between connected
systems to facilitate impact assessment. Their approach
translates system specific messages into a more comprehen-
sible and extensible XML format, and constructs a message
dependency graph to keep track of system communication
and data exchange. Message flow between components is
recorded and a interface message filtering algorithm is used
to prune paths of messages, which are of no interest for
the current change. The obtained message communication
graph can then be used to assess the impact of a change
on related systems.

Enterprise architectures combine organizational struc-
tures, business processes, and the actual software architec-
ture. A single change can affect many different domains of
enterprise architectures, since these combined structures are
very change prone. Therefore, de Boer et al. [139] analyze
and assess impacts on the enterprise-level of an architecture.
The proposed analytic process is based on an enterprise
architecture modeling language called ArchiMate, which is
a combination of Testbed (a business modeling language)
and UML concepts at a very general level. It features a
business layer, an application layer, and a technology layer.
Architectural entities and dependencies between them are
stored in a dependency graph to enable impact analysis,
which is based on the tree architectural layers supported
by ArchiMate.

Vora [140] defines an architectural modeling style called
temporal control flow rule-based architecture (TeCFRA)
and a corresponding ADL called TeCFRADL. Both are
used to model the design and evolution of software ar-
chitectures, while supporting non-functional properties at
component level. TeCFRA consists of an execution and
evolution management framework. The execution frame-
work provides external control flow graphs, which allow for
flexibility during the analysis and are focused on method
invocations. This enables developers to separate applica-
tions into activities and tasks, where the later correspond to
methods and method calls. Control flow rules are then used
to compute the impacts of changes, based on the control
flow graphs. The evolution management framework on the
other hand captures dependencies between architectural
components by mapping evolution specifications to ADL
specifications, which contributes to the process of impact
analysis.

Analyzing the static structure of component-based soft-
ware architectures is an important step of architectural
impact analysis, which can further be improved by incorpo-
rating dynamic UML diagrams, such as sequence diagrams,
into the analysis process. Feng and Maletic [141] propose
an approach to support dynamic impact analysis on the
architectural level by providing a taxonomy of changes

in component-based architectures, and a set of impact
rules to transfer changes among affected components. Their
approach derives component interaction traces from com-
ponent diagrams and sequence diagrams, which are sliced
by impact rules to obtain the set of affected entities. The
proposed taxonomy for change types distinguishes between
atomic changes such as the addition or deletion of an entity
and compound changes. The approach is implemented in
the SOCIAT tool.

The goal of Tang et al. [142] is to record architectural
decisions in a structured way, as design rationale is often
not documented and therefore getting lost. However, such
decisions are a useful source for later impact analysis.
Tang et al. use the architectural rationale and linkage model
(AREL) to capture design decisions and design elements
on an architectural level, based on their earlier work on
the architecture rationalization method (ARM). The authors
analyze causal relationships between architectural elements
to perform what-if reasoning with elements and relations
of the architecture, which are modeled as Bayesian belief
networks (BBN). The transformation of architectural ele-
ments and relations into a BBN is achieved by mapping
ARM elements to BBN nodes, and ARM relations to
BBN edges. The architect then assigns initial probabilities
to elements by making estimations, which are based on
personal experiences and architectural assessment. Finally,
the BBN and Bayes’ theorem are used to compute the
likelihood of a change, which also depends on the type
of dependency between two entities.

Zhao et al. [143] observed that the affects of changes
do not limit themselves on source code, but also spread
across architectural models and other design documents.
They emphasize the need of addressing the question of
impact analysis on an architectural level by expanding tool
and method support. The authors propose an approach for
automated change effect assessment, which is based on a
formal architecture specification using the WRIGHT ADL,
and define new slicing and chopping methods for software
architectures. The approach infers information flow within
components from WRIGHT -descriptions to construct an
architectural flow graph. This graph is then used to compute
architectural slices to reveal possibly impacted entities.

Approaches which are trying to predict and assess ripple
effects based on historical data alone suffer from incom-
plete and inconsistent version histories. Therefore, Wong
and Cai [101] propose an approach to extract logical
models from UML class diagrams and combine them
with historical information from software repositories. The
proposed approach is based on a logical framework called
augmented constraint network (ACN), which is used to
model design decisions and their relations. UML elements
are transformed into ACNs, where relations are added as
constraints, and the interface and implementation of a class
are added as variables. Impacted elements are identified
by weighting classes according to their number of ACNs,
where more sub-ACNs result in a higher rank. The distance

between two classes also influences the weight, as closely
related classes receive a higher ranking. Obtained weights
are multiplied with the co-change frequency of entities,
which is mined from version histories. Finally, the ten
highest ranked elements are reported to the user.

van den Berg [144] proposes an approach for impact
analysis, which is based on traceability relations between
elements of software artifacts. The author provides formal
definitions of specific dependency types, and an algorithm
which computes and stores dependencies in matrices. The
approach computes traces between dependency matrices of
different entities in a double-staged process: the matrices
are multiplied and a crosscutting matrix is derived from the
obtained product. A crosscutting dependency is defined as
a relation where both, source and target node, are involved
in other relations as either source or target. The proposed
approach also allows for multiple levels of dependencies, by
applying a series of matrix operations. Identified crosscut-
ting dependencies are then used to detect possibly impacted
elements.

D. Requirements Models

Changing customer needs and constantly changing tech-
nology demand for impact analysis on the level of soft-
ware requirements [145]. A study which investigates the
influence of requirements changes in evolutionary devel-
opment was conducted by Nurmuliani et al. [146], who
concluded that late additions of requirements are likely
to inflict high costs and long delays in software devel-
opment. Thus, requirements impact analysis is essential
to assess the possible costs and affects of introducing
new requirements or of changing existing requirements.
Further, a graphical representation of requirements, based
on a requirements modeling language, is often considered
as helpful for understanding and changing them. How-
ever, it is not clear if it really improves the detection
of impacts among requirements. Mellegård and Staron
[147] conducted an experiment to find out how graphical
requirements models influence impact analysis. Therefore,
the authors examined differences between traditional text-
based requirements and requirements models. The authors
use a domain specific modeling language called graph-
ical Requirements Abstraction Model (gRAM) for com-
paring against textual requirements. The gRAM language
provides four levels of requirements-abstraction: product-
requirements, feature-requirements, function-requirements,
and component-requirements. gRAM further supports three
types of traceability-links to connect requirements: owns,
satisfies, and depends-on. Eighteen students took part in
the experiment, and Mellegård and Staron measured the re-
quired effort, achieved accuracy, and perceived confidence
while changing requirements, presented either as text or
gRAM models. The use of graphical models resulted in
considerably decreased analysis time, but slightly decreased
accuracy on the other hand.

Only little work has been spent on creating suitable

impact analysis techniques for requirements, which is due
to their abstract nature. Lock and Kotonya [148] propose
a hybrid technique, which combines traceability links and
probability estimations for analyzing the impacts of re-
quirements changes. First, traceability links are extracted
from the project and combined to a single traceability
graph. Each link is further annotated with a probability
value, expressing the likelihood that the link will propagate
changes. This probability value is based on developer
experience gained through case studies, and is a measure for
how often this impact path was taken by former changes.
The result of this process is the final impact propagation
graph, which enables the propagation of changes based on
weighted traceability links.

ten Hove et al. [149] investigate the role of traceability
for requirements impact analysis and distinguish between
the domain (what the stakeholders want to be modeled) and
the actual model, which is used by analysts and contains
knowledge for certain purposes. Their proposed approach
consists of two phases: the validation of external inconsis-
tencies, which define differences between the domain and
the model, and the actual model change. External incon-
sistencies are evaluated by identifying domain changes and
splitting them into sets of primitive and atomic changes.
A set of impact rules is then applied to propagate changes
across the model. The final model change is achieved by
mapping and implementing the detected external inconsis-
tencies onto the model.

Hewitt and Rilling [145] analyze scenarios and compo-
nents, which are stored in use case maps (UCM) [23] to
assess the impact of requirements changes on a system,
where UCM scenarios provide information how system
components interact to fulfill the requirements. Their pro-
posed approach is based on dependency analysis among
UCM scenarios and components, and operates as follows.
First, scenarios are related by common functionality, where
functional groups of scenarios are created that carry out the
same goal. Secondly, forward and backward dependencies
of components are determined and the transitive closure
of the obtained dependency graph is computed to enable
impact propagation.

Similar to the work presented by Hewitt and Rilling
[145], Hassine et al. [150] analyze the impact of require-
ments changes based on UCM models. They introduce an
UCM slicing algorithm to enable early analysis and lo-
calization of changes. Therefore, they define dependencies
between UCM elements and group them by functional,
temporal, containment, and component dependencies. The
proposed slicing algorithm tries to isolate a set of scenarios
and is based on dependencies, which is similar to source
code slicing which isolates statements affecting a program
variable. The scenario slicing algorithm is implemented in
the CIA tool, which allows users to decide what they want
to change and assess, e.g. adding or removing a function
or changing a behavior.

Goknil et al. [151] propose a metamodel for require-

ments, which is based on well defined requirements rela-
tions to enable the tracing of changes for impact analysis.
The metamodel contains four types of relations (refine,
require, conflict, contain) and supports the addition of new
relations as specializations of existing ones. They combine
the knowledge of change types (e.g. ”add a requirement”)
with the type of relation (e.g. ”A contains B”) to propose
possible impacted elements, and provide information how
they are impacted (e.g. ”X must be deleted”) by establishing
a set of impact rules, which operate on traceability relations.

The automated handling of traceability relations for
impact analysis is the driving force of the work of Lee
et al. [152]. The authors propose a goal-driven traceability
approach for analyzing requirements, which combines the
concepts of goals and use cases. The utilized goal concept is
very similar to GRL [23], as it distinguishes between rigid
goals and softgoals (GRL contains goals and softgoals).
Goals and use case are connected via three different trace-
ability relations (evolution, dependency, and satisfaction),
which are stored in a design structure matrix. Impacted
entities can then be determined by applying a reachability
analysis on the matrix.

According to the work of Spijkerman [153], requirements
are subject to frequent changes right from the beginning,
as they are the first artifacts of the software development
process. The author exploits the semantics of requirements
relations to perform impact analysis by establishing a
classification of requirements changes. The contribution of
his thesis is a refinement of requirements relations, which
are captured by traceability links and a set of impact rules
that distinguish between different types of traceability links
to facilitate impact analysis.

The PhD thesis of Jönsson [154] explores impact analysis
in the light of requirements, and presents organizational
views of impact analysis. One central result of his thesis
is that most studies focus on technical views of impact
analysis, thereby neglecting organizational views, such as
helping to understand how impact analysis is actually used
in practice. The author further discusses twenty different
uses for impact analysis in software development, e.g. ana-
lyzing system impacts or time-cost-tradeoffs, and proposes
an information retrieval based approach for impact analysis.
The proposed IR approach uses latent semantic indexing
(LSI) in combination with a term-by-document matrix to
associate terms with documents. Once the indexing process
has been completed, inferred relations can be used for
impact analysis.

O’Neal and Carver [155] analyze the affects of changes
on already completed work products, and compare re-
quirements changes based on their severity. The authors
propose an impact analysis approach, which is based on
traceability and a method to prioritize requirements changes
based on an impact metric. The impact metric analyzes
traceability links between work products and requirements,
which are annotated with additional properties. A developer
can assign the following properties: complexity of the work

product, effort to create the work product in person hours,
development phase in which the work product was created,
and the influence of the source work product on the target
work product. The impact metric is then used to calculate
the required effort of changing existing work products,
where changes are further grouped into fuzzy compatibility
classes by ranking the mean of impact metrics on the
classes of a work product.

In later work, O’Neal [156] proposes an predictive
approach for requirements impact analysis, which is also
based on traceability, the Trace-based Impact Analysis
Methodology (TIAM). TIAM utilizes traceability links and
a requirements change impact metric to assess the impact of
requirements changes. The proposed methodology operates
with different types of changes, each having a different
impact, and generates a set of potentially impacted work
products for each requirements change. The prediction
process operates in different steps and starts with grouping
work products by a fuzzy-algorithm. Secondly, the impact
metric is applied on work products to calculate their impact
values. The obtained set of work products is then ordered
according to the impact value to evaluate the risk of
implementing a requirements change.

E. Miscellaneous Files and Artifacts

Antoniol et al. [157] focus their effort on extracting
co-changing files from CVS repositories. Their approach
enables impact analysis on file level, as co-changing files
contain non-trivial dependencies, which are otherwise hard
to determine. The proposed approach extracts file histories
from CVS repositories, according to the time window of
interest. Then, Dynamic Time Warping (DTW) is used
to compute the distance between pairs of histories by
computing non-linear mappings of one history to another,
and by minimizing the distance between them. Finally,
obtained distance measures are used to group and filter
similar evolution histories, in order to detect groups of co-
changing files and to trace how long they have co-changed.

Clusters of artifacts which frequently change together are
good candidates to be grouped in subsystems, and can be
used for assessing the impact of changes on single artifacts.
Beyer and Noack [158] propose a two-staged methodology
for identifying artifacts which should form a subsystem
based on their co-change behavior. The authors derive
several requirements for co-change layouts, and introduce
a model to produce co-change layouts. They extract a
co-change graph from version control repositories, which
contains vertices (files) and edges (change transactions).
The computed layout of the graph reveals clusters of co-
changing artifacts, as each edge is labeled with the degree
of co-change between two nodes.

Askari and Holt [159] propose three algorithms to predict
the likelihood that a certain file will change, where one
algorithm also detects co-changing file patterns. The algo-
rithms extract change information from CVS repositories,
count the number of modifications for each file, and sort

them into a list. This list is used to create a sequence of
file changes which based on the Most Likely Estimation
(MLE) model, can be used for change prediction. The 2nd
algorithm enhances the concept of MLE with Reflexive Ex-
ponential Decay (RED), which decreases the rank of each
file periodically if the file is not modified again. The 3rd
algorithm, RED-Co-Change (REDCC), is an improvement
of RED which integrates co-change information into the
prediction process by updating the rank when co-changing
files are modified. Developers concerned with impact anal-
ysis can benefit from the ranked list, as the highest ranked
files are worth to be inspected when changing the software.

Most impact analysis techniques are limited to source
code, and do not consider non-source files. Thus, Sherriff
and Williams [160] propose an impact analysis approach
which is able to analyze any type of file, and is not restricted
to source code files only. Their approach extracts change
records from a repository, compiles them into a matrix,
and computes association clusters through singular value
decomposition. Each file of a cluster is weighted according
to its degree of participation in the cluster. High singular
values are a good indicator that a file will be affected by
changes to other files of the same cluster.

Jashki et al. [161] share the same motivation as Sher-
riff and Williams [160], and extend impact analysis to
files other than source code files. Their approach analyzes
change logs from software repositories to derive mutual
file manipulations, which are then stored in a matrix.
Secondly, Principle Component Analysis (PCA) is applied
to reduce the dimension of the matrix in order to reduce
the complexity of further analysis steps. Finally, clusters of
closely related files are identified by applying five standard
clustering algorithms (K-means, X-means, Spectral cluster-
ing, EM, DBscan) on the reduced matrix.

