5,140 research outputs found

    Mobile graphics: SIGGRAPH Asia 2017 course

    Get PDF
    Peer ReviewedPostprint (published version

    Prioritizing Content of Interest in Multimedia Data Compression

    Get PDF
    Image and video compression techniques make data transmission and storage in digital multimedia systems more efficient and feasible for the system's limited storage and bandwidth. Many generic image and video compression techniques such as JPEG and H.264/AVC have been standardized and are now widely adopted. Despite their great success, we observe that these standard compression techniques are not the best solution for data compression in special types of multimedia systems such as microscopy videos and low-power wireless broadcast systems. In these application-specific systems where the content of interest in the multimedia data is known and well-defined, we should re-think the design of a data compression pipeline. We hypothesize that by identifying and prioritizing multimedia data's content of interest, new compression methods can be invented that are far more effective than standard techniques. In this dissertation, a set of new data compression methods based on the idea of prioritizing the content of interest has been proposed for three different kinds of multimedia systems. I will show that the key to designing efficient compression techniques in these three cases is to prioritize the content of interest in the data. The definition of the content of interest of multimedia data depends on the application. First, I show that for microscopy videos, the content of interest is defined as the spatial regions in the video frame with pixels that don't only contain noise. Keeping data in those regions with high quality and throwing out other information yields to a novel microscopy video compression technique. Second, I show that for a Bluetooth low energy beacon based system, practical multimedia data storage and transmission is possible by prioritizing content of interest. I designed custom image compression techniques that preserve edges in a binary image, or foreground regions of a color image of indoor or outdoor objects. Last, I present a new indoor Bluetooth low energy beacon based augmented reality system that integrates a 3D moving object compression method that prioritizes the content of interest.Doctor of Philosoph

    Real-time indoor assistive localization with mobile omnidirectional vision and cloud GPU acceleration

    Full text link
    In this paper we propose a real-time assistive localization approach to help blind and visually impaired people in navigating an indoor environment. The system consists of a mobile vision front end with a portable panoramic lens mounted on a smart phone, and a remote image feature-based database of the scene on a GPU-enabled server. Compact and elective omnidirectional image features are extracted and represented in the smart phone front end, and then transmitted to the server in the cloud. These features of a short video clip are used to search the database of the indoor environment via image-based indexing to find the location of the current view within the database, which is associated with floor plans of the environment. A median-filter-based multi-frame aggregation strategy is used for single path modeling, and a 2D multi-frame aggregation strategy based on the candidates’ distribution densities is used for multi-path environmental modeling to provide a final location estimation. To deal with the high computational cost in searching a large database for a realistic navigation application, data parallelism and task parallelism properties are identified in the database indexing process, and computation is accelerated by using multi-core CPUs and GPUs. User-friendly HCI particularly for the visually impaired is designed and implemented on an iPhone, which also supports system configurations and scene modeling for new environments. Experiments on a database of an eight-floor building are carried out to demonstrate the capacity of the proposed system, with real-time response (14 fps) and robust localization results