Configuration Management Databases (CMDB) provide
an alternative to version control repositories such as CVS
or SVN when mining change-couplings. Nadi et al. [162]
extract historical change data from a CMDB system, and
use support and confidence measures to assess how closely
two entities are related. In this context, support states how
often two entities changed together where confidence is
the ratio of co-changes compared to the total amount of
changes of one entity. Both measures are stored in separate
matrices and enable a transitive reachability analysis. The
reachability analysis is supported by three different pruning
techniques: minimum support, minimum confidence, and
exponential forgetting, which utilizes the concept of half-
life time to forget about coupling information from changes
which took place long ago.

F. Combined Scopes

The work of Kim et al. [163] is focused on impact
analysis for product-line development in huge companies,
which requires assessment of source code and architectural
models once basic components have changed. The proposed
impact analysis approach for software architecture and

source code is build on the concept of reflexion models,
as proposed by Murphy et al. [164], [165]. The simplified
reflexion model is computed as follows. First, a hypoth-
esized high-level architectural model is defined, which is
then mapped to the extracted source code model, using
mapping rules. The resulting model is then analyzed using
dependency and reachability analysis. The proposed process
has been implemented in the iCIA tool, which is capable
of visualizing impacts and the computed reflexion model.

An approach which determines, whether code changes
impact the system’s architecture is proposed by Hammad et
al. [166]. Their aim is to keep the architecture synchronized
with source code, therefore applying impact analysis on
both levels. They distinguish between code changes that
affect the design (e.g. ”add a method”), and such which
do not affect the design (e.g. ”change a control loop”).
Their approach ignores changes that do not affect design,
which is achieved by applying the tool srcTracer. The tool
transforms source code into XML using the srcML tool,
and identifies changes by applying the srcDiff tool on the
XML output. Rules encoded as XPath queries are then used
to identify changes that impact the design. For example, if
a rule detects a class in code which is not represented in
design models, a design change took place and there is an
impact on the architecture.

Sharafat and Tahvildari [167], [168] propose a proba-
bilistic approach to enable the change prediction of classes,
which is based on analyzing UML class diagrams and
Java source code. Their approach combines dependencies
which have been extracted from UML class diagrams and
source code metrics. They distinguish between internal
and external dependencies, where internal dependencies
are computed with source code metrics, and external de-
pendencies require comprehensive analysis. Cyclic external
dependencies are resolved by either applying systems of lin-
ear and non-linear equations [167] or by using depth-first-
search [168]. Once all dependencies have been resolved,
the probability of internal changes and the probability of
propagating external changes is computed based on Bayes’
theorem. However, probabilities must still be normalized, as
the authors assume that internal changes which took place
in different development periods are independent of each
other.

The use of COTS components adds new challenges to the
maintenance of software, as the black-box nature of such
components decreases the usefulness of most impact analy-
sis approaches. However, without proper analysis of COTS
components, software is hard to maintain and adapt to
changing requirements. Therefore, Hutchinson et al. [169]
define a process for COTS-based software development:
component oriented software engineering method (COM-
POSE). COMPOSE is comprised of an ADL (CADL)
and a model for impact analysis, which is based on the
ADL. The system’s architecture is described in CADL
and linked with requirements via traceability relations.
Based on dependencies expressed as traceability links,

they conduct a simple reachability analysis on the CADL
graph to determine possibly impacted entities. Kotonya
and Hutchinson [170] extend COMPOSE, as presented in
their earlier work [169]. COMPOSE is transformed into a
cyclic process, which includes a verification of the software
after each step. An additional intermediate layer is added
to CADL to facilitate the mapping between components
and requirements. Furthermore, they distinguish between
directly affected (connected to a changed entity), secondary
impacted (connected via CADL with an impacted element),
and peripheral impacted entities.

Business processes undergo many changes, which must
be reflected on the source code of the underlying business
application. However, mapping such changes to source
code is not trivial. Therefore, Xiao et al. [171] investigate
impact analysis in the scope of business processes in service
oriented business applications. Their approach combines the
analysis of requirements encoded in BPEL, and source code
analysis via call graphs. Data and control dependencies
between BPEL elements are analyzed by a set of impact
rules to determine the impact of a change, while a call graph
is constructed from the underlying source code. Impacts of
BPEL elements are mapped to methods, which then act as
starting impact set for source code impact analysis. Changes
are then propagated through the call graph, where a distance
metric is used to estimate the likelihood of impacts.

The work of Bohner [37], [172] is concerned with
impact analysis in systems, which are composed of existing
solutions, as more software is build upon middleware and
other preexisting components. The author proposes the use
of a dependency graph and a dependency matrix, which
are combined with a distance measure to limit the impact
propagation. The author further discusses the use of XML
to facilitate impact analysis in COTS software. Bohner
and Gracanin [173] extended this work by focusing on
possibilities for 3d visualization of impact relations and
dependencies between software entities.

Khan and Lock [174] are concerned with tracing require-
ments to architecture, and utilizing these traces for impact
analysis. They investigate, whether concern-based depen-
dencies help to identify unstable components and anticipate
changes. A taxonomy of dependencies is established as the
basis of their proposed impact analysis approach. Depen-
dencies are divided into goal, task, service, conditional,
infrastructural, and usability dependencies, which can over-
lap, intertwine or confirm to each other. Their approach
uses concentration metrics to measure how often entities
are connected via a certain dependency type to evaluate
their likelihood for being impacted.

Yu et al. [175] propose the concept of requirements
change probabilities to estimate whether a change to one
component will spread to other components. Architectural
components are extracted and compiled into a N × N
matrix, which is used to store the propagation probabilities
between pairs of components. The required probabilities are
predicted by applying three metrics on each component:

backward functional call dependency (How many func-
tions of this component are called by other components?),
forward functional call dependency (How many functions
from other components are called by this component?), and
total functional call dependency (both combined). Impacted
components can then be determined by applying a mini-
mum probability threshold.

When changing software, it requires testing to verify the
correctness of implemented changes. However, executing
all test cases again after each change is not feasible in
practice. Regression testing is required to identify those
tests which are affected by a change. Briand et al. [176]
propose an approach for regression test selection, which is
based on impact analysis of software architectures modeled
in UML. They distinguish between three classes of tests:
reusable (the test is valid), retestable (the test is valid,
but must be rerun), and obsolete (the test can no longer
be used). The software architecture is connected with
regression tests through traceability links, and impacts are
propagated across the traceability relations. The impact
estimation and selection of tests is based on identifying
differences between two versions of the system architec-
ture, where UML sequence diagrams are used to identify
impacted test cases.

von Knethen and Grund [177] emphasize the usefulness
of traceability links for software maintenance. However,
there remain of couple of open questions, which limit the
applicability of traces for impact analysis: which kinds of
traces should be established, who has to establish them,
and who has to analyze them? To answer these ques-
tions, they investigate impact analysis based on different
stakeholder roles: project planner, requirements engineer,
and developer. They developed a tool suite which allows
different stakeholders to view traces and execute different
analysis steps, where two components are of special inter-
est for developers when performing impact analysis. The
component RelationFinder searches entities for traceability
relations based on similarities of textual attributes. The
RelationViewer orders traces according to the type of the
relation, and displays them as tree. The developer then has
to decide which related entities are affected based on an
assessment of identified traces.

Connecting requirements, source code, and test cases via
traceability links enables comprehensive impact analysis,
as proposed by Ibrahim et al. [121]–[123]. The authors
developed an approach which gathers traceability relations
from different sources. Requirements and test cases are
connected while analyzing the system documentation. Test
cases and methods are linked via test execution, where
methods and classes are linked by static program analysis.
In [121] and [122], the authors propose three traceability
detection techniques: explicit links (dependency analysis),
name tracing (IR-based), and concept location. Ibrahim
et al. [123] added a 4th technique called cognitive links
[178], which enables designers to specify traces manually
to improve impact detection. The result of this multistaged

process is a dependency graph spanning all available ar-
tifacts, which can then be used for propagating changes
and determining impacted elements based on reachability
analysis.

Looman [179] highlights that requirements are the driv-
ing force when developing a system, where architecture
implements the requirements and both undergo constant
changes. The author proposes an impact analysis process
for software architectures, which is based on functional
requirements. Functional requirements are transformed into
formal behavior descriptions that state which requirements
should be present or absent in the current architecture.
Architectural entities are then related with corresponding
requirements via traceability links, to enable impact anal-
ysis by evaluating behavior descriptions. A failed behavior
description indicates that there is a change impact between
the requirement and the linked architectural component.

Bridging between architecture and source code to allow
for impact analysis on both levels is the goal of the work
presented by Hassan et al. [180]. The authors propose the
architectural software components model (ASCM), which
is able to express architectures that have been modeled
in different ADLs, and the software component structural
model (SCSM) to couple source code with ASCM models.
The approach is based on an expert system, which provides
automated impact rule management to cope with software
evolution. The utilized expert system consists of a fact
base containing the ASCM architecture, a rule base which
contains propagation rules, and the inference engine which
applies the rules on the fact base. The utilized rules are able
to add and remove entities, and consist of preconditions and
invariants. An entity is impacted, if a precondition is met
and at least one of its invariants is violated. The detected
impact is then propagated to its neighbors according to
the incoming and outgoing relations between the entities.
The connection between architecture and source code is
established by linking ASCM entities via projection rela-
tionships to corresponding SCSM entities, which enables
the propagation of impacts between both models.

IV. RESULTS OF THE REVIEW

The following section discusses the results of the review
regarding the goal of reviewing and classifying impact anal-
ysis approaches (Section IV-A), evaluating the taxonomy
(Section IV-B), and identifying open research questions and
future work (Section IV-C).

A. Classification of Approaches

Section III-B to Section III-F of this article are con-
cerned with classifying and exploring approaches proposed
for impact analysis. The motivation and methodology of
150 approaches were described to summarize their main
idea. The work presented here can therefore be used as
a starting point for exploring the field of impact analysis.
Furthermore, we classified the 150 approaches according

to the criteria of our taxonomy [9]. Table II presents the
results of this classification process.

The classification revealed that 65% of all studied lit-
erature is concerned with analyzing source code changes
and the impact on source code. Only 11% analyze changes
and their impacts on software architectures, another 7%
analyze requirements. The impacts of changes on other
software development artifacts, such as documentation or
configuration files, are investigated by 4% of all approaches.
Finally, 13% include several kinds of artifacts in their
analysis process, e.g. source code and architecture. Figure
2 summarizes these findings.

98

17 10 6
19

Fig. 2. Amount of approaches ordered by the Scope of Analysis criterion

B. Evaluation of our Taxonomy

A problem of existing classification schemes, such as
the ones proposed by Arnold and Bohner [7] or Kilpinen
[21], is the lack of practical evaluation, i.e. demonstrating
that the proposed classification is applicable on reviewed
literature. The evaluation of our taxonomy and its criteria
was done by checking the coverage of each single criterion.
The results of this coverage analysis are depicted in Figure
3 and will be discussed in the following section for each
criterion.

100% 99% 94%

60%

91%
75% 73%

10%
22%

60%

25% 21%
13%

Fig. 3. Coverage of criteria in literature

The criterion Scope of Analysis could be retrieved from
all studied literature, as the aim of an approach is easy to
identify. The utilized technology could also be determined

from all but one approach and proposed ideas were clus-
tered into the ten groups as proposed in [9]. Details about
the analyzed artifacts and computed results are provided by
more than 90% of all studies, whereas only 60% mention
supported change types. However, this information might
be required if a developer has to choose an approach.

More than 70% of all studies provide information
whether the approach has been implemented (and by which
tool) and what programming or modeling languages are
supported by the analysis process. In contrast, only 22%
of all studies provide any information about how their
proposed approach can be used for impact analysis in
practice, i.e. whether their approach is exploratory, search-
based or simply analyzes the whole software at once
(global). Likewise, even less studies (10%) provide detailed
scalability estimations in terms of time and space complex-
ity. This is most likely caused by the complex notion of
such estimations in Bachmann-Landau notation. However,
studies which contain no evaluation by case studies should
at least provide scalability estimations to be comparable to
other approaches.

The additional criterion of evaluation results is covered
by 67% of all studies and therefore fulfills its purpose of
assisting with comparing approaches. 60% of all examined
studies provide information about the size of the conducted
case study or experiment in terms of LOC, the number of
classes, and similar measures. 25% of all studies report
on achieved precision, 21% on achieved recall, and 13%
on required computation time. Further details on memory
consumption were provided by two studies only, so we
excluded this as a criterion due to the lack of coverage
by 99% of the literature.

Our main criteria (scope of analysis, utilized technology,
granularity of artifacts/changes/results, tool support, sup-
ported language) are covered by 85% of all approaches in
average. The auxiliary criteria (scalability, style of analysis,
size of study, precision, recall, computation time) are cov-
ered by 25% of all approaches in average. Therefore, we
conclude that our taxonomy in its current state is useful
and applicable for classifying, comparing, searching, and
evaluating impact analysis approaches based on its criteria.

C. Identification of Future Work

Based on the performed validation of the taxonomy,
which revealed that 33% of all proposed approaches are
not yet evaluated, we investigated how many approaches
of a certain scope lack any validation. Figure 4 shows
that 80% of all requirements approaches, and more than
50% of architectural and combined approaches were not
evaluated by case studies or experiments. Also, as revealed
by Table II, many approaches were evaluated with rather
small case studies and therefore actually prevent any gen-
eralization of results. One possible solution to overcome
this limitation would be to establish a universal benchmark,
which provides a set of different artifacts, ranging from
requirements specifications to source code, to provide a

common database for evaluating approaches. However, this
is not feasible in practice. Instead, a set of evaluation
guidelines could be developed, i.e. stating which measures
(e.g. precision and recall) should be used. This guideline
could also contain clusters for classifying a system based
on its size and complexity, which would allow for better
comparison of results.

22%

53%

80%

17%

61%

Fig. 4. Amount of approaches not yet evaluated, ordered by Scope of
Analysis criterion

Another possible aspect for further research is to over-
come the lack of approaches which span the entire soft-
ware development process. Impact analysis is required in
the early stage of requirements capturing, in the phase
of architectural design, and the final implementation and
maintenance phases. However, only 13% of all approaches
combine two or more scopes in their analysis process as
shown by Figure 2. Therefore, we advocate that more
attention should be paid on linking requirements, architec-
ture, and code to enable comprehensive impact analysis.
Figure 5 illustrates the amount of combined approaches per
scope. Also, according to the work of Kilpinen [21] more
information are required how to incorporate a proposed ap-
proach into the actual maintenance or development process.
This flaw is also supported by the fact that only 22% of
all studies reported on the interactivity of the proposed
approach, as illustrated by the coverage of the Style of
Analysis criterion in Figure 3.

We also noticed that many authors (e.g. [33], [43], [71],
[76], [85], [141]) provide a taxonomy of change types
to facilitate the identification of impacts. However, the
majority of established classifications is not based on a
review of related studies on change types, such as the
work of Baldwin and Clark [181] (pp. 132-142). We are
convinced that more work should be spent on creating a
taxonomy of change types for source code, architectural
models, requirements, and other artifacts which can be
integrated into impact analysis.

In a similar fashion, many approaches are build on a
classification of dependency types (e.g. [29], [125], [126],
[174]) and suffer from the same problem. The proposed
dependency types can be mapped to a set of elemental
dependencies which should be defined by a taxonomy. As

3

8

1

7

C
o

d
e

-
A

rc
h

it
ec

tu
re

 -

R
eq

u
ir

em
en

ts

C
o

d
e

-
A

rc
h

it
ec

tu
re

C
o

d
e

-
R

eq
u

ir
em

en
ts

A
rc

h
it

ec
tu

re
 -

R

eq
u

ir
em

en
ts

Fig. 5. Combined approaches, ordered by their supported Scope of
Analysis

suggested for change types, we emphasize the need for a
more thorough investigation of dependency types in the
scope of impact analysis.

V. CONCLUSION

The evolution of software systems and ongoing changes
demand for explicit means to assess the impact of a change
on existing artifacts and concepts. Thus, software change
impact analysis is in the focus of researchers in software
engineering. As a result, the amount of studies published
in the field of impact analysis is vast. However, there is no
extensive review on published literature, which could be
used as a starting point for further investigations of impact
analysis.

We presented a comprehensive review of impact analysis,
which includes the analysis of 150 approaches and related,
auxiliary literature. All 150 studies were classified accord-
ing to the referred taxonomy to provide a tabular overview
of the field.

We evaluated our taxonomy by checking the coverage of
its criteria in practice, which revealed a coverage of 85% for
the main criteria, and 25% for the secondary criteria. Thus,
the taxonomy is applicable in practice and assists with the
tasks of classifying, searching, comparing, and evaluating
impact analysis approaches.

The review also identified a series of open research
questions and opportunities for further investigations. First,
the review revealed a lack of empirical validations of pro-
posed ideas, which can be quantified as 33% of all studies.
Secondly, there is still a lack of approaches spanning the en-
tire software development process, which requires a tighter
coupling between different analysis phases. Finally, many
authors propose classification schemes for change types
and dependency types, which influence impact analysis.
However, a more systematic investigation is required, which
also compares and incorporates existing work.

A
pp

ro
ac

h
Sc

op
es

Te
ch

ni
qu

es
G

ra
nu

la
ri

ty
of

E
nt

iti
es

To
ol

Su
pp

or
te

d
Sc

al
ab

ili
ty

St
yl

e
of

E
xp

er
im

en
ta

l
R

es
ul

ts
E

nt
iti

es
C

ha
ng

es
R

es
ul

ts
Su

pp
or

t
L

an
gu

ag
es

A
na

ly
si

s
Si

ze
P

R
Ti

m
e

R
yd

er
an

d
Ti

p
[4

]
C

od
e

C
G

cl
as

s,
m

et
ho

d,
va

ri
ab

le
,

te
st

ca
se

+/
-

cl
as

s,
+/

-/
ch

g.
m

et
ho

d,
+/

-
va

ri
ab

le

te
st

ca
se

no
Ja

va
-

-
-

-
-

-

R
en

et
al

.
[2

6]
–[

28
]

C
od

e
C

G
cl

as
s,

m
et

ho
d,

va
ri

ab
le

,
te

st
ca

se

+/
-

cl
as

s,
+/

-/
ch

g.
m

et
ho

d,
+/

-
va

ri
ab

le

te
st

ca
se

C
hi

an
ti

Ja
va

-
E

xp
l.

12
3

kL
O

C
,

11
k

ch
an

ge
s

-
1.

0
10

m
in

X
ia

an
d

Sr
ik

an
th

[3
0]

C
od

e
C

G
st

at
em

en
ts

-
st

at
em

en
ts

no
-

-
-

-
-

-
-

B
ad

ri
et

al
.[

31
]

C
od

e
C

G
m

et
ho

d
ch

g.
m

et
ho

d
m

et
ho

d
PC

IA
To

ol
Ja

va
-

-
77

cl
as

se
s

-
-

-
B

ri
an

d
et

al
.

[3
2]

C
od

e
D

G
cl

as
s

-
cl

as
s

C
on

ce
rt

o2
/

A
U

D
IT

C
++

-
-

40
kL

O
C

-
-

-

K
un

g
et

al
.[

33
]

C
od

e
D

G
cl

as
s,

m
et

ho
d,

va
ri

ab
le

+/
-/

in
h.

/v
is

.c
la

ss
,

+/
-/

si
g.

/v
is

.
m

et
ho

d,
+/

-/
ty

p.
/v

is
.

va
ri

ab
le

cl
as

s,
m

et
ho

d,
va

ri
ab

le

O
O

T
M

E
C

++
-

-
>

14
0

cl
as

se
s

-
-

-

L
i

an
d

O
ff

ut
t

[4
3]

C
od

e
D

G
cl

as
s,

m
et

ho
d,

va
ri

ab
le

+/
-

cl
as

s,
+/

-/
si

g.
/v

is
.

m
et

ho
d,

+/
-/

ty
p.

/v
al

./
vi

s.
va

ri
ab

le

cl
as

s
no

-
T: O
(m

3
n
2
)

-
-

-
-

-

R
aj

lic
h

[3
4]

C
od

e
D

G
cl

as
s

+/
-/

ch
g.

cl
as

s
cl

as
s

R
ip

pl
es

2
C

,C
++

-
E

xp
l.

2
kL

O
C

-
-

-
Pi

rk
lb

au
er

et
al

.
[3

5]
C

od
e

D
G

-
-

-
C

IA
M

SS
C

O
B

O
L

-
-

-
-

-
-

Z
al

ew
sk

i
an

d
Sc

hu
pp

[3
8]

C
od

e
D

G
ST

L
sp

ec
.

+/
-

ST
L

sp
ec

.
ST

L
sp

ec
.

no
C

++
-

-
-

-
-

-

Pe
tr

en
ko

an
d

R
a-

jli
ch

[3
9]

C
od

e
D

G
cl

as
s,

m
et

ho
d,

st
at

em
en

t,
va

ri
ab

le

-
cl

as
s,

m
et

ho
d,

st
at

em
en

t,
va

ri
ab

le

pl
ug

-i
n

fo
r

JR
ip

pl
es

Ja
va

-
E

xp
l.

55
0

kL
O

C
<

0.
19

-
-

B
la

ck
[4

0]
C

od
e

D
G

va
ri

ab
le

-
va

ri
ab

le
R

E
ST

C
-

-
72

5
L

O
C

-
-

-
L

ee
et

al
.[

6]
C

od
e

D
G

cl
as

s,
m

et
ho

d
-

cl
as

s
C

hA
T

-
-

-
30

kL
O

C
-

-
-

B
es

zé
de

s
et

al
.

[4
4]

C
od

e
D

G
cl

as
s,

m
et

ho
d

-
cl

as
s

-
C

++
,J

av
a

T:
O
(n

∗e
+

n
∗
k
∗
m
)

-
40

0
cl

as
se

s
0.

85
1.

0
-

B
ila

l
an

d
B

la
ck

[4
2]

C
od

e
D

G
cl

as
s,

m
et

ho
d

-
cl

as
s,

m
et

ho
d

R
E

ST
,

C
od

eS
ur

fe
r

C
++

-
-

-
-

-
-

Já
sz

et
al

.[
45

]
C

od
e

D
G

m
et

ho
d

-
m

et
ho

d
C

od
eS

ur
fe

r
C

,C
++

,
A

da
T:

O
(n

+
e)

-
1.

4
m

L
O

C
,

83
k

m
et

ho
ds

0.
87

1.
0

3h

C
he

n
an

d
R

aj
lic

h
[4

6]
C

od
e

D
G

m
et

ho
d,

va
ri

ab
le

-
m

et
ho

d,
va

ri
ab

le
R

IP
PL

E
S

C
-

E
xp

l.
-

0.
09

1.
0

-

G
w

iz
da

la
et

al
.

[4
7]

C
od

e
D

G
cl

as
s,

m
et

ho
d,

va
ri

ab
le

-
cl

as
s

JT
ra

ck
er

Ja
va

-
E

xp
l.

40
0

cl
as

se
s

-
-

-

B
is

ho
p

[4
8]

C
od

e
D

G
cl

as
s,

m
et

ho
d,

va
ri

ab
le

+/
-

m
et

ho
d

cl
as

s
In

cr
em

en
ta

l
Im

pa
ct

A
na

ly
ze

r

Ja
va

-
-

9
K

L
O

C
-

-
35

0m
s

Fa
sc

hi
ng

[3
6]

C
od

e
D

G
-

-
-

C
IA

M
SS

-
-

G
lo

ab
l

6k
ar

tif
ac

ts
-

-
-

To
ne

lla
[5

3]
C

od
e

SL
va

ri
ab

le
ch

g.
st

at
em

en
t

va
ri

ab
le

re
ac

ha
bi

lit
y

to
ol

C
-

-
2

kL
O

C
-

1,
0

-

K
or

pi
an

d
K

os
ki

-
ne

n
[5

0]
C

od
e

SL
va

ri
ab

le
-

va
ri

ab
le

G
R

A
C

E
V

is
ua

l
B

as
ic

-
-

18
.7

kL
O

C
-

-
5

s

V
id

ác
s

et
al

.[
55

]
C

od
e

SL
m

ac
ro

ch
g.

m
ac

ro
de

fin
i-

tio
n

cl
as

s,
m

et
ho

d,
va

ri
ab

le
,

m
ac

ro

C
ol

um
bu

s
C

/C
++

fr
on

te
nd

C
,C

++
-

Se
ar

ch
-

ba
se

d
-

-
-

-

B
in

kl
ey

an
d

H
ar

m
an

[5
4]

C
od

e
SL

va
ri

ab
le

-
va

ri
ab

le
C

od
eS

ur
fe

r
C

O
(n

2
)

Se
ar

ch
-

ba
se

d
17

9
kL

O
C

-
1.

0
-

G
al

la
gh

er
an

d
Ly

le
[5

1]
C

od
e

SL
va

ri
ab

le
+/

-/
va

l.
va

ri
ab

le
va

ri
ab

le
-

-
T: O
(n

2
el
o
g
e)

-
-

-
-

-

H
ut

ch
in

s
an

d
G

al
la

gh
er

[5
2]

C
od

e
SL

va
ri

ab
le

va
l.

va
ri

ab
le

va
ri

ab
le

Su
rg

eo
n’

s
A

ss
is

ta
nt

C
-

Se
ar

ch
-

ba
se

d
-

-
-

-

K
or

pi
an

d
K

os
ki

-
ne

n
[5

0]
C

od
e

SL
va

ri
ab

le
-

va
ri

ab
le

G
R

A
C

E
V

is
ua

l
B

as
ic

-
-

18
.7

kL
O

C
-

-
5

s

B
in

kl
ey

an
d

H
ar

m
an

[5
4]

C
od

e
SL

va
ri

ab
le

-
va

ri
ab

le
C

od
eS

ur
fe

r
C

O
(n

2
)

Se
ar

ch
-

ba
se

d
17

9
kL

O
C

-
1.

0
-

Sa
nt

el
ic

es
an

d
H

ar
ro

ld
[5

6]
C

od
e

SL
st

at
em

en
t

ch
g.

st
at

em
en

t
st

at
em

en
t

D
U

A
Fo

re
ns

ic
s

Ja
va

-
Se

ar
ch

-
ba

se
d

21
kL

O
C

-
-

2
h

A
pi

w
at

ta
na

po
ng

et
al

.[
62

]
C

od
e

E
T

m
et

ho
d

ch
g.

m
et

ho
d

m
et

ho
d

E
A

T
Ja

va
T:

O
(n

)
S:

O
(n

)
-

33
kL

O
C

0,
24

-
-

B
re

ec
h

et
al

.
[6

0]
C

od
e

E
T

m
et

ho
d

ch
g.

m
et

ho
d

m
et

ho
d

D
yn

am
oR

IO
,

RV
M

Ja
va

,C
++

,
C

,F
or

tr
an

-
Se

ar
ch

-
ba

se
d

13
1

kL
O

C
-

-
4

h

L
aw

an
d

R
ot

he
rm

el
[5

7]
C

od
e

E
T

m
et

ho
d

ch
g.

m
et

ho
d

m
et

ho
d

C
od

es
ur

fe
r

C
T:

O
(n

)
Se

ar
ch

-
ba

se
d

>
6

kL
oc

-
-

-

L
aw

an
d

R
ot

he
rm

el
[5

8]
C

od
e

E
T

m
et

ho
d

ch
g.

m
et

ho
d

m
et

ho
d

-
C

T:
O
(n

)
S:

O
(n

)
-

>
6

kL
oc

-
-

58
m

in

O
rs

o
et

al
.[

59
]

C
od

e
E

T
m

et
ho

d
ch

g.
m

et
ho

d
m

et
ho

d
JA

B
A

Ja
va

-
-

60
kL

O
C

-
-

-
B

re
ec

h
et

al
.

[6
1]

C
od

e
E

T
m

et
ho

d
ch

g.
m

et
ho

d
m

et
ho

d
-

C
T:

O
(n

3
)

S:
O
(n

2
)

-
40

kL
O

C
-

-
38

m
in

G
up

ta
et

al
.[

65
]

C
od

e
E

T
va

ri
ab

le
va

l.
va

ri
ab

le
va

ri
ab

le
-

-
-

-
-

-
-

-
G

up
ta

et
al

.[
66

]
C

od
e

E
T

m
et

ho
d,

st
at

em
en

t
+/

-/
ch

g.
m

et
ho

d,
+/

-/
ch

g.
st

at
em

en
t

m
et

ho
d

-
-

-
-

-
-

-
-

H
ua

ng
an

d
So

ng
[6

3]
C

od
e

E
T

m
et

ho
d

+/
-

m
et

ho
d

m
et

ho
d

no
-

-
-

-
-

-
-

V
an

ci
u

an
d

R
aj

lic
h

[6
7]

C
od

e
E

T
m

et
ho

d
-

m
et

ho
d

R
ev

ea
l

-
T:

O
(s

∗
T
+

s
∗
n
2
)

-
19

0
cl

as
se

s,
1.

6k
m

et
h-

od
s

0.
54

3
-

5h

B
es

zé
de

s
et

al
.

[6
4]

C
od

e
E

T
m

et
ho

d
-

m
et

ho
d

JI
m

pa
ct

Ja
va

T:
O
(n

)
S:

O
(m

∗n
)

G
lo

ba
l

2,
3

kL
O

C
0.

35
-

-

C
ha

um
un

et
al

.
[6

9]
C

od
e

E
R

cl
as

s,
m

et
ho

d,
va

ri
ab

le

+/
-/

vi
s.

cl
as

s,
+/

-/
si

g.
/v

is
.

m
et

ho
d,

+/
-/

vi
s.

/ty
p.

va
ri

ab
le

cl
as

s,
m

et
ho

d,
va

ri
ab

le

-
C

++
-

-
>

1k
cl

as
se

s
-

-
-

Su
n

et
al

.[
71

]
C

od
e

E
R

cl
as

s,
m

et
ho

d,
va

ri
ab

le

+/
-/

in
h.