    Pose estimation system based on monocular cameras

    Get PDF
    Our world is full of wonders. It is filled with mysteries and challenges, which through the ages inspired and called for the human civilization to grow itself, either philosophically or sociologically. In time, humans reached their own physical limitations; nevertheless, we created technology to help us overcome it. Like the ancient uncovered land, we are pulled into the discovery and innovation of our time. All of this is possible due to a very human characteristic - our imagination. The world that surrounds us is mostly already discovered, but with the power of computer vision (CV) and augmented reality (AR), we are able to live in multiple hidden universes alongside our own. With the increasing performance and capabilities of the current mobile devices, AR is what we dream it can be. There are still many obstacles, but this future is already our reality, and with the evolving technologies closing the gap between the real and the virtual world, soon it will be possible for us to surround ourselves into other dimensions, or fuse them with our own. This thesis focuses on the development of a system to predict the camera’s pose estimation in the real-world regarding to the virtual world axis. The work was developed as a sub-module integrated on the M5SAR project: Mobile Five Senses Augmented Reality System for Museums, aiming to a more immerse experience with the total or partial replacement of the environments’ surroundings. It is based mainly on man-made buildings indoors and their typical rectangular cuboid shape. With the possibility of knowing the user’s camera direction, we can then superimpose dynamic AR content, inviting the user to explore the hidden worlds. The M5SAR project introduced a new way to explore the existent historical museums by exploring the human’s five senses: hearing, smell, taste, touch, vision. With this innovative technology, the user is able to enhance their visitation and immerse themselves into a virtual world blended with our reality. A mobile device application was built containing an innovating framework: MIRAR - Mobile Image Recognition based Augmented Reality - containing object recognition, navigation, and additional AR information projection in order to enrich the users’ visit, providing an intuitive and compelling information regarding the available artworks, exploring the hearing and vision senses. A device specially designed was built to explore the additional three senses: smell, taste and touch which, when attached to a mobile device, either smartphone or tablet, would pair with it and automatically react in with the offered narrative related to the artwork, immersing the user with a sensorial experience. As mentioned above, the work presented on this thesis is relative to a sub-module of the MIRAR regarding environment detection and the superimposition of AR content. With the main goal being the full replacement of the walls’ contents, and with the possibility of keeping the artwork visible or not, it presented an additional challenge with the limitation of using only monocular cameras. Without the depth information, any 2D image of an environment, to a computer doesn’t represent the tridimensional layout of the real-world dimensions. Nevertheless, man-based building tends to follow a rectangular approach to divisions’ constructions, which allows for a prediction to where the vanishing point on any environment image may point, allowing the reconstruction of an environment’s layout from a 2D image. Furthermore, combining this information with an initial localization through an improved image recognition to retrieve the camera’s spatial position regarding to the real-world coordinates and the virtual-world, alas, pose estimation, allowed for the possibility of superimposing specific localized AR content over the user’s mobile device frame, in order to immerse, i.e., a museum’s visitor into another era correlated to the present artworks’ historical period. Through the work developed for this thesis, it was also presented a better planar surface in space rectification and retrieval, a hybrid and scalable multiple images matching system, a more stabilized outlier filtration applied to the camera’s axis, and a continuous tracking system that works with uncalibrated cameras and is able to achieve particularly obtuse angles and still maintain the surface superimposition. Furthermore, a novelty method using deep learning models for semantic segmentation was introduced for indoor layout estimation based on monocular images. Contrary to the previous developed methods, there is no need to perform geometric calculations to achieve a near state of the art performance with a fraction of the parameters required by similar methods. Contrary to the previous work presented on this thesis, this method performs well even in unseen and cluttered rooms if they follow the Manhattan assumption. An additional lightweight application to retrieve the camera pose estimation is presented using the proposed method.O nosso mundo está repleto de maravilhas. Está cheio de mistérios e desafios, os quais, ao longo das eras, inspiraram e impulsionaram a civilização humana a evoluir, seja filosófica ou sociologicamente. Eventualmente, os humanos foram confrontados com os seus limites físicos; desta forma, criaram tecnologias que permitiram superá-los. Assim como as terras antigas por descobrir, somos impulsionados à descoberta e inovação da nossa era, e tudo isso é possível graças a uma característica marcadamente humana: a nossa imaginação. O mundo que nos rodeia está praticamente todo descoberto, mas com o poder da visão computacional (VC) e da realidade aumentada (RA), podemos viver em múltiplos universos ocultos dentro do nosso. Com