/m
od

./v
is

.
cl

as
s,

+/
-/

m
od

./v
is

.
m

et
ho

d,
+/

-/
m

od
./

vi
s.

va
ri

ab
le

cl
as

s,
m

et
ho

d,
va

ri
ab

le

JH
D

G
Ja

va
-

-
15

7
cl

as
se

s
0.

54
1

0.
71

2
-

H
an

[6
8]

C
od

e
E

R
m

od
ul

e,
cl

as
s,

m
et

ho
d,

st
at

em
en

t

+/
-/

in
h.

cl
as

s,
+/

-/
ch

g.
m

et
ho

d
cl

as
s,

m
et

ho
d

-
C

++
-

-
-

-
-

-

A
ri

sh
ol

m
et

al
.

[7
0]

C
od

e
E

R
cl

as
s

-
cl

as
s

JD
is

se
ct

Ja
va

-
-

17
kL

O
C

,
40

8
cl

as
se

s
-

-
-

Po
sh

yv
an

yk
et

al
.

[7
5]

C
od

e
IR

cl
as

s,
m

et
ho

d
-

cl
as

s
IR

C
2

M
C

++
-

-
4

m
L

O
C

<
0.

28
<

0.
66

-

V
au

ch
er

et
al

.
[7

4]
C

od
e

IR
cl

as
s

+/
-/

ch
g.

m
et

ho
d

cl
as

s
PT

ID
E

J
Ja

va
-

-
79

0
cl

as
se

s
-

-
-

A
nt

on
io

l
et

al
.

[7
3]

C
od

e
IR

-
-

-
-

C
++

-
-

-
0.

48
7

0.
69

6
-

Z
ho

u
et

al
.[

76
]

C
od

e
PM

cl
as

s,
m

et
ho

d,
va

ri
ab

le

+/
-/

m
.c

la
ss

,
+/

-/
m

.m
et

ho
d,

+/
-/

m
./v

al
.v

ar
ia

bl
e

cl
as

s,
m

et
ho

d,
va

ri
ab

le

E
vo

liz
er

Ja
va

-
E

xp
l.

-
0.

81
5

0.
62

3
-

T
sa

nt
al

is
et

al
.

[7
7]

C
od

e
PM

cl
as

s,
m

et
ho

d
in

h.
cl

as
s,

+/
-

m
et

ho
d

cl
as

s
ye

s,
un

na
m

ed
Ja

va
-

G
lo

ba
l

16
9

cl
as

se
s

0.
55

4
-

-

A
bd

i
et

al
.

[7
8]

,[
79

]
C

od
e

PM
cl

as
s,

m
et

ho
d,

va
ri

ab
le

+/
-/

vi
s.

cl
as

s,
+/

-/
vi

s.
m

et
ho

d,
+/

-/
vi

s.
va

ri
ab

le

cl
as

s
PT

ID
E

J
Ja

va
-

-
39

4
cl

as
se

s
0.

68
9

-
-

A
bd

i
et

al
.

[8
0]

,[
81

]
C

od
e

PM
cl

as
s

-
cl

as
s

B
N

J
-

-
-

-
-

-
-

M
ir

ar
ab

et
al

.
[8

2]
C

od
e

PM
ad

ap
ta

bl
e

ad
ap

ta
bl

e
ad

ap
ta

bl
e

Sm
ile

an
d

ot
he

r,
no

t
na

m
ed

to
ol

s

Ja
va

-
-

26
3

kL
O

C
,

>
6k

re
vi

-
si

on
s

0.
63

0.
25

9
-

G
et

he
rs

an
d

Po
sh

yv
an

yk
[8

3]
C

od
e

PM
cl

as
s

-
cl

as
s

-
C

++
,J

av
a

-
-

1.
9

m
L

O
C

0.
11

8
0.

44
6

-

H
as

sa
n

an
d

H
ol

t
[9

5]
C

od
e

H
M

cl
as

s,
m

et
ho

d,
va

ri
ab

le

C
V

S
re

co
rd

cl
as

s,
m

et
ho

d,
va

ri
ab

le

-
C

-
-

>
15

k
re

vi
-

si
on

s
0.

51
0.

49

Y
in

g
et

al
.[

94
]

C
od

e
H

M
so

ur
ce

fil
e

C
V

S
re

co
rd

so
ur

ce
fil

e
-

C
++

,J
av

a
-

G
lo

ba
l

>
20

k
fil

es
,

>
10

0k
re

-
vi

si
on

s

0.
4

0.
2

55
m

in

K
ag

di
[1

03
]

C
od

e
H

M
cl

as
s,

m
et

ho
d,

st
at

em
en

t

ch
an

ge
re

co
rd

cl
as

s,
m

et
ho

d,
st

at
em

en
t

sq
m

in
er

,
sr

cM
L

,d
w

di
ff

,
co

de
D

iff

-
-

-
-

-
-

-

G
al

l
et

al
.[

86
]

C
od

e
H

M
cl

as
s

C
V

S
re

co
rd

cl
as

s
-

Ja
va

-
G

lo
ba

l
50

0
kL

O
C

-
-

-
Z

im
m

er
m

an
n

et
al

.[
87

]
C

od
e

H
M

m
et

ho
d,

va
ri

ab
le

+/
-/

ch
g.

m
et

ho
d,

+/
-/

va
l.

va
ri

ab
le

m
et

ho
d,

va
ri

ab
le

R
O

SE
Ja

va
,C

++
,

C
,P

yt
ho

n
-

E
xp

l.
>

34
k

fil
es

,
>

53
k

re
vi

-
si

on
s

0.
38

0.
41

6
-

G
ı̂r

ba
et

al
.[

92
]

C
od

e
H

M
cl

as
s

+/
-

m
et

ho
d

cl
as

s
V

an
,M

oo
se

Sm
al

lta
lk

-
G

lo
ba

l
>

50
0

re
vi

-
si

on
s

-
-

-

G
ı̂r

ba
et

al
.[

93
]

C
od

e
H

M
pa

ck
ag

e,
cl

as
s,

m
et

ho
d

+/
-/

ch
g.

m
et

ho
d,

+/
-/

ch
g.

st
at

em
en

t
pa

ck
ag

e,
cl

as
s,

m
et

ho
d

-
-

-
-

28
1

kL
O

C
-

-
-

B
ou

kt
if

et
al

.
[9

6]
C

od
e

H
M

so
ur

ce
fil

e
C

V
S

re
co

rd
so

ur
ce

fil
e

no
Ja

va
,C

++
,

C
-

G
lo

ba
l

>
9k

fil
es

0.
77

2
0.

79
2

3
m

in

R
ob

be
s

an
d

L
an

za
[9

8]
C

od
e

H
M

pa
ck

ag
e,

cl
as

s,
m

et
ho

d,
st

at
em

en
t,

va
ri

ab
le

+/
-

pa
ck

ag
e,

+/
-/

in
h.

cl
as

s,
+/

-
m

et
ho

d,
+/

-/
va

l.
va

ri
ab

le

-
Sp

yW
ar

e
Sm

al
lta

lk
-

-
-

-
-

-

R
ob

be
s

et
al

.[
99

]
C

od
e

H
M

pa
ck

ag
e,

cl
as

s,
m

et
ho

d,
st

at
em

en
t,

va
ri

ab
le

+/
-

pa
ck

ag
e,

+/
-/

in
h.

cl
as

s,
+/

-
m

et
ho

d,
+/

-/
va

l.
va

ri
ab

le

-
Sp

yW
ar

e
Sm

al
lta

lk
-

-
40

cl
as

se
s

-
-

1
m

in

R
ob

be
s

an
d

L
an

za
[1

00
]

C
od

e
H

M
pa

ck
ag

e,
cl

as
s,

m
et

ho
d,

st
at

em
en

t,
va

ri
ab

le

+/
-

pa
ck

ag
e,

+/
-/

in
h.

cl
as

s,
+/

-
m

et
ho

d,
+/

-/
va

l.
va

ri
ab

le

-
Sp

yW
ar

e
-

-
-

-
-

-
-

Fl
ur

i
et

al
.[

84
]

C
od

e
H

M
cl

as
s,

m
et

ho
d,

va
ri

ab
le

+/
-/

ch
g.

cl
as

s,
+/

-/
ch

g.
m

et
ho

d,
+/

-/
ch

g.
va

ri
ab

le

cl
as

s,
m

et
ho

d,
va

ri
ab

le

-
Ja

va
T:

O
(n

2
)

G
lo

ba
l

26
kL

O
C

-
-

-

Fl
ur

i
an

d
G

al
l

[8
5]

C
od

e
H

M
cl

as
s,

m
et

ho
d,

st
at

em
en

t,
va

ri
ab

le

+/
-/

in
h.

/m
od

./v
is

./r
.

cl
as

s,
+/

-/
si

g.
/m

od
./v

is
./r

.
m

et
ho

d,
+/

-/
ch

g.
st

at
em

en
t,

+/
-/

vi
s.

/m
od

./t
yp

./r
.

va
ri

ab
le

cl
as

s,
m

et
ho

d,
st

at
em

en
t,

va
ri

ab
le

C
ha

ng
eD

is
til

le
r

Ja
va

-
-

1.
4k

cl
as

se
s

-
-

-

Po
pe

sc
u

et
al

.
[1

25
]

C
od

e
M

D
G

,S
L

co
m

po
ne

nt
-

co
m

po
ne

nt
H

el
io

s
Ja

va
,C

#,
C

++
-

-
19

kL
O

C
-

-
-

Po
pe

sc
u

[1
26

]
C

od
e

M
D

G
,S

L
co

m
po

ne
nt

-
co

m
po

ne
nt

H
el

io
s

-
-

-
19

kL
O

C
-

-
-

K
ag

di
an

d
M

al
et

ic
[1

02
],

[1
04

]

C
od

e
H

M
,D

G
ad

ap
ta

bl
e

ch
an

ge
re

co
rd

ad
ap

ta
bl

e
sq

m
in

er
,

sr
cM

L
,d

w
di

ff
,

co
de

D
iff

-
-

-
-

-
-

-

C
ec

ca
re

lli
et

al
.

[1
08

]
C

od
e

H
M

,P
M

so
ur

ce
fil

e
C

V
S

re
co

rd
so

ur
ce

fil
e

-
-

-
-

>
10

k
re

vi
-

si
on

s
0.

8
<

0.
3

-

C
an

fo
ra

et
al

.
[1

09
]

C
od

e
H

M
,P

M
so

ur
ce

fil
e

C
V

S
re

co
rd

so
ur

ce
fil

e
-

Ja
va

,C
,

C
++

-
-

>
50

0
fil

es
,

>
1.

7k
re

vi
-

si
on

s

0.
31

<
0.

6
-

W
on

g
et

al
.[

11
7]

C
od

e
PM

,H
M

-
-

-
-

Ja
va

-
-

27
8

kL
O

C
0.

61
8

0.
35

5
-

H
at

to
ri

et
al

.[
14

]
C

od
e

D
G

,H
M

,
PM

cl
as

s,
m

et
ho

d,
va

ri
ab

le

+/
-/

vi
s.

/in
h.

cl
as

s,
+/

-/
vi

s.
m

et
ho

d,
+/

-/
vi

s.
va

ri
ab

le

cl
as

s,
m

et
ho

d,
va

ri
ab

le

Im
pa

la
Ja

va
-

-
3.

6
kL

O
C

0.
87

5
0.

77
5

-

G
er

m
an

et
al

.
[1

05
]

C
od

e
D

G
,H

M
m

et
ho

d
re

na
m

e,
m

er
ge

,
sp

lit
,c

lo
ne

m
et

ho
d

-
C

-
-

-
-

-
-

K
ab

ai
li

et
al

.
[1

10
]

C
od

e
D

G
,E

R
cl

as
s,

m
et

ho
d,

va
ri

ab
le

+/
-/

in
h.

cl
as

s,
+/

-
m

et
ho

d,
+/

-
va

ri
ab

le

cl
as

s
-

C
++

-
-

-
-

-
-

C
an

fo
ra

an
d

C
er

ul
o

[1
06

]
C

od
e

H
M

,I
R

so
ur

ce
fil

e
-

so
ur

ce
fil

e
ye

s,
un

am
ed

-
-

-
>

1.
4k

fil
es

<
0.

36
<

0.
67

-

Q
ue

ill
e

et
al

.
[1

11
]

C
od

e
D

G
,E

R
-

-
-

IA
S

C
,C

++
-

-
2

kL
O

C
-

-
-

B
ar

ro
s

et
al

.
[1

12
]

C
od

e
D

G
,E

R
-

-
-

IA
S

-
-

-
-

-
-

-

H
ua

ng
an

d
So

ng
[1

13
]

C
od

e
E

T,
D

G
m

et
ho

d,
va

ri
ab

le
+/

-
m

et
ho

d,
+/

-/
va

l.
va

ri
ab

le
m

et
ho

d,
va

ri
ab

le
no

Ja
va

-
-

-
-

-
-

H
ua

ng
an

d
So

ng
[1

14
]

C
od

e
D

G
,E

R
,

E
T

cl
as

s,
m

et
ho

d,
va

ri
ab

le

+/
-/

in
h.

cl
as

s,
+/

-
m

et
ho

d,
+/

-/
va

l.
va

ri
ab

le

cl
as

s,
m

et
ho

d,
va

ri
ab

le

JD
IA

Ja
va

-
-

90
3

kL
O

C
-

-
10

3
s

W
al

ke
r

et
al

.
[1

15
]

C
od

e
D

G
,P

M
,

H
M

ty
pe

C
V

S
re

co
rd

ty
pe

T
R

E
Ja

va
T: O
(n

lo
g
n
)

G
lo

ba
l

-
-

-
-

M
ai

a
et

al
.[

11
6]

C
od

e
D

G
,E

T
cl

as
s,

m
et

ho
d,

va
ri

ab
le

+/
-

cl
as

s,
+/

-
m

et
ho

d,
+/

-
va

ri
ab

le

-
SD

-I
m

pa
la

Ja
va

-
-

6
kL

O
C

0.
27

4
0.

56
6

-

K
ag

di
et

al
.

[1
18

]
C

od
e

IR
,H

M
st

at
em

en
t

C
V

S
re

co
rd

st
at

em
en

t
sr

cM
L

,
sr

cD
iff

,
sq

m
in

er

C
++

,C
,

Ja
va

-
-

36
7

kL
O

C
,

2k
fil

es
0.

85
2

0.
45

5
-

Su
n

et
al

.[
11

9]
C

od
e

SL
,D

G
pa

ck
ag

e,
cl

as
s,

m
et

ho
d,

st
at

em
en

t,
va

ri
ab

le

+/
-

pa
ck

ag
e,

+/
-/

r.
cl

as
s,

+/
-/

si
g.

/r.
m

et
ho

d,
+/

-
/r.

/t.
va

ri
ab

le

pa
ck

ag
e,

cl
as

s,
m

et
ho

d,
st

at
em

en
t,

va
ri

ab
le

JH
SA

Ja
va

-
-

3.
9

kL
O

C
0.

18
4

-
-

B
uc

kn
er

et
al

.
[1

82
]

C
od

e
-

cl
as

s
-

cl
as

s
JR

ip
pl

es
Ja

va
-

E
xp

l.
-

-
-

-

M
oh

am
ad

[1
20

]
C

od
e

T
R

,S
L

pa
ck

ag
e,

cl
as

s,
m

et
ho

d

-
pa

ck
ag

e,
cl

as
s,

m
et

ho
d

C
IA

-V
C

++
-

E
xp

l.
4

K
L

O
C

-
-

-

K
ag

di
[2

0]
C

od
e

D
G

,H
M

fil
e,

cl
as

s,
m

et
ho

d,
va

ri
ab

le

-
fil

e,
cl

as
s,

m
et

ho
d,

va
ri

ab
le

co
de

D
iff

,
sq

m
in

er
-

-
G

lo
ba

l
60

0
K

L
O

C
-

-
-

L
ee

[1
24

]
C

od
e

D
G

,E
R

cl
as

s,
m

et
ho

d,
va

ri
ab

le

+/
-/

in
h.

cl
as

s,
+/

-/
vi

s.
/r.

/s
ig

.
m

et
ho

d,
+/

-/
ty

p.
/v

al
.

va
ri

ab
le

cl
as

s,
m

et
ho

d,
va

ri
ab

le

C
ha

T
C

++
-

G
lo

ba
l

29
K

L
O

C
-

-
-

R
en

[2
9]

C
od

e
C

G
,E

T
cl

as
s,

m
et

ho
d,

va
ri

ab
le

+/
-

cl
as

s,
+/

-/
si

g.
m

et
ho

d,
+/

-
va

ri
ab

le

te
st

ca
se

C
hi

an
ti

Ja
va

-
G

lo
ba

l
12

3
K

L
O

C
,

70
0

cl
as

se
s,

7k
m

et
ho

ds

-
-

-

C
an

fo
ra

an
d

C
er

ul
o

[1
07

]
C

od
e

H
M

,I
R

so
ur

ce
fil

e,
st

at
em

en
t

+/
-/

ch
g.

st
at

em
en

t
so

ur
ce

fil
e,

st
at

em
en

t
Ji

m
pa

Ja
va

,C
++

-
G

lo
ba

l
27

2
kL

O
C

,
1.

5k
fil

es
<

0.
15

>
0.

7
40

0
s

H
of

fm
an

[1
28

]
C

od
e

-
cl

as
s,

m
et

ho
d

-
cl

as
s,

m
et

ho
d

JF
le

x
Ja

va
-

G
lo

ba
l

-
-

-
-

M
oo

ne
n

[1
27

]
C

od
e

Is
la

nd
G

ra
m

m
ar

va
ri

ab
le

-
va

ri
ab

le
IS

C
A

N
C

O
B

O
L

-
-

90
1

kL
O

C
-

-
26

m
in

A
ry

an
i

et
al

.
[1

29
]

A
rc

h.
D

G
co

m
po

ne
nt

-
co

m
po

ne
nt

-
-

-
-

-
-

-
-

A
ry

an
i

et
al

.
[1

30
]

A
rc

h.
D

G
,P

M
do

m
ai

n
va

r.,
do

m
ai

n
fu

nc
.,

U
I

co
m

p.

-
do

m
ai

n
va

r.,
do

m
ai

n
fu

nc
.,

U
I

co
m

p.

-
-

-
-

10
4

kL
O

C
0.

61
4

0.
42

8
-

B
ri

an
d

et
al

.
[1

31
],

[1
32

]
A

rc
h.

E
R

en
tir

e
U

M
L

-
en

tir
e

U
M

L
iA

C
M

To
ol

U
M

L
-

-
-

-
-

-

D
an

ta
s

et
al

.
[1

33
]

A
rc

h.
T

R
,H

M
en

tir
e

U
M

L
-

en
tir

e
U

M
L

O
dy

ss
ey

-S
C

M
U

M
L

-
-

60
kL

O
C

0.
6

0.
15

-

X
in

g
an

d
St

ro
ul

ia
[1

34
],

[1
35

]

A
rc

h.
H

M
cl

as
s

+/
-/

r./
m

.c
la

ss
cl

as
s

JR
efl

eX
U

M
L

-
-

14
4

cl
as

se
s

-
-

-

X
in

g
an

d
St

ro
ul

ia
[1

36
]

A
rc

h.
H

M
pa

ck
ag

e,
cl

as
s,

in
te

rf
ac

e,
va

ri
ab

le

+/
-

pa
ck

ag
e,

+/
-/

r./
m

./v
is

.c
la

ss
,

+/
-/

r./
m

./v
is

.
in

te
rf

ac
e,

+/
-/

r./
m

./v
is

.
va

ri
ab

le

pa
ck

ag
e,

cl
as

s,
in

te
rf

ac
e,

va
ri

ab
le

JD
E

vA
n

U
M

L
-

-
80

0
cl

as
se

s
0.

95
5

-
58

m
in

M
cN

ai
r

et
al

.
[1

37
]

A
rc

h.
H

M
co

m
po

ne
nt

,
pa

ck
ag

e,
cl

as
s

+/
-/

ch
g.

co
m

po
ne

nt
,

+/
-/

ch
g.

pa
ck

ag
e,

+/
-/

ch
g.

cl
as

s

co
m

po
ne

nt
,

pa
ck

ag
e,

cl
as

s

M
ot

iv
e

Ja
va

-
-

1.
5k

cl
as

se
s

-
-

-

Y
oo

an
d

C
ho

i
[1

38
]

A
rc

h.
M

D
G

sy
st

em
-

sy
st

em
-

X
M

L
-

-
-

-
-

-

de
B

oe
r

et
al

.
[1

39
]

A
rc

h.
D

G
co

m
po

ne
nt

,
pr

oc
es

s,
da

ta
ob

je
ct

+/
-/

ch
g.

co
m

po
ne

nt
,

+/
-/

ch
g.

pr
oc

es
s,

+/
-/

ch
g.

da
ta

ob
je

ct

co
m

po
ne

nt
,

pr
oc

es
s,

da
ta

ob
je

ct

-
A

rc
hi

M
at

e
-

-
-

-
-

-

Vo
ra

[1
40

]
A

rc
h.

E
R

,C
G

cl
as

s,
m

et
ho

d
-

co
m

po
ne

nt
-

Te
C

FR
A

D
L

-
-

10
kL

O
C

-
-

-

Fe
ng

an
d

M
al

et
ic

[1
41

]
A

rc
h.

E
R

,S
L

co
m

po
ne

nt
,

in
te

rf
ac

e,
m

et
ho

d

+/
-

in
te

rf
ac

e,
+/

-
m

et
ho

d
co

m
po

ne
nt

,
in

te
rf

ac
e,

m
et

ho
d

SO
C

IA
T

U
M

L
-

-
-

-
-

-

Ta
ng

et
al

.[
14

2]
A

rc
h.

PM
en

tir
e

U
M

L
-

en
tir

e
U

M
L

A
R

E
L

U
M

L
-

-
-

-
-

-
Z

ha
o

et
al

.[
14

3]
A

rc
h.

SL
co

m
po

ne
nt

,
co

nn
ec

to
r

-
co

m
po

ne
nt

,
co

nn
ec

to
r

C
ia

sa
W

ri
gh

t
-

-
-

-
-

-

W
on

g
an

d
C

ai
[1

01
]

A
rc

h.
PM

,H
M

cl
as

s
-

cl
as

s
-

U
M

L
-

-
14

re
vi

si
on

s
0.

02
1

0.
06

1
-

va
n

de
n

B
er

g
[1

44
]

A
rc

h.
T

R
,D

G
ad

ap
ta

bl
e

-
ad

ap
ta

bl
e

no
U

M
L

-
-

-
-

-
-

te
n

H
ov

e
et

al
.

[1
49

]
R

eq
.

E
R

re
qu

ir
em

en
t

+/
-

re
qu

ir
em

en
t

re
qu

ir
em

en
t

pl
ug

-i
n

fo
r

B
lu

eP
ri

nt
Sy

sM
L

-
-

-
-

-
-

H
ew

itt
an

d
R

ill
in

g
[1

45
]

R
eq

.
D

G
sc

en
ar

io
,

co
m

po
ne

nt
-

sc
en

ar
io

,
co

m
po

ne
nt

ex
te

nd
ed

U
C

M
N

av
2

U
C

M
-

-

L
oc

k
an

d
K

ot
on

ya
[1

48
]

R
eq

.
T

R
,P

M
re

qu
ir

em
en

t
-

re
qu

ir
em

en
t

A
R

C
hl

V
is

T
-

-
-

-
-

-
-

H
as

si
ne

et
al

.
[1

50
]

R
eq

.
SL

en
tir

e
U

C
M

sp
ec

.
-

en
tir

e
U

C
M

sp
ec

.
C

IA
To

ol
U

C
M

-
-

-
-

-
-

G
ok

ni
l

et
al

.
[1

51
]

R
eq

.
E

R
re

qu
ir

em
en

t,
pr

ed
ic

at
e,

re
la

tio
n

+/
-

re
qu

ir
em

en
t,

+/
-

pr
ed

ic
at

e,
+/

-/
ty

p.
re

la
tio

n

re
qu

ir
em

en
t

no
-

-
-

-
-

-
-

L
ee

et
al

.[
15

2]
R

eq
.

T
R

go
al

,
us

e
ca

se
-

go
al

,
us

e
ca

se
-

-
-

-
-

-
-

-

Sp
ijk

er
m

an
[1

53
]

R
eq

.
T

R
,E

R
re

qu
ir

em
en

t,
co

ns
tr

ai
nt

,
pr

op
er

ty
,

re
la

tio
n

+/
-

re
qu

ir
em

en
t,

+/
-/

ch
g.

pr
op

er
ty

,
+/

-/
va

l.
co

ns
tr

ai
nt

,
+/

-/
ty

p.
re

la
tio

n

re
qu

ir
em

en
t

-
-

-
-

-
-

-
-

Jö
ns

so
n

[1
54

]
R

eq
.

IR
re

qu
ir

em
en

t
-

re
qu

ir
em

en
t

SV
D

L
IB

C
-

-
-

40
0

re
qu

ir
e-

m
en

ts
0.

17
1

0.
17

7
-

O
’N

ea
l

[1
56

]
R

eq
.

T
R

re
qu

ir
em

en
t,

m
is

c.
ar

tif
ac

ts

-
re

qu
ir

em
en

t
-

-
-

-
12

0
ar

tif
ac

ts
,

11
00

tr
ac

es

-
-

-

O
’N

ea
l

an
d

C
ar

ve
r

[1
55

]
R

eq
.

T
R

re
qu

ir
em

en
t

+/
ch

g.
re

qu
ir

em
en

t
re

qu
ir

em
en

t
-

-
-

-
-

-
-

-

A
nt

on
io

l
et

al
.

[1
57

]
M

is
c.

A
rt

.
H

M
fil

e
C

V
S

re
co

rd
fil

e
no

-
-

-
10

k
fil

es
,

3.
7

m
L

O
C

-
-

-

B
ey

er
an

d
N

oa
ck

[1
58

]
M

is
c.

A
rt

.
H

M
fil

e
C

V
S

re
co

rd
fil

e
St

at
C

V
S,

cv
s2

cl
2

,
C

ro
co

Pa
t

-
-

-
4

m
L

O
C

,
3.

9k
fil

es
-

-

A
sk

ar
i

an
d

H
ol

t
[1

59
]

M
is

c.
A

rt
.

PM
,H

M
fil

e
C

V
S

re
co

rd
fil

e
no

-
-

-
-

-
-

-

Sh
er

ri
ff

an
d

W
ill

ia
m

s
[1

60
]

M
is

c.
A

rt
.

H
M

fil
e

ch
an

ge
re

co
rd

fil
e

M
at

la
b

-
T:

O
(n

2
)

-
12

k
fil

es
,

24
0k

re
vi

si
on

s

-
-

-

Ja
sh

ki
et

al
.[

16
1]

M
is

c.
A

rt
.

H
M

fil
e

C
V

S
re

co
rd

fil
e

M
at

la
b

-
-

-
3k

fil
es

,
31

k
re

vi
si

on
s

-
-

-

N
ad

i
et

al
.[

16
2]

M
is

c.
A

rt
.

H
M

-
-

-
D

R
A

C
A

-
-

-
27

k
ch

an
ge

s
0.

88
5

0.
69

8
-

H
am

m
ad

et
al

.
[1

66
]

A
rc

h.
,

C
od

e
E

R
C

++
cl

as
s,

C
++

m
et

ho
d

+/
-

C
++

cl
as

s,
+/

-
C

++
m

et
ho

d
U

M
L

cl
as

s
sr

cT
ra

ce
C

++
,U

M
L

-
-

55
0

fil
es

,
20

0
ch

an
ge

s

-
-

-

Sh
ar

af
at

an
d

Ta
hv

ild
ar

i
[1

67
]

A
rc

h.
,

C
od

e
PM

cl
as

s,
m

et
ho

d,
va

ri
ab

le

+/
-

m
et

ho
d,

+/
-/

va
l.

va
ri

ab
le

cl
as

s
-

Ja
va

,U
M

L
-

-
58

cl
as

se
s

0.
70

2
-

-

Sh
ar

af
at

an
d

Ta
hv

ild
ar

i
[1

68
]

A
rc

h.
,

C
od

e
PM

cl
as

s,
m

et
ho

d,
va

ri
ab

le

-
cl

as
s

-
Ja

va
,U

M
L

-
-

58
cl

as
se

s
0.

70
7

-
-

K
ot

on
ya

an
d

H
ut

ch
in

so
n

[1
70

]
A

rc
h.

,
R

eq
.

D
G

co
m

po
ne

nt
,

re
qu

ir
em

en
t

+/
-

co
m

po
ne

nt
,

ch
g.

pr
op

er
ty

,
ch

g.
co

ns
tr

ai
nt

co
m

po
ne

nt
,

re
qu

ir
em

en
t

E
C

O
-A

D
M

C
A

D
L

-
-

-
-

-
-

X
ia

o
et

al
.[

17
1]

R
eq

.,
C

od
e

C
G

,E
R

B
PE

L
ta

sk
+/

-
ta

sk
,

ch
g.

ta
sk

-p
ro

pe
rt

y,
ch

g.
ta

sk
-d

at
a

m
et

ho
d

-
B

PE
L

-
-

-
-

-
-

B
oh

ne
r

[3
7]

,
[1

72
]

A
rc

h.
,

C
od

e
D

G
-

-
-

-
-

-
-

-
-

-
-

B
oh

ne
r

an
d

G
ra

ca
ni

n
[1

73
]

A
rc

h.
,

C
od

e
D

G
-

-
-

-
-

-
-

-
-

-
-

H
ut

ch
in

so
n

et
al

.
[1

69
]

A
rc

h.
,

R
eq

.
T

R
co

m
po

ne
nt

,
re

qu
ir

em
en

t
-

co
m

po
ne

nt
,

re
qu

ir
em

en
t

no
C

A
D

L
-

-
-

-
-

-

K
ha

n
an

d
L

oc
k

[1
74

]
A

rc
h.

,
R

eq
.

T
R

co
m

po
ne

nt
,

us
e

ca
se

-
co

m
po

ne
nt

-
-

-
-

-
-

-
-

Y
u

et
al

.[
17

5]
A

rc
h.

,
R

eq
.