o aumento da performance e das capacidades dos dispositivos móveis da atualidade, a RA pode ser exatamente aquilo que sonhamos. Continuam a existir muitos obstáculos, mas este futuro já é o nosso presente, e com a evolução das tecnologias a fechar o fosso entre o mundo real e o mundo virtual, em breve será possível cercarmo-nos de outras dimensões, ou fundi-las dentro da nossa. Esta tese foca-se no desenvolvimento de um sistema de predição para a estimação da pose da câmara no mundo real em relação ao eixo virtual do mundo. Este trabalho foi desenvolvido como um sub-módulo integrado no projeto M5SAR: Mobile Five Senses Augmented Reality System for Museums, com o objetivo de alcançar uma experiência mais imersiva com a substituição total ou parcial dos limites do ambiente. Dedica-se ao interior de edifícios de arquitetura humana e a sua típica forma de retângulo cuboide. Com a possibilidade de saber a direção da câmara do dispositivo, podemos então sobrepor conteúdo dinâmico de RA, num convite ao utilizador para explorar os mundos ocultos. O projeto M5SAR introduziu uma nova forma de explorar os museus históricos existentes através da exploração dos cinco sentidos humanos: a audição, o cheiro, o paladar, o toque e a visão. Com essa tecnologia inovadora, o utilizador pode engrandecer a sua visita e mergulhar num mundo virtual mesclado com a nossa realidade. Uma aplicação para dispositivo móvel foi criada, contendo uma estrutura inovadora: MIRAR - Mobile Image Recognition based Augmented Reality - a possuir o reconhecimento de objetos, navegação e projeção de informação de RA adicional, de forma a enriquecer a visita do utilizador, a fornecer informação intuitiva e interessante em relação às obras de arte disponíveis, a explorar os sentidos da audição e da visão. Foi também desenhado um dispositivo para exploração em particular dos três outros sentidos adicionais: o cheiro, o toque e o sabor. Este dispositivo, quando afixado a um dispositivo móvel, como um smartphone ou tablet, emparelha e reage com este automaticamente com a narrativa relacionada à obra de arte, a imergir o utilizador numa experiência sensorial. Como já referido, o trabalho apresentado nesta tese é relativo a um sub-módulo do MIRAR, relativamente à deteção do ambiente e a sobreposição de conteúdo de RA. Sendo o objetivo principal a substituição completa dos conteúdos das paredes, e com a possibilidade de manter as obras de arte visíveis ou não, foi apresentado um desafio adicional com a limitação do uso de apenas câmaras monoculares. Sem a informação relativa à profundidade, qualquer imagem bidimensional de um ambiente, para um computador isso não se traduz na dimensão tridimensional das dimensões do mundo real. No entanto, as construções de origem humana tendem a seguir uma abordagem retangular às divisões dos edifícios, o que permite uma predição de onde poderá apontar o ponto de fuga de qualquer ambiente, a permitir a reconstrução da disposição de uma divisão através de uma imagem bidimensional. Adicionalmente, ao combinar esta informação com uma localização inicial através de um reconhecimento por imagem refinado, para obter a posição espacial da câmara em relação às coordenadas do mundo real e do mundo virtual, ou seja, uma estimativa da pose, foi possível alcançar a possibilidade de sobrepor conteúdo de RA especificamente localizado sobre a moldura do dispositivo móvel, de maneira a imergir, ou seja, colocar o visitante do museu dentro de outra era, relativa ao período histórico da obra de arte em questão. Ao longo do trabalho desenvolvido para esta tese, também foi apresentada uma melhor superfície planar na recolha e retificação espacial, um sistema de comparação de múltiplas imagens híbrido e escalável, um filtro de outliers mais estabilizado, aplicado ao eixo da câmara, e um sistema de tracking contínuo que funciona com câmaras não calibradas e que consegue obter ângulos particularmente obtusos, continuando a manter a sobreposição da superfície. Adicionalmente, um algoritmo inovador baseado num modelo de deep learning para a segmentação semântica foi introduzido na estimativa do traçado com base em imagens monoculares. Ao contrário de métodos previamente desenvolvidos, não é necessário realizar cálculos geométricos para obter um desempenho próximo ao state of the art e ao mesmo tempo usar uma fração dos parâmetros requeridos para métodos semelhantes. Inversamente ao trabalho previamente apresentado nesta tese, este método apresenta um bom desempenho mesmo em divisões sem vista ou obstruídas, caso sigam a mesma premissa Manhattan. Uma leve aplicação adicional para obter a posição da câmara é apresentada usando o método proposto

    Probabilistic RGB-D Odometry based on Points, Lines and Planes Under Depth Uncertainty

    Full text link
    This work proposes a robust visual odometry method for structured environments that combines point features with line and plane segments, extracted through an RGB-D camera. Noisy depth maps are processed by a probabilistic depth fusion framework based on Mixtures of Gaussians to denoise and derive the depth uncertainty, which is then propagated throughout the visual odometry pipeline. Probabilistic 3D plane and line fitting solutions are used to model the uncertainties of the feature parameters and pose is estimated by combining the three types of primitives based on their uncertainties. Performance evaluation on RGB-D sequences collected in this work and two public RGB-D datasets: TUM and ICL-NUIM show the benefit of using the proposed depth fusion framework and combining the three feature-types, particularly in scenes with low-textured surfaces, dynamic objects and missing depth measurements.Comment: Major update: more results, depth filter released as opensource, 34 page
    • …
    corecore