C
G

co
m

po
ne

nt
,

re
qu

ir
em

en
t

-
co

m
po

ne
nt

-
-

-
-

-
-

-
-

B
ri

an
d

et
al

.
[1

76
]

A
rc

h.
,

R
eq

.
T

R
cl

as
s,

m
et

ho
d,

se
qu

en
ce

,
us

e
ca

se
,

va
ri

ab
le

,
m

es
sa

ge
,

te
st

ca
se

+/
-

us
e

ca
se

,
+/

-/
ch

g.
m

es
sa

ge
,

+/
-/

si
g.

/c
hg

.
m

et
ho

d,
+/

-/
vi

s.
/ty

p.
va

ri
ab

le

te
st

ca
se

R
T

ST
oo

l
U

M
L

-
-

32
0k

te
st

ca
se

s
-

-
-

Ib
ra

hi
m

et
al

.
[1

21
]–

[1
23

]
A

rc
h.

,
R

eq
.,

C
od

e

T
R

cl
as

s,
m

et
ho

d,
re

qu
ir

em
en

t,
te

st
ca

se

ch
g.

m
et

ho
d

cl
as

s,
m

et
ho

d,
re

qu
ir

em
en

t,
te

st
ca

se

C
at

ia
C

++
,U

M
L

-
-

4
kL

O
C

-
-

-

vo
n

K
ne

th
en

an
d

G
ru

nd
[1

77
]

A
rc

h.
,

R
eq

.
T

R
,I

R
en

tir
e

U
M

L
-

en
tir

e
U

M
L

Q
ua

Tr
ac

e
U

M
L

-
-

-
-

-
-

K
im

et
al

.[
16

3]
A

rc
h.

,
C

od
e

D
G

so
ur

ce
fil

e,
cl

as
s,

m
et

ho
d,

va
ri

ab
le

-
so

ur
ce

fil
e,

cl
as

s,
m

et
ho

d,
va

ri
ab

le

iC
IA

C
,C

++
-

-
7

m
L

O
C

-
-

3
m

in

H
as

sa
n

et
al

.
[1

80
]

A
rc

h.
,

C
od

e
E

R
co

m
po

ne
nt

,
in

te
rf

ac
e,

co
nn

ec
to

r,
po

rt

+/
-

co
m

po
ne

nt
,

+/
-

in
te

rf
ac

e,
+/

-
co

nn
ec

to
r,

+/
-

po
rt

co
m

po
ne

nt
,

in
te

rf
ac

e,
co

nn
ec

to
r,

po
rt

se
t

of
E

cl
ip

se
pl

ug
-i

ns
A

da
,P

er
l,

PH
P,

Ja
va

,
A

A
D

L
,

X
A

D
L

2.
0

-
-

-
-

-
-

L
oo

m
an

[1
79

]
A

rc
h.

,
R

eq
.

T
R

co
m

po
ne

nt
,

re
qu

ir
em

en
t

+/
-/

ch
g.

re
q.

,
+/

-
re

q.
pr

ed
ic

at
e,

+/
-/

ch
g.

co
m

po
ne

nt

co
m

po
ne

nt
,

re
qu

ir
em

en
t

A
llo

y
A

A
D

L
-

-
-

-
-

-

TA
B

L
E

II
:

A
ll

st
ud

ie
s

cl
as

si
fie

d
ac

co
rd

in
g

to
th

e
cr

ite
ri

a
of

ou
r

ta
xo

no
m

y
[9

]

REFERENCES

[1] V. Rajlich and P. Gosavi, “Incremental change in object-oriented
programming,” IEEE Software, vol. 21, no. 4, pp. 62–69, 2004.

[2] S. A. Bohner and R. S. Arnold, Software Change Impact Analysis.
Los Alamitos, CA, USA: IEEE Computer Society Publications
Tutorial Series, 1996.

[3] S. A. Bohner, “Impact analysis in the software change process: a
year 2000 perspective,” in Proceedings of the 12th International
Conference on Software Maintenance (ICSM’96), Monterey, CA,
November 1996, pp. 42–51.

[4] B. Ryder and F. Tip, “Change impact analysis for object-oriented
programs,” in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering
(PASTE ’01), Snowbird, Utah, USA, June 2001, pp. 46–53.

[5] K. H. Bennett, “An introduction to software maintenance,” Infor-
mation and Software Technology, vol. 12, no. 4, pp. 257–264, 1990.

[6] M. Lee, A. J. Offutt, and R. T. Alexander, “Algorithmic analysis of
the impacts of changes to object-oriented software,” in Proceedings
of the 34th International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS 34), Santa Barbara, CA
, USA, July 2000, pp. 61–70.

[7] R. S. Arnold and S. A. Bohner, “Impact analysis - towards a
framework for comparison,” in Proceedings of the Conference
on Software Maintenance (CSM ’93), Montreal, Que., Canada,
September 1993, pp. 292–301.

[8] S. A. Bohner, “A graph traceability approach for software change
impact analysis,” Ph.D. dissertation, George Mason University,
Fairfax, VA, USA, 1995.

[9] S. Lehnert, “A taxonomy for software change impact analysis,”
in Proceedings of the 12th International Workshop on Principles
of Software Evolution and the 7th annual ERCIM Workshop on
Software Evolution (IWPSE-EVOL 2011). Szeged, Hungary: ACM,
September 2011, pp. 41–50.

[10] G. Tóth, P. Hegedűs, A. Beszédes, T. Gyimóthy, and J. Jász, “Com-
parison of different impact analysis methods and programmer’s
opinion: an empirical study,” in Proceedings of the 8th International
Conference on the Principles and Practice of Programming in Java
(PPPJ ’10), New York, USA, 2010.

[11] M. Lindvall, “Evaluating impact analysis - a case study,” Empirical
Software Engineering, vol. 2, no. 2, pp. 152–158, 1997.

[12] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and M. J.
Harrold, “An empirical comparison of dynamic impact analysis
algorithms,” in Proceedings of the 26th International Conference
on Software Engineering (ICSE’04), Edinburgh, Scotland, 2004, pp.
491–500.

[13] B. Breech, M. Tegtmeyer, and L. Pollock, “A comparison of online
and dynamic impact analysis algorithms,” in Proceedings of the
European Conference on Software Maintenance and Reengineering
2005, March 2005, pp. 143–152.

[14] L. Hattori, G. d. Santos Jr., F. Cardoso, and M. Sampaio, “Min-
ing software repositories for software change impact analysis: A
case study,” in Proceedings of the 23rd Brazilian symposium on
Databases, Campinas, Sao Paulo, Brazil, October 2008, pp. 210–
223.

[15] L. Hattori, D. Guerrero, J. Figueiredo, J. a. Brunet, and J. Damasio,
“On the precision and accuracy of impact analysis techniques,” in
Proceedings of the Seventh IEEE/ACIS International Conference
on Computer and Information Science (icis 2008), Portland, OR,
May 2008, pp. 513–518.

[16] A. De Lucia, F. Fasano, and R. Oliveto, “Traceability management
for impact analysis,” in Proceedings of Frontiers of Software
Maintenance (FoSM 2008), Beijing, China, October 2008, pp. 21–
30.

[17] R. Robbes, M. Lanza, and D. Pollet, “A benchmark for change pre-
diction,” Faculty of Informatics, Universit della Svizzerra Italiana,
Lugano, Switzerland, Tech. Rep. 06, October 2008.

[18] H. Kagdi, M. L. Collard, and J. I. Maletic, “Towards a taxonomy of
approaches for mining of source code repositories,” in Proceedings
of the 2nd International Workshop on Mining Software Repositories
(MSR ’05), New York, 2005, pp. 90–94.

[19] ——, “A survey and taxonomy of approaches for mining software
repositories in the context of software evolution,” Journal of Soft-

ware Maintenance and Evolution: Research and Practice, vol. 19,
pp. 77–131, 2007.

[20] H. Kagdi, “Mining software repositories to support software evo-
lution,” Ph.D. dissertation, Kent State University, August 2008.

[21] M. Kilpinen, “The emergence of change at the systems engineering
and software design interface - an investigation of impact analysis,”
Ph.D. dissertation, Cambridge University, Engineering Department,
2008.

[22] B. J. Williams and J. C. Carver, “Characterizing software archi-
tecture changes: A systematic review,” Information and Software
Technology, vol. 52, no. 1, pp. 31–51, July 2009.

[23] ITU-T, “Recommendation ITU-T Z.151 User requirements notation
(URN) – Language definition,” ITU-T, Nov 2008.

[24] T. Mens, J. Buckley, M. Zenger, and A. Rashid, “Towards a taxon-
omy of software evolution,” in Proceedings of the 2nd International
Workshop on Unanticipated Software Evolution, Warsaw, Poland,
April 2003.

[25] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel,
“Towards a taxonomy of software change,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 17, pp.
309–332, September 2005.

[26] X. Ren, F. Shah, F. Tip, B. G. Ryder, O. Chesley, and J. Dolby,
“Chianti: A prototype change impact analysis tool for Java,”
Rutgers University, Department of Computer Science, Tech. Rep.
DCS-TR-533, September 2003.

[27] X. Ren, F. Shah, B. Tip, and O. Chesley, “Chianti: A tool for
change impact analysis of Java programs,” in Proceedings of
the 19th annual ACM SIG-PLAN Conference on Object-oriented
programming, systems, languages, and applications (OOPSLA ’04),
Vancouver, BC, Canada, 2004, pp. 432–448.

[28] X. Ren, B. G. Ryder, M. Stoerzer, and F. Tip, “Chianti: A change
impact analysis tool for Java programs,” in Proceedings of the
27th international conference on Software Engineering (ICSE ’05).
New York, NY, USA: ACM, 2005, pp. 664–665.

[29] X. Ren, “Change impact analysis for Java programs and ap-
plications,” Ph.D. dissertation, New Brunswick Graduate School,
Rutgers University, New Brunswick, New Jersey, USA, October
2007.

[30] F. Xia and P. Srikanth, “A change impact dependency measure for
predicting the maintainability of source code,” in Proceedings of
the 28th Annual International Computer Software and Applications
Conference (COMPSAC ’04), vol. 2, September 2004, pp. 22–23.

[31] L. Badri, M. Badri, and D. St-Yves, “Supporting predictive change
impact analysis: a control call graph based technique,” in Proceed-
ings of the 12th Asia-Pacific Conference on Software Engineering
(APSEC ’05), December 2005, p. 9.

[32] L. C. Briand, J. Wuest, and H. Lounis, “Using coupling measure-
ment for impact analysis in object-oriented systems,” in Proceed-
ings of the IEEE International Conference on Software Mainte-
nance (ICSM ’99), Oxford , UK, 1999, pp. 475–482.

[33] D. Kung, J. Gao, P. Hsia, and F. Wen, “Change impact identification
in object oriented software maintenance,” in International Confer-
ence on Software Maintenance, Victoria, BC, Canada, September
1994, pp. 202–211.

[34] V. Rajlich, “A model for change propagation based on graph
rewriting,” in Proceedings of the 13th International Conference on
Software Maintenance (ICSM ’97), Bari, Italy, October 1997, pp.
84–91.

[35] G. Pirklbauer, C. Fasching, and W. Kurschl, “Improving change
impact analysis with a tight integrated process and tool,” in Pro-
ceedings of the Seventh International Conference on Information
Technology, Las Vegas, Nevada, USA, April 2010, pp. 956–961.

[36] C. Fasching, “A tool for software visualization to support Im-
pact Analysis (in German: Ein Visualisierungswerkzeug zur Un-
terstützung der Auswirkungsanalyse),” Master’s thesis, Upper Aus-
tria University of Applied Sciences, Hagenberg, Austria, 2009.

[37] S. A. Bohner, “Extending software change impact analysis into
COTS components,” in Proceedings of the Annual NASA Goddard
Software Engineering Workshop, 2002, pp. 175–182.

[38] M. Zalewski and S. Schupp, “Change impact analysis for generic li-
braries,” in Proceedings of the 22nd IEEE International Conference
on Software Maintenance (ICSM’06), Philadelphia, Pennsylvania,
September 2006, pp. 35–44.

[39] M. Petrenko and V. Rajlich, “Variable granularity for improving
precision of impact analysis,” in Proceedings of the IEEE 17th
International Conference on Program Comprehension (ICPC ’09),
Vancouver, BC, May 2009, pp. 10–19.

[40] S. Black, “Computing ripple effect for software maintenance,”
Journal of Software Maintenance and Evolution: Research and
Practice, vol. 13, pp. 263–279, 2001.

[41] S. S. Yau, J. S. Collofello, and T. M. McGregor, “Ripple effect anal-
ysis of software maintenance,” in Proceedings Computer Software
and Applications Conference (COMPSAC 78). IEEE Computer
Society Press: Piscataway NJ, 1978, pp. 60–65.

[42] H. Bilal and S. Black, “Computing ripple effect for object ori-
ented software,” in Proceedings of the 10th ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engineering
(QAOOSE ’06), Nantes, France, July 2006, pp. 51–60.

[43] L. Li and A. J. Offutt, “Algorithmic analysis of the impact of
changes on object-oriented software,” in Proceedings of the In-
ternational Conference on Software Maintenance, Monterey, CA ,
USA, November 1996, pp. 171–184.

[44] A. Beszédes, T. Gergely, J. Jász, G. Tóth, T. Gyimóthy, and
V. Rajlich, “Computation of static execute after relation with
applications to software maintenance,” in Proceedings of the IEEE
International Conference on Software Maintenance (ICSM 2007),
Paris, October 2007, pp. 295–304.

[45] J. Jász, A. Beszédes, T. Gyimóthy, and V. Rajlich, “Static execute
after/before as a replacement of traditional software dependencies,”
in Proceedings of the IEEE International Conference on Software
Maintenance (ICSM ’08), Beijing, October 2008, pp. 137–146.

[46] K. Chen and V. Rajlich, “RIPPLES: Tool for change in legacy
software,” in Proceedings of the IEEE International Conference on
Software Maintenance, Florence, Italy, November 2001, pp. 230–
239.

[47] S. Gwizdala, Y. Jiang, and V. Rajlich, “Jtracker - a tool for change
propagation in java,” in Proceedings of the Seventh European
Conference on Software Maintenance and Reengineering, March
2003, pp. 223–229.

[48] L. Bishop, “Incremental impact analysis for object-oriented soft-
ware,” Master’s thesis, Iowa State University, 2004.

[49] F. Tip, “A survey of program slicing techniques,” Journal of
Programming Languages, vol. 3, pp. 121–189, 1994.

[50] J. Korpi and J. Koskinen, “Supporting impact analysis by program
dependence graph based forward slicing,” in Advances and Inno-
vations in Systems, Computing Sciences and Software Engineering,
K. Elleithy, Ed. Springer Netherlands, 2007, pp. 197–202.

[51] K. B. Gallagher and J. R. Lyle, “Using program slicing in software
maintenance,” IEEE Transactions on Software Engineering, vol. 17,
no. 8, pp. 751–761, August 1991.

[52] M. Hutchins and K. Gallagher, “Improving visual impact analysis,”
in Proceedings of the 14th IEEE International Conference on Soft-
ware Maintenance (ICSM’98), Bethesda, Maryland, USA, March
1998, pp. 294–303.

[53] P. Tonella, “Using a concept lattice of decomposition slices for
program understanding and impact analysis,” IEEE Transactions
on Software Engineering, vol. 29, no. 6, pp. 495–509, June 2003.

[54] D. Binkley and M. Harman, “Locating dependence clusters and
dependence pollution,” in Proceedings of the 21st International
Conference on Software Maintenance (ICSM’05), September 2005,
pp. 177–186.

[55] L. Vidács, A. Beszédes, and R. Ferenc, “Macro impact analysis
using macro slicing,” in Proceedings of the Second International
Conference on Software and Data Technologies (ICSOFT ’07),
2007, pp. 230–235.

[56] R. Santelices and M. J. Harrold, “Probabilistic slicing for predictive
impact analysis,” Georgia Tech Center for Experimental Research
in Computer Systems (CERCS), Tech. Rep., 2010.

[57] J. Law and G. Rothermel, “Whole program path-based dynamic
impact analysis,” in Proceedings of the International Conference
on Software Engineering (2003), 2003, pp. 308–318.

[58] ——, “Incremental dynamic impact analysis for evolving software
systems,” in Proceedings of the 14th International Symposium on
Software Reliability Engineering (ISSRE’03), November 2003, pp.
430–441.

[59] A. Orso, T. Apiwattanapong, and M. J. Harrold, “Leveraging field
data for impact analysis and regression testing,” in Proceedings

of the 9th European software engineering conference held jointly
with 11th ACM SIGSOFT international symposium on Foundations
of software engineering (ESEC/FSE’03), Helsinki, Finland, 2003,
pp. 128–137.

[60] B. Breech, A. Danalis, S. Shindo, and L. Pollock, “Online impact
analysis via dynamic compilation technology,” in Proceedings of
the 20th IEEE International Conference of Software Maintenance,
September 2004, pp. 453–457.

[61] B. Breech, M. Tegtmeyer, and L. Pollock, “Integrating influence
mechanisms into impact analysis for increased precision,” in Pro-
ceedings of the 22nd IEEE International Conference on Software
Maintenance (ICSM ’06), Philadelphia, PA, December 2006, pp.
55–65.

[62] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient and
precise dynamic impact analysis using execute-after sequences,”
in Proceedings of the International Conference on Software Engi-
neering (ICSE 2005), St. Louis, MO, May 2005, pp. 432–441.

[63] L. Huang and Y.-T. Song, “Dynamic impact analysis using exe-
cution profile tracing,” in Proceedings of the Fourth International
Conference on Software Engineering Research, Management and
Applications (SERA’06), Seattle, Washington, August 2006, pp.
237–244.

[64] A. Beszédes, T. Gergely, S. Faragó, T. Gyimóthy, and F. Fischer,
“The dynamic function coupling metric and its use in software
evolution,” in Proceedings of the 11th European Conference on
Software Maintenance and Reengineering (CSMR’07), Amsterdam,
the Netherlands, March 2007, pp. 103–112.

[65] C. Gupta, Y. Singh, and D. S. Chauhan, “An efficient dynamic im-
pact analysis using definition and usage information,” International
Journal of Digital Content Technology and its Applications, vol. 3,
no. 4, pp. 112–115, 2009.

[66] ——, “A dynamic approach to estimate change impact using type
of change propagation,” Journal of Information Processing Systems,
vol. 6, no. 4, pp. 597–608, December 2010.

[67] R. Vanciu and V. Rajlich, “Hidden dependencies in software
systems,” in Proceedings of the IEEE International Conference on
Software Maintenance (ICSM ’10), Timisoara, September 2010, pp.
1–10.

[68] J. Han, “Supporting impact analysis and change propagation in
software engineering environments,” Monash University, Peninsula
School of Computing & Information Technology, McMahons Road,
Frankston, Victoria 3199, Australia, Tech. Rep. 96-09, October
1996.

[69] M. A. Chaumun, H. Kabaili, R. K. Keller, and F. Lustman,
“A change impact model for changeability assessment in object-
oriented software systems,” in Proceedings of the Third European
Conference on Software Maintenance and Reengineering, 1999, pp.
130–149.

[70] E. Arisholm, L. C. Briand, and A. Foyen, “Dynamic coupling
measurement for object-oriented software,” IEEE Transactions on
Software Engineering, vol. 30, no. 8, pp. 491–506, 2004.

[71] X. Sun, B. Li, C. Tao, W. Wen, and S. Zhang, “Change impact
analysis based on a taxonomy of change types,” in Proceedings
of the IEEE 34th Annual Computer Software and Applications
Conference, Seoul, Korea (South), July 2010, pp. 373–382.

[72] D. Binkley and D. Lawrie, “Information retrieval applications in
software maintenance and evolution,” in Encyclopedia of Software
Engineering, P. Laplante, Ed. Taylor & Francis LLC, 2010, ch. 2.

[73] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia, “Identifying
the starting impact set of a maintenance request: A case study,”
in Proceedings of the Fourth European Conference on Software
Maintenance and Reengineering, Zurich, Switzerland, February
2000, pp. 227–230.

[74] S. Vaucher, H. Sahraoui, and J. Vaucher, “Discovering new change
patterns in object-oriented systems,” in Proceedings of the 2008
15th Working Conference on Reverse Engineering (WCRE ’08),
Washington, DC, USA, 2008, pp. 37–41.

[75] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Using
information retrieval based coupling measures for impact analysis,”
Empirical Software Engineering, vol. 14, no. 1, pp. 5–32, 2009.

[76] Y. Zhou, M. Wuersch, E. Giger, H. Gall, and J. Lue, “A bayesian
network based approach for change coupling prediction,” in Pro-
ceedings of the 15th Working Conference on Reverse Engineering
2008, October 2008, pp. 27–36.

[77] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, “Predicting
the probability of change in object-oriented systems,” IEEE Trans-
actions on Software Engineering, vol. 31, no. 7, pp. 601–614, July
2005.

[78] M. Abdi, H. Lounis, and H. Sahraoui, “Analyzing change impact in
object-oriented systems,” in Proceedings of the 32nd EUROMICRO
Conference on Software Engineering and Advanced Applications
(EUROMICRO’06), Cavtat/Dubrovnik (Croatia), August 2006, pp.
310–319.

[79] ——, “Using coupling metrics for change impact analysis in object-
oriented systems,” in Proceedings of the 10th ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engineering
(QAOOSE ’06), Nantes, France, July 2006, pp. 61–70.

[80] ——, “A probabilistic approach for change impact prediction in
object-oriented systems,” in Proceedings of the 2nd Workshop on
Artificial Intelligence Techniques in Software Engineering (AISEW
2009), Thessaloniki, Greece, April 2009, pp. 189–200.

[81] ——, “Predicting change impact in object-oriented applications
with bayesian networks,” in Computer Software and Applications
Conference, 2009. COMPSAC ’09. 33rd Annual IEEE Interna-
tional, Seattle, WA, July 2009, pp. 234–239.

[82] S. Mirarab, A. Hassouna, and L. Tahvildari, “Using bayesian belief
networks to predict change propagation in software systems,” in
Proceedings of the 15th IEEE International Conference on Program
Comprehension (ICPC ’07), Banff, Alberta, Canada, June 2007, pp.
177–188.

[83] M. Gethers and D. Poshyvanyk, “Using relational topic models
to capture coupling among classes in object-oriented software sys-
tems,” in Proceedings of the 26th IEEE International Conference on
Software Maintenance (ICSM’10), Timisoara, Romania, September
2010, pp. 1–10.

[84] B. Fluri, H. C. Gall, and M. Pinzger, “Fine-grained analysis
of change couplings,” in Proceeding of the Fifth IEEE Interna-
tional Workshop on Source Code Analysis and Manipulation 2005,
November 2005, pp. 66–74.

[85] B. Fluri and H. C. Gall, “Classifying change types for qualifying
change couplings,” in Proceeding of the 14th IEEE International
Conference on Program Comprehension (ICPC 2006), Athens,
2006, pp. 35–45.

[86] H. Gall, M. Jazayeri, and J. Krajewski, “CVS release history data
for detecting logical couplings,” in Proceedings of the Sixth Inter-
national Workshop on Principles of Software Evolution, September
2003.

[87] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” IEEE Transactions on
Software Engineering, vol. 31, no. 6, pp. 429–445, June 2005.

[88] S. Ducasse, T. Gı̂rba, and J.-M. Favre, “Modeling software evo-
lution by treating history as a first class entity,” in Proceedings
of the Workshop on Software Evolution through Transformations:
Model-based vs. Implementation-level Solutions (SETra ’04), 2004,
pp. 71–82.

[89] T. Gı̂rba and M. Lanza, “Visualizing and characterizing the evolu-
tion of class hierarchies,” in Proceeding of the Fifth International
Workshop on Object-Oriented Reengineering (WOOR 2004), 2004.

[90] T. Gı̂rba, M. Lanza, and S. Ducasse, “Characterizing the evolution
of class hierarchies,” in Proceeding of the Ninth European Con-
ference on Software Maintenance and Reengineering (CSMR’05),
2005, pp. 2–11.

[91] T. Gı̂rba and S. Ducasse, “Modeling history to analyze software
evolution,” Journal of Software Maintenance and Evolution: Re-
search and Practice, vol. 18, pp. 207–236, 2006.

[92] T. Gı̂rba, S. Ducasse, and M. Lanza, “Yesterdays Weather: Guiding
early reverse engineering efforts by summarizing the evolution of
changes,” in Proceeding of the 20th IEEE International Conference
on Software Maintenance (ICSM 04). IEEE Computer Society,
2004, pp. 40–49.

[93] T. Gı̂rba, S. Ducasse, and A. Kuhn, “Using concept analysis to de-
tect co-change patterns,” in Proceedings of the Ninth international
workshop on Principles of software evolution: in conjunction with
the 6th ESEC/FSE joint meeting, Dubrovnik, Croatia, 2007, pp.
83–89.

[94] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll,
“Predicting source code changes by mining change history,” IEEE

Transactions on Software Engineering, vol. 30, no. 9, pp. 574–586,
September 2004.

[95] A. E. Hassan and R. C. Holt, “Predicting change propagation in
software systems,” in Proceedings of the 20th IEEE International
Conference on Software Maintenance (ICSM 2004), September
2004, pp. 284–293.

[96] S. Bouktif, Y.-G. Guéhéneuc, and G. Antoniol, “Extracting change-
patterns from CVS repositories,” in Proceedings of the 13th Work-
ing Conference on Reverse Engineering (WCRE ’06), Benevento,
October 2006, pp. 221–230.

[97] T. Zimmermann and P. Weissgerber, “Preprocessing CVS data
for fine-grained analysis,” in Proceedings of the 1st International
Workshop on Mining Software Repositories, 2004, pp. 2–6.

[98] R. Robbes and M. Lanza, “A change-based approach to software
evolution,” Electronic Notes in Theoretical Computer Science, vol.
166, pp. 93–109, January 2007.

[99] R. Robbes, M. Lanza, and M. Lungu, “An approach to software
evolution based on semantic change,” in Fundamental Approaches
to Software Engineering, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2007, vol. 4422, pp. 27–41.

[100] R. Robbes and M. Lanza, “SpyWare: A change-aware development
toolset,” in Proceedings of the 30th international conference on
Software engineering (ICSE ’08), Leipzig, Germany, May 2008,
pp. 847–850.

[101] S. Wong and Y. Cai, “Predicting change impact from logical
models,” in Proceedings of the IEEE International Conference
on Software Maintenance (ICSM ’09), Edmonton, AB, Canada,
September 2009, pp. 467–470.

[102] H. Kagdi and J. I. Maletic, “Software-change prediction: Esti-
mated+actual,” in Proceedings of the Second International IEEE
Workshop on Software Evolvability (SE ’06), Philadelphia, PA,
September 2006, pp. 38–43.

[103] H. Kagdi, “Improving change prediction with fine-grained source
code mining,” in Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, New
York, NY, USA, 2007, pp. 559–562.

[104] H. Kagdi and J. I. Maletic, “Combining single-version and evolu-
tionary dependencies for software-change prediction,” in Proceed-
ings of 4th International Workshop on Mining Software Reposito-
ries (MSR’07), Minneapolis, MN, May 2007, pp. 107–110.

[105] D. M. German, A. E. Hassan, and G. Robles, “Change impact
graphs: Determining the impact of prior code changes,” Information
and Software Technology, vol. 51, pp. 1394–1408, 2009.

[106] G. Canfora and L. Cerulo, “Impact analysis by mining software
and change request repositories,” in Proceedings of the 11th IEEE
International Software Metrics Symposium (METRICS’05), Como,
Italy, September 2005, pp. 29–38.

[107] ——, “Fine grained indexing of software repositories to support
impact analysis,” in Proceedings of the International Workshop on
Mining Software Repositories (MSR’06), 2006, pp. 105–111.

[108] M. Ceccarelli, L. Cerulo, G. Canfora, and M. Di Penta, “An eclectic
approach for change impact analysis,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering,
vol. 2, 2010, pp. 163–166.

[109] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta, “Using
multivariate time series and association rules to detect logical
change coupling: an empirical study,” in Proceedings of the 26th
IEEE International Conference on Software Maintenance (ICSM
2010), 2010.

[110] H. Kabaili, R. K. Keller, and F. Lustman, “A change impact model
encompassing ripple effect and regression testing,” in Proceedings
of the Fifth International Workshop on Quantitative Approaches in
Object-Oriented Software Engineering, Budapest, Hungary, 2001,
pp. 25–33.

[111] J.-P. Queille, J.-F. Voidrot, N. WiIde, and M. Munro, “The impact
analysis task in software maintenance: A model and a case study,”
in Proceedings of the International Conference on Software Main-
tenance, Victoria, BC, Canada, September 1994, pp. 234–242.

[112] S. Barros, T. Bodhuin, A. Escudie, J. Queille, and J. Voidrot,
“Supporting impact analysis: a semi-automated technique and as-
sociated tool,” in Proceedings of the 11th International Conference
on Software Maintenance (ICSM’95), Opio (Nice), France, October
1995, pp. 42–51.

[113] L. Huang and Y.-T. Song, “Precise dynamic impact analysis with
dependency analysis for object-oriented programs,” in Proceedings
of the 5th ACIS International Conference on Software Engineer-
ing Research, Management & Applications (SERA 2007), Busan,
August 2007, pp. 374–384.

[114] ——, “A dynamic impact analysis approach for object-oriented
programs,” in Proceedings of the Conference on Advanced Soft-
ware Engineering and Its Applications (ASEA ’08), Hainan Island,
December 2008, pp. 217–220.

[115] R. J. Walker, R. Holmes, I. Hedgeland, P. Kapur, and A. Smith, “A
lightweight approach to technical risk estimation via probabilistic
impact analysis,” in Proceedings of the 2006 international work-
shop on Mining software repositories (MSR ’06), Shanghai, China,
2006, pp. 98–104.

[116] M. C. O. Maia, R. A. Bittencourt, J. C. A. de Figueiredo, and
D. D. S. Guerrero, “The hybrid technique for object-oriented
software change impact analysis,” in Proceedings of the 14th
European Conference on Software Maintenance and Reengineering
(CSMR ’10), Madrid, Spain, March 2010, pp. 252–255.

[117] S. Wong, Y. Cai, and M. Dalton, “Change impact analysis with
stochastic dependencies,” Drexel University Philadelphia, PA, USA,
Tech. Rep., 2011.

[118] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. L. Collard, “Blend-
ing conceptual and evolutionary couplings to support change im-
pact analysis in source code,” in Proceedings of the 17th IEEE
Working Conference on Reverse Engineering (WCRE’10), Beverly,
Massachusetts, USA, October 2010, pp. 119–128.

[119] X. Sun, B. Li, C. Tao, and S. Zhang, “HSM-based change impact
analysis of object-oriented Java programs,” Chinese Journal of
Electronics, vol. 20, no. 2, pp. 247–251, April 2011.

[120] R. N. Mohamad, “A change impact analysis approach using visual-
ization method,” Master’s thesis, Malaysia University of Technol-
ogy, Faculty of Computer Science and Information Systems, 2010.

[121] S. Ibrahim, N. B. Idris, M. Munro, and A. Deraman, “Integrating
software traceability for change impact analysis,” The International
Arab Journal of Information Technology, vol. 2, no. 4, pp. 301–308,
October 2005.

[122] ——, “A requirements traceability to support change impact anal-
ysis,” Asean Journal of Information Technology, vol. 4, no. 4, pp.
345–355, 2005.

[123] ——, “A software traceability validation for change impact analysis
of object oriented software,” in Proceedings of the International
Conference on Software Engineering Research and Practice &
Conference on Programming Languages and Compilers, SERP
2006, vol. 1, Las Vegas, Nevada, USA, June 2006, pp. 453–459.

[124] M. L. Lee, “Change impact analysis of object-oriented software,”
Ph.D. dissertation, Graduate Faculty of George Mason University,
Fairfax, Virginia, 1998.

[125] D. Popescu, J. Garcia, K. Bierhoff, and N. Medvidovic, “Helios:
Impact analysis for event-based systems,” in Proceedings of the
32nd International Conference on Software Engineering (ICSE),
2010.

[126] D. Popescu, “Impact analysis for event-based components and
systems,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, vol. 2, New York, USA, 2010.

[127] L. Moonen, “Lightweight impact analysis using island grammars,”
in Proceedings of the 10th International Workshop on Program
Comprehension, December 2002, pp. 219–228.

[128] M. A. Hoffman, “Automated impact analysis of object-oriented
software systems,” in Proceedings of Conference on Object Ori-
ented Programming Systems Languages and Applications (OOP-
SLA ’03), Anaheim, CA, October 2003, pp. 72–73.

[129] A. Aryani, I. D. Peake, M. Hamilton, and H. Schmidt, “Change
propagation analysis using domain information,” in Australian
Software Engineering Conference 2009, Gold Coast, Australia,
April 2009, pp. 34–43.

[130] A. Aryani, I. D. Peake, and M. Hamilton, “Domain-based change
propagation analysis: An enterprise system case study,” in Pro-
ceedings of the IEEE International Conference on Software Main-
tenance (ICSM ’10), Timisoara, September 2010, pp. 1–9.

[131] L. Briand, Y. Labiche, and L. O’Sullivan, “Impact analysis and
change management of UML models,” in Proceedings of the 19th
International Conference on Software Maintenance, 2003, pp. 256–
265.

[132] L. Briand, Y. Labiche, L. O’Sullivan, and M. Sówka, “Automated
impact analysis of UML models,” Journal of Systems and Software,
vol. 79, pp. 339–352, 2006.

[133] C. Dantas, L. Murta, and C. Werner, “Mining change traces from
versioned UML repositories,” in Proceedings of the Brazilian
Symposium on Software Engineering (SBES’07), 2007, pp. 236–
252.

[134] Z. Xing and E. Stroulia, “Data-mining in support of detecting class
co-evolution,” in Proceedings of the 16th International Conference
on Software Engineering & Knowledge Engineering (SEKE’04),
June 2004, pp. 123–128.

[135] ——, “Understanding class evolution in object-oriented software,”
in Proceedings of the 12th IEEE International Workshop on Pro-
gram Comprehension (IWPC’04), June 2004, pp. 34–43.

[136] ——, “UMLDiff: An algorithm for object-oriented design dif-
ferencing,” in Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering (ASE ’05), Long
Beach, California, USA, November 2005, pp. 54–65.

[137] A. McNair, D. M. German, and J. Weber-Jahnke, “Visualizing
software architecture evolution using change-sets,” in Proceedings
of the 14th Working Conference on Reverse Engineering (WCRE
’07), Vancouver, BC, October 2007, pp. 130–139.

[138] N. Yoo and H.-A. Choi, “An XML-based approach for interface
impact analysis in sustained system,” in Proceedings of the Inter-
national Conference on Information and Knowledge Engineering
(IKE’04), Las Vegas, Nevada, USA, June 2004, pp. 161–167.

[139] F. de Boer, M. Bonsangue, L. Groenewegen, A. Stam, S. Stevens,
and L. van der Torre, “Change impact analysis of enterprise
architectures,” in Proceedings of the IEEE International Conference
on Information Reuse and Integration (IRI), August 2005, pp. 177–
181.

[140] U. Vora, “Change impact analysis and software evolution specifica-
tion for continually evolving systems,” in Proceedings of the Fifth
International Conference on Software Engineering Advances, Nice,
France, August 2010, pp. 238–243.

[141] T. Feng and J. I. Maletic, “Applying dynamic change impact
analysis in component-based architecture design,” in Proceeding
of the Seventh International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Com-
puting (SNPD 2006), Las Vegas, Nevada, USA, June 2006, pp.
43–48.

[142] A. Tang, A. Nicholson, Y. Jin, and J. Han, “Using bayesian belief
networks for change impact analysis in architecture design,” The
Journal of Systems and Software, vol. 80, pp. 127–148, 2007.

[143] J. Zhao, H. Yang, L. Xiang, and B. Xu, “Change impact analysis to
support architectural evolution,” Journal of Software Maintenance,
vol. 14, no. 5, pp. 317–333, 2002.

[144] K. van den Berg, “Change impact analysis of crosscutting in
software architectural design,” in Proceedings of the Workshop on
Architecture-Centric Evolution (ACE 2006), Nantes, July 2006, pp.
1–15.

[145] J. Hewitt and J. Rilling, “A light-weight proactive software change
impact analysis using use case maps,” in Proceedings of the
IEEE International Workshop on Software Evolvability (Software-
Evolvability’05), Budapest, Hungary, September 2005, pp. 41–48.

[146] N. Nurmuliani, D. Zowghi, and S. P. Williams, “Requirements
volatility and its impact on change effort: Evidence-based research
in software development projects,” in Proceedings of the 11th
Australian Workshop on Requirements Engineering, Adelaide, Aus-
tralia, 2006.

[147] N. Mellegård and M. Staron, “Improving efficiency of change
impact assessment using graphical requirement specifications: An
experiment,” in Product-Focused Software Process Improvement.
Springer Berlin / Heidelberg, 2010, vol. 6156, pp. 336–350.

[148] S. Lock and G. Kotonya, “An integrated, probabilistic framework
for requirement change impact analysis,” Australasian Journal of
Information Systems, vol. 6, no. 2, pp. 38–63, September 1999.

[149] D. ten Hove, A. Goknil, I. Kurtev, K. Berg van den, and
K. Goede de, “Change impact analysis for sysml requirements
models based on semantics of trace relations,” in Proceedings of
the ECMDA Traceability Workshop (ECMDA-TW), Enschede, the
Netherlands, June 2009, pp. 17–28.

[150] J. Hassine, J. Rilling, J. Hewitt, and R. Dssouli, “Change im-
pact analysis for requirement evolution using use case maps,” in

Proceedings of the 8th International Workshop on Principles of
Software Evolution, 2005, pp. 81–90.

[151] A. Goknil, I. Kurtev, and K. van den Berg, “Change impact analysis
based on formalization of trace relations for requirements,” in
Proceedings of the EC-MDA Traceability Workshop (ECMDA-TW),
2008, pp. 59–75.

[152] W.-T. Lee, W.-Y. Deng, J. Lee, and S.-J. Lee, “Change impact anal-
ysis with a goal-driven traceability-based approach,” International
Journal of Intelligent Systems, vol. 25, pp. 878–908, August 2010.

[153] W. Spijkerman, “Tool support for change impact analysis in re-
quirement models - exploiting semantics of requirement relations
as traceability relations,” Master’s thesis, Faculty of Electrical
Engineering, Mathematics and Computer Science, University of
Twente, October 2010.

[154] P. Jönsson, “Impact analysis organisational views and support
techniques,” Ph.D. dissertation, Department of Systems and Soft-
ware Engineering School of Engineering Blekinge Institute of
Technology Sweden, 2005.

[155] J. S. O’Neal and D. L. Carver, “Analyzing the impact of changing
requirements,” in Proceedings of the IEEE International Conference
on Software Maintenance, Florence, Italy, November 2001, pp.
190–195.

[156] J. S. O’Neal, “Analyzing the impact of changing software re-
quirements: A traceability-based methodology,” Ph.D. dissertation,
Louisiana State University, 2003.

[157] G. Antoniol, V. F. Rollo, and G. Venturi, “Detecting groups of
co-changing files in CVS repositories,” in Proceedings of the
Eighth International Workshop on Principles of Software Evolution
(IWPSE’05), Lisbon, Portugal, September 2005, pp. 23–32.

[158] D. Beyer and A. Noack, “Clustering software artifacts based on fre-
quent common changes,” in Proceedings of the 13th International
Workshop on Program Comprehension (IWPC’05), 2005, pp. 259–
268.

[159] M. Askari and R. Holt, “Information theoretic evaluation of change
prediction models for large-scale software,” in Proceedings of
the 3rd International Workshop on Mining Software Repositories
(MSR06), New York, 2006, pp. 126–132.

[160] M. Sherriff and L. Williams, “Empirical software change impact
analysis using singular value decomposition,” IBM, North Carolina
State University, Tech. Rep., 2007.

[161] M.-A. Jashki, R. Zafarani, and E. Bagheri, “Towards a more effi-
cient static software change impact analysis method,” in Proceed-
ings of the 8th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering (PASTE ’08), 2008.

[162] S. Nadi, R. Holt, and S. Mankovskii, “Does the past say it all?
using history to predict change sets in a CMDB,” in Proceedings
of the 14th European Conference on Software Maintenance and
Reengineering, Madrid, Spain, March 2010, pp. 97–106.

[163] T.-h. Kim, K. Kim, and W. Kim, “An interactive change impact
analysis based on an architectural reflexion model approach,” in
Proceedings of the IEEE 34th Annual Computer Software and
Applications Conference (COMPSAC ’10), Seoul, July 2010, pp.
297–302.

[164] G. C. Murphy, D. Notkin, and K. Sullivan, “Software reflexion
models: Bridging the gap betwen source and high-level models,” in
Proceedings of the 3rd ACM SIGSOFT symposium on Foundations
of software engineering (SIGSOFT ’95), Washington, D.C., USA,
October 1995, pp. 18–28.

[165] ——, “Software reflexion models: Bridging the gap between design
and implementation,” IEEE Transactions on Software Engineering,
vol. 27, no. 4, pp. 364–380, April 2001.

[166] M. Hammad, M. L. Collard, and J. I. Maletic, “Automatically
identifying changes that impact code-to-design traceability,” in
Proceedings of the IEEE 17th International Conference on Program
Comprehension (ICPC ’09), Vancouver, BC, May 2009, pp. 20–29.

[167] A. R. Sharafat and L. Tahvildari, “A probabilistic approach to pre-
dict changes in object-oriented software systems,” in Proceedings
of the 11th European Conference on Software Maintenance and
Reengineering (CSMR ’07), Amsterdam, Netherlands, March 2007,
pp. 27–38.

[168] ——, “Change prediction in object-oriented software systems: A
probabilistic approach,” Journal of Software, vol. 3, no. 5, pp. 26–
39, May 2008.

[169] J. Hutchinson, G. Kotonya, B. Bloin, and P. Sawyer, “Understand-
ing the impact of change in COTS-based systems,” in Proceedings
of the International Conference on Software Engineering Research
and Practice (SERP ’03), Las Vegas, USA, June 2003.

[170] G. Kotonya and J. Hutchinson, “Analysing the impact of change
in COTS-based systems,” Lecture Notes in Computer Science, vol.
3412, pp. 212–222, 2005.

[171] H. Xiao, J. Guo, and Y. Zou, “Supporting change impact analysis
for service oriented business applications,” in Proceedings of the
International Workshop on Systems Development in SOA Environ-
ments (SDSOA ’07), 2007, pp. 6–11.

[172] S. A. Bohner, “Software change impacts-an evolving perspective,”
in Proceedings of the International Conference on Software Main-
tenance, 2002, pp. 263–272.

[173] S. A. Bohner and D. Gracanin, “Software impact analysis in a
virtual environment,” in Proceedings of the 28th Annual NASA
Goddard Software Engineering Workshop, December 2003, pp.
143–151.

[174] S. S. Khan and S. Lock, “Concern tracing and change impact
analysis: An exploratory study,” in Proceedings of the 2009 ICSE
Workshop on Aspect-Oriented Requirements Engineering and Ar-
chitecture Design, Vancouver, BC, Canada, May 2009, pp. 44–48.

[175] B. Yu, A. Mili, W. Abdelmoez, R. Gunnalan, M. Shereshevsky,
and H. H. Ammar, “Requirements change impact in software
architecture.”

[176] L. Briand, Y. Labiche, K. Buist, and G. Soccar, “Automating impact
analysis and regression test selection based on UML designs,” in
Proceedings of the 18th IEEE International Conference on Software
Maintenance (ICSM’02), Montreal, Quebec, Canada, October 2002,
pp. 252–261.

[177] A. von Knethen and M. Grund, “QuaTrace: a tool environment for
(semi-) automatic impact analysis based on traces,” in Proceedings
of the International Conference on Software Maintenance (ICSM
2003), September 2003, pp. 246–255.

[178] M. Lindvall and K. Sandahl, “Traceability aspects of impact anal-
ysis in object-oriented systems,” Journal of Software Maintenance:
Research and Practice, vol. 10, pp. 37–57, January 1998.

[179] S. Looman, “Impact analysis of changes in functional requirements
in the behavioral view of software architectures,” Master’s thesis,
University of Twente, Faculty of Electrical Engineering, Mathemat-
ics and Computer Science, 2009.

[180] M. O. Hassan, L. Deruelle, and H. Basson, “A knowledge-based
system for change impact analysis on software architecture,” in
Proceedings of the Fourth International Conference on Research
Challenges in Information Science (RCIS), Nice, France, May 2010,
pp. 545–556.

[181] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of
Modularity. Cambridge, MA, USA: MIT Press, 2000.

[182] J. Buckner, J. Buchta, M. Petrenko, and V. Rajlich, “JRipples:
A tool for program comprehension during incremental change,”
in Proceedings of the 13th International Workshop on Program
Comprehension (IWPC 05), May 2005, pp. 149–151.

